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Abstract

Multi-frame image super-resolution (SR) aims to combine the sub-pixel in-
formation from a sequence of low-resolution (LR) images to build a high-
resolution (HR) one. SR techniques usually suffers from annoying restoration
artifacts such as noise, jagged edges, and staircasing effect. In this paper,
we aim to increase the performance of SR reconstitution under a variational
framework using adaptive diffusion-based regularization term. We propose
a new tensor based diffusion regularization that takes the benefit from the
diffusion model of Perona-Malik in the flat regions and use a nonlinear tensor
derived from the diffusion process of weickert filter near boundaries. Thus,
the proposed SR approach can preserve important image features (sharp
edges and corners) much better while avoiding artifacts. The synthetic and
real experimental results show the effectiveness of the proposed regularisation
compared to other methods in both quantitatively and visually.

Keywords: Super-resolution, Multi-frame, Image restoration, Variational
regularization, Tensor diffusion.

1. Introduction

Currently, image multi-frame super-resolution reconstruction [1, 2, 3, 4, 5]
is one of the relevant inverse problems research in image processing. The aim
of this technique is to reconstruct a high-resolution (HR) image from a set
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of low-resolution (LR) ones that are noisy, blurred, deformed and down-
sampled [6, 7]. Multi-frame SR techniques is used in many applications and
various fields. For instance, to achieve high recognition rates of the quality
assurance in industries [8, 9], agricultural surveillance [10], environmental
issues [11], security and video surveillance [12, 13] and also cultural her-
itage [14, 15], resolution enhancement is therefore necessary. Moreover, to
address the hardware limitations and the very expensive price that sophis-
tication of hardware components requires, the SR technique is preferable,
namely in areas like medical diagnostics [16] and satellite imaging [17] such
as remote sensing and military surveillance, . . . etc.

Multi-frame super-resolution is achieved in three basic steps [18]: first,
the motions between each two frames of the captured image sequence are
computed which constitutes the registration step ; then, an alignment of this
frames onto an HR grid is performed using the motion vectors; and, eventu-
ally, a denoising and deblurring step is required to reduce the noise, blur and
misregistration errors resulting from the registration step. After the first
work proposed in [19], where the authors considered a frequency domain
approach, several approaches have been proposed and studied to improve
the multi-frame SR problem [20, 21, 22, 23, 24]. Earlier works on SR algo-
rithms are based on regularization method due to its ill-posed nature which
mainly contains the likelihood and prior function [25, 26]. The likelihood
function measures the difference between the LR images and the obtained
HR one, while the image prior function, impose some prior knowledge on
the desired HR image. Some of the widely-used prior functions was the To-
tal Variation (TV) regularization as in [27] which avoid the edge-blurring
effect caused by the Tikhonov regularization [22]. Besides, some minima es-
timators (M-estimators) based on statistics knowledge have been explored
in multiframe super-resolution algorithm [28]. Namely, the M-estimation
method in the context of regularization framework, such as the use of Huber
function in the fidelity term [29]. More robust estimators was introduced
without regularisation using the Lorentzian error norm [30] and Gaussian
error norm [31]. Other robust M-estimation combine with a robust estima-
tors and the Lorentzian error norm in both the fidelity and regularization
terms [32, 33]. The main drawbacks of these methods is the non-convexity of
the minimizing function even if the robustness against outliers is significant.

One of the successful and simplest choice of the prior function in the
SR problem was the Bilateral Total Variation (BTV) [34], which the HR
image is obtained by replacing every pixel with a weighted average of its
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neighborhood. Although the BTV regularization preserves edges typically
in non-smooth regions, the use of the Lebesgue (L1) norm in the regular-
ization term produce artificial edges in the flat surfaces. To overcome the
weakness of the BTV term Zeng and Yang proposed the adaptive Bilateral
Edge-Preserving (BEP) [35] norm, which stop the diffusion process of the
BTV term in smooth areas of the image. In the same principle, another
adaptive combined of the TV and BTV norms was introduced to avoid the
straicasing effect, which increase the performance of the restoration step of
the SR algorithm [36]. Recently, an adaptive diffusion-based regularizer was
treated to preserve important image features [37]. Even if this approach
avoids undesirable artifacts while suppressing noise, it suffers from the blur-
ring effect.

The main goal of this paper consists of increasing the robustness of the
super-resolution techniques over the methods discussed above with respect
to the misregistration errors, blurring effect and noise. To avoid the errors
arising from the restoration step, we use a nonlinear diffusion-based regular-
izer derived from the Weickert filter [38, 39, 40]. Since the Weickert process
destroys edges and generates curved structure under intense noise conditions,
improvements of this filter are desired. In the context of super-resolution, we
propose a more robust filter against noise and blur, which takes into account
the coherence-enhancing property. This approach takes into consideration
the best of Perona-Malik processe in flat regions [41], and the benefit of the
Weickert filter effect near sharp edges. The proposed regularizer has proved
its efficiency in avoiding the staircasing effect and blur while reducing noise,
which can preserve image features much better compared with the existing
diffusion-based regularizers.

The outline of the paper is the following one. In Section 2, we present
the general multi- frame super-resolution problem. Then, we set the derived
regularized criterion. After, we introduce the variational problem and we
prove the existence of a solution of the proposed equation. In section 3, we
present some experimental results, while we compare our approach with some
available methods. We finally end the paper by a conclusion.

2. Muti-frame SR problem formulation

The observed images of a real scene usually are in low resolution. This is
due to some degradation operators. In practice, the acquired images are dec-
imated, corrupted by noise and suffered from blurring [18]. We assume that
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all low resolution images are taken under the same environmental conditions
using the same sensor. The relationship between an ideal HR image X (rep-
resented by a vector of size [r2N2×1], where r is the resolution enhancement
factor) and the corresponding LR ones Yk of size N × N (represented by a
vector of size [N2 × 1]), is described by the following model

Yk = WFkHX + Vk ∀k = 1, 2, . . . , n, (1)

where
n: the number of LR frames.
H: the blurring operator of size [r2N2 × r2N2].
W : represents the decimation matrix of size [N2 × r2N2].
Fk: is a geometric warp matrix of size [r2N2 × r2N2], representing a non-
parametric transformation that differs in all frames.
Vk: is a vector of size [N2 × 1] which represents the additive noise for each
image.

Given a LR sequence Yk, k = 1, . . . , n, the aim of SR consists of re-
constructing the original image X. Since the super-resolution problem is
ill-posed (the solution is not unique), the reconstitution is very unstable.
This can be fixed by requiring some prior knowledge about the image X in
a Bayesian framework. Via the the maximum a posteriori (MAP) estima-
tor, the estimation of HR image is given through the following minimization
problem

X̂ = arg max
X
{p(X/Yk)},

= arg max
X
{p(Yk/X).p(X)},

= arg min
X
{− log(p(Yk/X))− log(p(X))}, (2)

where p(Yk/X) represents the fidelity term (i.e. the relationship between the
observed images and the HR one), while p(X) describes the prior knowledge
imposed on the high-resolution image X. Substituting these two terms by
their expressions, we define the general super-resolution model as follows :

X̂ = arg min
X

{
n∑
1

‖WFkHX − Yk‖2 + δR(X)

}
, (3)

where R(X) is a regularisation term representing a prior knowledge on X.
There is a great number of proposed regularisations in the multi-frame super-
resolution context [36, 35, 34, 26]. The main principle of these approaches
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is to provide a global minimum to the encountered minimization problem.
With the same aim, recently, Maiseli et al. [37] proposed a new regularizing
potential defined by

R(X) =

∫
Ω

|∇X|
β

(
2 + |∇X|

β

)
1 +

(
|∇X|
β

)2 dΩ, (4)

where β is a shape-defining tuning constant. The purpose of this choice is
to combine the edge preserving effect of the total variation [42] with the
Perona-Malik diffusion behavior [41] and the effect smoothing of backward
diffusion anisotropic [43]. Which can preserve sharpen edges and details. The
corresponding evolution equation of the Euler- Lagrange form of (3) using
the regularisation term in (4) is

∂X

∂t
=

1

n

n∑
k=1

W ᵀF ᵀ
kH

ᵀ(WFkHX − Yk) + div

 2 + |∇X|
β

1 +
(
|∇X|
β

)2∇X

 . (5)

Even if this equation preserves feature of the image, it suffers from the blur-
ring effect in the homogeneous regions. To address this problem, we propose
a new equation that performs the coherence- enhancing property and avoids
blur. This approach takes in consideration the best of Perona-Malik diffusion
process in flat regions [41], and the benefit of Weickert filter effect [38] near
sharp edges and corners. The proposed equation with Neumann boundary
conditions is given as follows

∂X
∂t

(t, x)−div(D(Jρ(∇Xσ))∇X)− 1
m

∑m
i=1(WFkH)ᵀ(WFkHX−Yk)=0 on ]0,T [×Ω,

〈D(Jρ(∇Xσ))∇X,n〉=0 on ]0,T [×∂Ω,

X(0, x)=X0(x),

(6)

where D is an anisotropic diffusion tensor and Jρ is the structure tensor de-
fined by

Jρ(∇Xσ) = Kρ ∗ (∇Xσ ⊗∇Xσ) = Kρ ∗ (∇Kσ ∗X∇Kσ ∗Xᵀ). (7)

With Kρ and Kσ represents a two Gaussian convolution kernels such as

Kτ (x) = 1
2πτ2

exp(− |x|
2

2τ2
). The function D is chosen in order to preserve
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edges and corners as much as possible. This function is computed using the
eigenvalues and the eigenvectors of the structure tensor Jρ as follows

D := f+(λ+, λ−)θ+θ
ᵀ
+ + f−(λ+, λ−)θ−θ

ᵀ
−, (8)

where λ+/− and θ+/− are respectively the eigenvalues and the eigenvectors of
the tensor structure Jρ, the eigenvalues λ+/− are calculated as

λ+/− =
1

2

(
trace(Jρ)±

√
trace2(Jρ)− 4 det(Jρ)

)
. (9)

This choice is justified using the geometric characteristics of the restored im-
age, for more details see [44]. Indeed, if λ+/− ≈ 0, the smoothing within ho-
mogeneous areas is isotropic, while if λ+ � λ− ≈ 0, the smoothing process is
anisotropic and directed along the straight edges. However, if λ+ � λ− � 0,
the smoothing takes into account corners. Also, the functions f+(λ+, λ−) and
f−(λ+, λ−) are chosen carefully in order to satisfy the following smoothing
constraints:

1. Isotropic: in the homogeneous areas the diffusion process should be
isotropic.

2. Anisotropic: near of sharp edges, the diffusion process should be anisotropic.

Many choices have been proposed for the functions f+/−, namely, the func-
tions associated to the Perona Malik process are defined as

f+/−(λ+, λ−) = exp

(
−(λ+ + λ−)2

k

)
.

Using this function, the diffusivity matrix D has no specific orientation and
it stops diffusion near edges and corners. To outperform the defects of the
Perona Malik model, the model of Weickert [39] has been proposed choosing
f+ and f− as followsf+(λ+, λ−) =

{
α + (1− α) exp(− k

(λ+−λ−)2
) if λ+ 6= λ−,

α else (α = 0.001),

f−(λ+, λ−) = α.

The Weickert coherence enhancing diffusion approach [44] leads to good re-
sults in the case of anisotropic process, particularly, the diffusion is oriented
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in one direction. However, the Weickert model destroys corners and singular-
ities of the restored image. To overcome this issue, we propose new functions
which leads to skipping the behaviour of Weickert coefficients and allows to
diffuse in two directions θ+ and θ−. These functions are presented as follows{

f+(λ+, λ−) = exp(−λ+
k1

),

f−(λ+, λ−) = exp(−λ−
k2

)(1− exp(−λ+
k1

)),
(10)

where k1 and k2 are two thresholds which define the diffusion along the direc-
tions θ+ and θ− respectively. Since the desired diffusion changes according to
the image feature: contour or singularity, the parameters k1 and k2 are used
to define the sensitivity threshold that determine the variation in a given
image. With this choice, the PDE in (6) allows to reduce noise in uniform
zones, smooth edges and preserve singularities correctly.

Since the restoration step is an ill-posed problem [45], we have to check
the existence and uniqueness of the proposed PDE (6). We first recalls some
interesting assumptions:

1. There exists ηk > 0 such that 〈NkY, Y 〉 ≤ ηk‖Y ‖2, with

Nk = (WFkH)ᵀWFkH, ∀k = 1, . . . n.

2. The diffusion tensor D is infinitely continuous, i.e D ∈ C∞(R2×2,R2×2).

3. D is a symmetric and positive-definite matrix.

In the following theorem, we prove the existence and uniqueness of solution
to (6).

Theorem 2.1. Let X0 ∈ L∞(Ω), ρ ≥ 0 and σ, T > 0. Under the as-
sumptions above, there exists a unique function X(t, x) ∈ C((0, T );L2(Ω)) ∩
L2((0, T );H1(Ω)) satisfying the equation (6). Moreover, the solution depends
continuously on X0 with respect to ‖.‖L2(Ω), and X ∈ C((0, T )× Ω).

proof 1. See Appendix.

Since we have demonstrated the existence and uniqueness of the solution
to the proposed equation, the convergence of the proposed scheme is assured.
Indeed, we solve the problem (6) using an explicit finite difference scheme [44].
We will not detail this part, since it is similar to previous work [36, 37],
where an appropriate scheme is used to discretize the proposed PDE. This
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scheme is computationally fast, efficient, and mathematically well posed as
demonstrated in [37, 44]. To compute the warping matrix Fk (to align the
input images), we used a sub-pixel accurate optical flow method [46]. In this
approach, a variational minimization problem is used with a Huber-Norm
regularization and an L1 based data in the optical flow constraint model.

To observe the robustness of the proposed regularizer in (6) with respect
to noise, we consider a simple denoising problem. For that, we take m = 1
and WFkH = I in (6), we select the image in Fig. 1 (a) and added to it a zero
mean Gaussian noise with standard deviation σnoise = 25, then, we applied
the nonlinear diffusion regularizer of Perona-Malik (PM) [41], Weickert et
al. [38], BTV [34] and ours, to generate the results in Fig. 1. Concerning
the parameter selection in equation (10), the two threshold k1 and k2 are
chosen carefully with respect to the best obtained PSNR value as shown in
the Fig. 2. We use the same thing to select the parameter σ (see Fig. 2).
For the parameter ρ, weickert demonstrated in [38] that in general ρ = 3σ.
We recall that the choice of these parameters depends strictly on the nature
of the image, the level of noise and loss continuity of lines. We use the same
techniques to determine k1, k2 and σ, after, in the simulation experiments
within the SR framework. Figs. 3, 4 and 5 show the evolution of the PSNR
up to 120 iterations of the reconstruction results (with σnoise = 25, σnoise = 30
and σnoise = 35 respectively), using different regularizers. If we look at the
evolution of the PSNR associated with our approach, we can deduce that
the curve is not too much affected by increasing noise levels compared with
the other methods. Which once again demonstrates the effectiveness of the
proposed PDE.

3. Numerical Result

In this section various simulated and also real results for assessing the per-
formance of the proposed multi-frame SR method will be presented. Compar-
ison with some available and competitive multi-frame SR method is carried
out. Namely, TV [47], BTV [34], TV+BTV [36], and nonlinear diffusion
regularizer [37]. The proposed super-resolution method is tested on a large
benchmark image, we present only four of them. In the first simulated ex-
periment, we degraded each of the original HR images of the Castle, EIAcen,
Champignon, and Penguin to generate the corresponding sequence of twenty
synthetic LR images. This sequence is obtained from the original images
such as each frame is blurred by a Gaussian low-pass filter with a 3× 3 and
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(a) Original (b) Noisy

(c) PM [41] (d) Weickert et al. [38]

(e) BTV [34] (f) Our method

Figure 1: The denoising process using different regularizers compared with our approach.
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(a) The parameters k1 and k2 (b) The parameter σ

Figure 2: The variation of the PSNR value with respect to the parameters k1 (fixing
k2 = 30), k2 (fixing k1 = 30) and σ.

(a) The PSNR value (b) The SSIM value

Figure 3: The variation of the PSNR and SSIM values (for the obtained images in figure
1) with respect to number of iterations for different regualizers.
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(a) The PSNR value (b) The SSIM value

Figure 4: The variation of the PSNR and SSIM values (with σnoise = 30) with respect to
number of iterations for different regualizers.

(a) The PSNR value (b) The SSIM value

Figure 5: The variation of the PSNR and SSIM values (with σnoise = 35) with respect to
number of iterations for different regualizers.
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standard deviation of 1.5. Then, the blurred frames are down-sampled ver-
tically and horizontally by a factor of r = 4 and Gaussian noise was finally
added, to down-sampled frames, with σnoise = 20. Afterwards, we applied
various multi-frame SR method chosen above, and the proposed method to
reconstruct the respective original images of the degraded ones (represented
in Figs. 6 to 9). To test and compare the performance of the proposed
method with the others, a quantitative evaluation is needed, we have used
two metrics: peak-signal-to-noise ratio (PSNR) [48], and mean structure sim-
ilarity (SSIM) [49]. The PSNR measures signal strength relative to noise in
the image and is defined by

PSNR = 10 log10(
2552

MSE
),

where the MSE is the mean squared error defined by

MSE =
1

MN
ΣM
i=1ΣN

j=1(Y (i, j)−X(i, j))2.

The SSIM is calculated on multiple windows of given image, i.e. the mea-
surement between two windows x and y of size N ×N is defined by

SSIM(x, y) =
(2µxµy + c1)(2σxσy + c2)(2 covxy + c3)

(µ2
x + µ2

y + c1)(σ2
x + σ2

y + c2)(σxσy + c3)
,

where the variables, respectively, defined for x and y as follows: µx and µy,
mean; σ2

x and σ2
y , variance; covxy, covariance; c1 = (k1L)2, c2 = (k2L)2 are

two stabilizing constants; and L the dynamics of the pixel values, 255 for
8-bit encoded image. This metric gives an indication on the quality of the
image based on the known characteristics of human visual system.

The obtained results in Figs. (6)-(9) demonstrate that, visually, the pro-
posed method outperforms the others. Moreover, the quantitative results
presented in the tables 1 and 2 confirm that the proposed model is usually
with the higher PSNR and SSIM values. Note that we select the optimal
parameters according to the best PSNR value in all the experiments for the
other methods. Table 1 shows that our method is always with the best PSNR
values in most cases, which affirm its robustness against noise and blur reduc-
tion. Also, the obtained SSIM values in Table 2 confirms the high quality of
the obtained image in terms of details image preserving. Characteristically,
the execution of the main implementation on MATLAB R2014 requires on
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the average about 7 ∼ 14 second on a i7 3.4 GHz Quad-Core computer for
256 × 256 images. Effectively, the time becomes quite large for the color
and large-size images. Furthermore, we resume the necessary execution time
to increase the resolution by a factor of r = 4 of the proposed algorithm
compared with the others in Table 3.

To measure the robustness of the proposed approach against noise, we add
another test which the Gaussian noise is added with σnoise = 50 to all 100
generated LR Fish and Barbara images. Fig. 10 shows the obtained result
(for the Fish image) using the proposed algorithm (for different choices of k1

and k2 values) compared with other approaches. By a visual evaluation, we
can see the robustness of the proposed method in reducing noise with the
capability of a better edge recovery compared to other methods. Moreover, as
is shown in Table 4, quantitative results confirm that our proposed approach
has, usually, the best performance in reconstruction in terms of the PSNR
values. In addition, we can see that our approach is robust against noise
compared with the others. Since, for example, we obtain the best PSNR
value in the image of Barbara for σnoise = 50, while for σnoise = 10, Maiseli
et al. [37] method was the best. Despite the promising results, the proposed
method suffers from the weakness that it does not preserve as much the
texture. A deep research is thus needed to address this problem.

The final experiment is for a real video sequence called “Text” downloaded
from the website1, which are a challenging example, since it contain a high
level of outliers. We use the eight first images of the “Text” video as a LR
sequence of size 49×57, and the size of the reconstructed images is 98×114.
The reconstructed image by different methods are presented in the Fig. 11.
Visually, the obtained results show a significant improvement in our method
over the others.

Finally, we can summarise that both simulated and real results show that
the new approach produces a sharper image with less blur compared with
the other methods.

4. Conclusion

In this paper, we have presented an new multi-frame super-resolution ap-
proach that robustly restores image features from a much noised and blurred

1https://users.soe.ucsc.edu/∼milanfar/software/sr-datasets.html
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(a) HR image (b) One LR image (c) Farsiu et al. [34]

(d) Markina et al. [47] (e) Maiseli et al. [37] (f) Laghrib et al. [36]

(g) our method

Figure 6: The results obtained by applying different methods to LR (Castle sequence).
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(a) HR image (b) One LR image (c) Farsiu et al. [34]

(d) Markina et al. [47] (e) Maiseli et al. [37] (f) Laghrib et al. [36]

(g) our method

Figure 7: The results obtained by applying different SR methods to LR EIAcen sequence.
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(a) HR image (b) One LR image (c) Farsiu et al. [34]

(d) Markina et al. [47] (e) Maiseli et al. [37] (f) Laghrib et al. [36]

(g) our method

Figure 8: The results obtained by applying different methods to LR (Champignon se-
quence).
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(a) HR image (b) One LR image

(c) Farsiu et al. [34] (d) Markina et al. [47]

(e) Maiseli et al. [37] (f) Laghrib et al. [36]

(g) our method

Figure 9: The results obtained by applying different methods to (Penguin sequence).
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Table 1: The PSNR table

Image PSNR
Farsiu [34] Markina et al. [47] Maiseli et al. [37] Laghrib et. al [36] Our Method

Castle 25.70 27.02 27.13 26.56 27.28
EIAcen 20.63 20.55 21.12 20.87 22.11

Champignon 27.87 29.24 29.27 29.06 29.90
Penguin 32.04 31.57 32.37 32.18 33.05

Lena 29.08 29.15 29.84 29.11 30.22
Bird 33.96 33.92 34.60 34.84 35.08
Lake 30.64 30.88 31.04 31.73 31.90

Baboon 27.22 27.49 27.48 27.59 27.98
Peppers 29.94 30.66 31.45 31.18 31.06
Goldhill 29.40 29.34 30.11 29.93 30.38
Average 28.64 28.98 29.44 29.30 29.99

Table 2: The SSIM table

Image SSIM
Farsiu [34] Markina et al. [47] Maiseli et al. [37] Laghrib et. al [36] Our Method

Castle 0.776 0.763 0.794 0.806 0.803
EIAcen 0.865 0.837 0.877 0.745 0.880

Champignon 0.738 0.805 0.815 0.802 0.830
Penguin 0.876 0.806 0.880 0.879 0.884

Lena 0.822 0.831 0.836 0.844 0.852
Bird 0.864 0.852 0.871 0.873 0.892
Lake 0.803 0.810 0.818 0.822 0.828

Baboon 0.721 0.728 0.736 0.745 0.750
Peppers 0.752 0.749 0.769 0.763 0.774
Goldhill 0.830 0.821 0.865 0.869 0.878
Average 0.804 0.800 0.826 0.814 0.847

Table 3: CPU times (in seconds) of different super-resolution methods and the proposed
method when the magnification factor is 4.

Image CPU Time
Farsiu [34] Markina et al. [47] Maiseli et al. [37] Laghrib et. al [36] Our Method

Castle 7.24 7.26 8.02 7.22 7.96
EIAcen 6.22 6.64 7.62 6.34 7.61

Champignon 7.31 7.48 8.16 7.62 8.08
Penguin 7.66 7.75 8.84 7.92 8.93

Lena 9.05 9.18 10.86 9.22 10.80
Bird 8.22 8.19 9.67 8.26 9.54
Lake 8.16 8.14 10.32 8.22 10.24

Baboon 7.87 7.96 8.66 7.88 8.60
Peppers 8.02 8.16 9.22 8.36 9.76
Goldhill 8.12 8.59 9.98 8.41 10.02

Average time 7.78 7.93 9.13 7.94 9.15
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(a) HR image (b) One LR image (c) Farsiu et al. [34]

(d) Maiseli et al. [37] (e) Laghrib et al. [36]

(f) our method with a
first random choice of k1,
k2, σ and ρ (k1 = 8,
k2 = 40, σ = 1.6 and
ρ = 3.2)

(g) our method with an-
other random choice of
k1, k2, σ and ρ (k1 = 24,
k2 = 10, σ = 1.6 and
ρ = 3.2)

(h) our method with the
optimal choice of k1, k2,
σ and ρ such as k1 = 16,
k2 = 50, σ = 1.6 and ρ =
3.2

Figure 10: The results obtained by applying different methods to LR (Fish sequence) with
σ = 50 noise.
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(a) One LR image (b) Farsiu et al. [34] (c) Markina et al. [47]

(d) Maiseli et al. [37] (e) our method

Figure 11: The results obtained by applying different methods to LR (Text sequence).
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Table 4: The PSNR table of the reconstructed Fish and Barbara images using different σ
noise values

Image Method σ = 10 σ = 30 σ = 50

Farsiu [34] 34.57 30.88 28.47
Fish Maiseli et al. [37] 34.79 30.98 28.74

Laghrib et. al [36] 34.12 30.87 29.12
Our Method 34.95 31.70 30.47
Farsiu [34] 28.16 25.08 23.66

Barbara Maiseli et al. [37] 29.13 25.86 24.03
Laghrib et. al [36] 28.38 25.16 23.91

Our Method 28.94 25.84 24.54

LR sequence. The new local method is based on a new tensor diffusion reg-
ularization with a linear isotropic behaviour in flat regions and a nonlinear
filter near sharp edges. To approve this model, the existence and uniqueness
of the proposed equation is proved. Simulated and real results demonstrate,
visually, the performance of the new method and reveals the robustness with
respect to blur and noise reduction compared with competitive methods.
Moreover, we have shown that quantitatively the method generates always
the best PSNR and SSIM values.

5. Appendix

Proof of theorem 2.1

1. Uniqueness:

We follow the same technique used in [38], let X1 and X2 be two solutions
of the problem (6), for every t ∈ [0, T ] we have

∂X1

∂t
(t, x)− div(D(Jρ(∇X1σ))∇X1)− 1

m

m∑
k=1

(WFkH)ᵀ(WFkHX1 −X0) = 0

(11)

∂X2

∂t
(t, x)− div(D(Jρ(∇X2σ))∇X2)− 1

m

m∑
k=1

(WFkH)ᵀ(WFkHX2 −X0) = 0

(12)
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let w(t) = X1(t) − X2(t), D1(t) = D(Jρ(∇X1σ), D2(t) = D(Jρ(∇X2σ) and
Nk = (WFkH)ᵀWFkH, using equations (11) and (12), we obtain

∂w

∂t
(t)− div(D1∇w(t))− 1

m

m∑
k=1

Nkw(t) = div((D1 −D2)∇X2). (13)

Then, multiplying the above inequality by w(t), integrating over Ω, and using
the Green formula [50]

1
2

∂

∂t
‖w‖2

L2(Ω) +
∫

Ω
〈D1(t)∇w(t),∇w(t)〉dx− 1

m

m∑
k=1

∫
Ω

〈Nkw(t).w(t)〉dx

=
∫

Ω
〈(D2(t)−D1(t))∇X2,∇w(t)〉dx. (14)

Since the matrices W , Fk and H are symmetric positive-definite, there exists
a positive constant ηk such as

〈Nkw.w〉 ≤ ηk|w|2. (15)

On the other hand, there exists a positive constant ν = ν(σ, ‖u0‖L∞(Ω))
(see [51] for more details), such that

ν|y|2 ≤ 〈D1(t)y, y〉 ∀y. (16)

From (15) and (16), the equation (14) becomes

1

2

∂

∂t
‖w‖2

L2(Ω) +ν‖∇w(t)‖L2(Ω) ≤
1

m

m∑
k=1

∫
Ω

〈Nkw(t).w(t)〉dx

+‖D1(t)−D2(t)‖L∞(Ω)‖∇X2(t)‖L2(Ω)‖∇w(t)‖L2(Ω). (17)

Moreover, since the matrices D1(t) and D2(t) are smooth enough, we have

‖D1(t)−D2(t)‖L∞(Ω) ≤ c‖w(t)‖L2(Ω). (18)

Using the Young’s inequality [52] in (17), we have

∂

∂t
‖w‖2

L2(Ω) + 2ν‖∇w(t)‖2
L2(Ω) ≤

2
m

∑m
k=1 ηk‖w(t)‖L2(Ω)

+
4c2

ν
‖w(t)‖2

L2(Ω)‖∇X2(t)‖2
L2(Ω) + ν‖∇w(t)‖2

L2(Ω), (19)
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which is equivalent to

∂

∂t
‖w‖2

L2(Ω) ≤

(
2

m

m∑
k=1

ηk +
4c2

ν
‖∇X2(t)‖2

L2(Ω)

)
‖w(t)‖2

L2(Ω). (20)

Using Gronwall’s inequality [50], we deduce finally that

‖w‖2
L2(Ω) ≤ 0,

then X1 = X2. Let’s prove the existence of this solution.

1. Existence:

To prove the existence of a weak solution to the problem (6), we use the fixed
point theorem of Schauder [53]. Firstly, we introduce the following functional
space

H(0, T ) =

{
w ∈ L2((0, T );H1(Ω));

∂w

∂t
∈ L2((0, T );H1(Ω)

′
)

}
,

where H1(Ω)
′

is the dual of the Sobolev space H1(Ω). H(0, T ) is a Hilbert
space equipped with the norm

‖w‖H(0,T ) = ‖w‖L2((0,T );H1(Ω)) + ‖∂w
∂t
‖L2((0,T );H1(Ω)′ ).

Let’s w ∈ H(0, T ) ∩ L∞((0, T );L2(Ω)), such that

‖w‖L∞((0,T );L2(Ω)) ≤ ‖X0‖L2(Ω),

and let’s define the variational problem associated to (6) with a fixed w〈
∂X

∂t
, v

〉
H1(Ω)′ ,H1(Ω)

+
∫

Ω
〈D(Jρ(∇wσ))∇X,∇Y 〉 dx =∫

Ω
1
m

∑m
i=1W

ᵀF ᵀ
kH

ᵀ(WFkHw −X0)Y dx, ∀Y ∈ H1(Ω), a.e in [0, T ].(21)

Therefore, based on the existence of parabolic equations results [45], we can
prove that the problem (21) admits a unique solution Xw in H(0, T ), satis-
fying the following estimations

‖Xw‖L2((0,T );H1(Ω)) ≤ c1,

‖Xw‖L∞((0,T );L2(Ω)) ≤ ‖X0‖L2(Ω),

‖∂Xw

∂t
‖L2((0,T );H1(Ω)′ ) ≤ c2,
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where the constants c1 and c2 depends on ρ, σ, W , F , H and X0. These
estimations lead to define the subset H0 of H(0, T ) as

H0 = {w ∈ H(0, T ), w(0) = X0; ‖w‖L2((0,T );H1(Ω)) ≤ c1,

‖w‖L∞((0,T );L2(Ω)) ≤ ‖X0‖L2(Ω), ‖
∂w

∂t
‖L2((0,T );H1(Ω)′ ) ≤ c2} (22)

Let U : w → U(w) = Xw be a mapping from H0 to H0. It’s clear that H0

is a non empty, convex, and weakly compact subspace of H(0, T ) [52]. In
order to use the classical Schauder’s fixed-point theorem, we need first to
prove that the mapping w → U(w) is weakly continuous. Indeed, let (wn)n
be a sequence that converges weakly to w in H0 and Xn = U(wn). Using the
compact inclusions of Sobolev space [50] and by the estimations (22), there
exists a subsequence noted also (wn) and (Xn) such that

∂wn
∂t

⇀
∂w

∂t
in L2((0, T );H1(Ω)

′
),

Xn → X in L2((0, T );L2(Ω)),

∇Xn ⇀ ∇X in (L2((0, T );L2(Ω)))2,

wn → w in L2((0, T );L2(Ω)),

D(Jρ(∇wnσ))→ D(Jρ(∇wσ)) in L2((0, T );L2(Ω)),

Xn(0)→ X(0) in H1(Ω)
′
.

Using the limit as n → ∞, we obtain X = Xw = U(w). Moreover, by the
uniqueness of the solution of (6), the sequence Xn = U(wn) converge weakly
to X = U(w), this prove the continuity of U . Finally, from the Schauder’s
fixed-point theorem, there exists a function w ∈ H0 such that w = S(w) =

Xw. Moreover, since X ∈ L2((0, T );H1(Ω)) and
∂X

∂t
∈ L2((0, T );H1(Ω)

′
),

by the Aubin’s theorem [54], we can deduce that X ∈ C((0, T );L2(Ω)).
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