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Abstract

The paper introduces a new method for Blind Source Separation (BSS) in noisy instantaneous

mixtures of both independent or dependent source component signals. This approach is based

on the minimization of a regularized criterion. Precisely, it consists in combining the total

variation method for denoising with the Kullback-Leibler divergence between copula densities.

This latter takes advantage of the copula to model the structure of the dependence between

signal components. The obtained algorithm achieves separation in a noisy context where stan-

dard BSS methods fail. The efficiency and robustness of the proposed approach are illustrated

by numerical simulations.
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1. Introduction

The blind source separation (BSS) problem is a fundamental issue in applications of many

different fields such as signal and image processing, biological and medical data analysis, com-

munications, ... etc. The BSS aims to recover unknown source signals from a set of observations

which are unknown mixtures of source signals. In order to separate the mixtures, different as-

sumptions on the sources have to be made. In the literature, the most common assumptions

are statistical independence of the source components and the condition that at most one of the

components is gaussian. Under these assumptions, the BSS problem is linked to the well known

problem of Independent Component Analysis (ICA), see for instance [1]. Using the above con-

ditions, particularly, for free-noisy mixtures, many methods of BSS have been proposed in the
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literature, see e.g. [2, 3, 4, 5]. Some of these procedures use second or higher order statistics [6],

maximize likelihood [7], maximize nongaussianity [8], minimize the mutual information [9] or

ϕ-divergences [10]. An interesting overview on the subject can be found in [11]. Recently, under

the assumption that the source components are independent, based on estimation of mutual

information and total variation (TV) regularization, [12] provided a new BSS algorithm to sepa-

rate noisy mixtures of instantaneous or covolutive mixtures of independent source components.

Further, it has been shown in [13] that, based on copula models, without the assumption of the

independence of the source components, we can still identify both mixing matrix and sources

uniquely (up to scale and permutation indeterminacies) of (free-noisy) mixtures of both inde-

pendent and dependent source components. Motivated by various applications, we investigate,

in the present paper, models of noisy linear instantaneous mixtures of independent/dependent

sources, for which we propose, based on the previews works [12] and [13], a new BSS procedure.

We successfully combined the two methods of [12] and [13] to obtain a new BSS algorithm able

to separate noisy mixtures of independent/dependent source components. Our methodology

consists in denoising the observed signals through the minimization of their total variation, and

then minimizing Kullback-Leibler divergence, between copula densities, penalized by the total

variation of the estimated source signals. The outline of this paper is organized as follows.

In Section 2, we state the BSS problem in a noisy mixture context. In Section 3, we give a

bref introduction on copulas and some of their main properties. In Section 4, we describe our

approach. Section 5 presents how to implement the proposed approach using both numerical

and statistical techniques. Section 6 gives some numerical results, illustrating the efficiency

and robustness of the proposed method. Conclusions are drawn in Section 7.

2. The BSS model

2.1. BSS model in the noise-free case

BSS problem can be modeled as follows. Denoting A[·] the (unknown) mixing operator, the

relationship between the observed and source signals can be written as

x(t) := A[s(t)] ∈ Rp, (1)

where s(t) ∈ Rq is the unknown vector of source signals to be estimated, and x(t) represents

the observed vector signal at time t ∈ [0, T ]. The goal of BSS, is therefore to estimate the
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unknown sources s(t) from the observed mixtures x(t). The estimation is performed with no

prior information about either the sources or the mixing operator A[·]. Specific restrictions are

made on both the mixing model and the source signals in order to limit the generality. We will

restrict our self to the case where the number of source component and the number of observed

mixture ones are equal (p = q), and we assume, in the present paper, that the mixtures are

linear and instantaneous, so that the mixing operator A can be considered as a p× p matrix.

In this case, supposing in addition that A is invertible, the candidate estimates of the sources

will be obviously of the form

y(t) := B x(t) ∈ Rp, (2)

where B ∈ Rp×p represents an appropriate demixing matrix. In other words, the problem is to

obtain an estimate, denote it B̂, “closing” to the ideal solution B = A−1, by the use of only

the observation x(t), which leads to accurate estimation of the source s(t):

ŝ(t) := B̂ x(t) ' s(t). (3)

2.2. BSS model for noisy mixtures

In the present paper, we will focus on the BSS problem for noisy linear instantaneous mixtures

x(t) := As(t) + n(t) ∈ Rp, t ∈ [0, T ], (4)

where x(t) ∈ Rp is the vector of noisy observations, s(t) ∈ Rp is the unknown vector of sources

to be estimated, n(t) ∈ Rp is the (unknown) noise, and A ∈ Rp×p is the unknown mixing

matrix. We assume that the source signal s(t) and the noise n(t) are independent. The mixing

model (4) can also be written as

x(t) = x(t) + n(t), (5)

with

x(t) := As(t) (6)

is the inaccessible noise-free mixed vector signals. The aim here, is to estimate the sources

s(t) using only the observed noisy signal x(t). The presence of noise n(t) within the mixing

model (4), as well as the possible dependency structure of the source components, complicate

significantly the BSS problem. Unlike the above case of free-noise mixtures in Subsection 2.1,

the separating system of the form

y(t) := Bx(t) (7)
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does not provide a valid estimation for the source signals s(·). In fact, the obtained signals

according to the above system, can be written as

y(t) := Bx(t) = Bx(t) + Bn(t)

=: y(t) + n(t), (8)

where y(t) ∈ Rp is the “noisy estimate” of s(t). That is the noisy estimated source y(t) is the

sum of

y(t) := Bx(t) (9)

the “noisy-free” estimate of the sources, which is inaccessible, and the unknown “noise”

n(t) := Bn(t). (10)

Ideally, we would like to retrieve y(t) by denoising y(t), but it is rather difficult since the noise

n(t) is unknown. During last years, several algorithms have been proposed to tackle the noisy

BSS problem; In [14], the authors propose a two-step approach by combining the fraction allower

order statistic for the mixing estimation and minimum entropy criterion for noise-free source

component estimation. In [15], a whitening procedure is proposed to reduce the noise effect. At

our knowledge, the noisy BSS problem for possibly dependent sources has not been considered

in the literature. In [13], the authors proposed a new criterion to successfully separate noise-free

mixtures of both independent and dependent sources, based on estimation of Kullback-Leibler

divergence between copula densities. [16] provides a BSS procedure for noisy mixtures using

TV-regularization of mutual information, which applies exclusively under the assumption that

the source components are independent. Based on these two last works, the present paper

introduces a new procedure for estimating sources in the context of noisy mixtures of possibly

dependent source components. It proceeds on two stages : (i) denoising the observed signal x(t)

before demixing; (ii) a simultaneous BSS-denoisy procedure via minimizing a TV-regularized

measure between copula densities.

3. Bref recall on Copula

When modeling multivariate distributions, one has to take into account the effects of the

marginal distributions as well as the dependence between them. This can be achieved by using

the copula approach, which allows to deal with the margins and the dependency structure
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separately. It was introduced by [17] as a function which couples a joint distribution function

with its univariate margins. Precisely, it can be presented as follows. Consider any random

vector

Y := (Y1, . . . , Yp)
> ∈ Rp, p ≥ 1,

with joint distribution function (d.f.)

FY(·) : y ∈ Rp 7→ FY(y) := FY(y1, . . . , yp) := P(Y1 ≤ y1, . . . , Yp ≤ yp),

and continuous marginal d.f.’s

FYj(·) : yj ∈ R 7→ FYj(yj) := P(Yj ≤ yj), ∀j = 1, . . . , p.

The characterization theorem of Sklar [17] shows that there exists a unique p-variate function

CY(·) : [0, 1]p 7→ [0, 1], such that,

FY(y) = CY(FY1(y1), . . . , FYp(yp)),∀y := (y1, . . . , yp)
> ∈ Rp.

The function CY(·) is called a copula and it is in itself a joint d.f. on [0, 1]p with uniform

margins. We have

∀u := (u1, . . . , up)
> ∈ [0, 1]p, CY(u) = P

(
FY1(Y1) ≤ u1, . . . , FYp(Yp) ≤ up

)
.

Conversely, for any marginal d.f.’s F1(·), . . . , Fp(·), and any copula function C(·), the function

C(F1(·), . . . , Fp(·)) is a multivariate d.f. on Rp. On the other hand, since the marginal d.f.’s

FYj(·), j = 1, . . . , p, are assumed to be continuous, then the random variables FY1(Y1), . . . , FYp(Yp)

are uniformly distributed on the interval [0, 1]. Moreover, we have that the components

Y1, . . . , Yp are statistically independent if and only if (iff) the copula CY(·) of the random

vector Y := (Y1, . . . , Yp)
> ∈ Rp writes

CY(u) =

p∏
j=1

uj =: C∏(u), ∀u ∈ [0, 1]p,

which will be denote by C∏(·); It is called the copula of independence. Define, when it exists,

the copula density

cY(u) :=
∂pCY(u)

∂u1 · · · ∂up
, ∀u ∈ [0, 1]p.
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Hence, the copula density of independence, denote it by c∏(·), is the function taking the value

1 on [0, 1]p and zero otherwise, namely,

c∏(u) := 1[0,1]p(u), ∀u ∈ [0, 1]p. (11)

Let fY(·), if it exists, be the probability density of the random vector Y := (Y1, . . . , Yp)
>,

and, respectively, fY1(·), . . . , fYp(·), the marginal probability densities of the random variables

Y1, . . . , Yp. Then, a straightforward computation shows that, for all vector y := (y1, . . . , yp)
> ∈

Rp, we have the relation

fY(y) =

p∏
j=1

fYj(yj) cY
(
FY1(y1), . . . , FYp(yp)

)
, (12)

As previously highlighted, copulas play an important role in the construction of multivariate

d.f.’s. Therefore, several investigations have been carried out concerning the construction of

different families of copulas and their properties. For more details on modeling theory as well

as surveys of the commonly semiparametric used copulas, we can refer to the monographs by

[18, 19].

4. A combined TV-Copula approach for BSS

Our TV-Copula approach for BSS proceeds in two steps. (i) uses the TV regularization tech-

nique for denoising the observed signals. (ii) separates the mixtures by minimizing penalized

Kullback-Leibler divergence between copulas with a TV-regularization term. In the following,

we describe these two steps.

4.1. Setp 1 : Denoising the observed signals

As in [12], we would obtain the denoisy mixture signal

x(t) := (x1(t), . . . , xp(t))
>, t ∈ [0, T ], (13)

from the (noisy) observed one x(t), see (4), by means of the following variational minimization

problem

xi(·) = arg min
wi∈Xc

{
1

T

∫ T

0

1

2
(wi(t)− xi(t))2 dt+ λ

1

T

∫ T

0

φ (|w′i(t)|) dt
}
, i = 1, . . . , p, (14)
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where λ > 0 is the parameter of penalization, φ(·) : R+ → R+ is a well chosen function, w′i(t) is

the first derivative of the signal wi(t) with respect to time t, and Xc is some appropriate space

of signals. In practice, in order to reduce the noise, the function φ(·) is chosen to encourage

smoothing in regions where the variations of the signal are weak, that is |w′i| ≈ 0, and to

preserve discontinuities where |w′i| is strong. The total variation case corresponds to the choice

φ(x) = x which will be adopted here. One can make other choices like φ(x) =
√

1 + x2. A

natural space when dealing with the above continuous variational problem (14), with φ(x) = x,

is Xc = BV ([0, T ]), the space of all real valued functions on the interval [0, T ] with bounded

variation; see e.g. [20] and [21]. Here T is the observation time of the signals. The mathematical

treatment of the above problem, in its continuous form, is beyond the scope of this paper. We

will consider only the corresponding discrete version which will be described in Subsection 5.1

below.

4.2. Step 2 : BSS via minimizing KL-divergence between copulas and denoising

The aim of the following step is to construct an estimated source signal

ŝ(t) := B̂ x(t)

from the denoised signal x(t) := (x1(t), . . . , xp(t))
> obtained as solution of (14). Our approach

consists in minimizing, with respect to B on the demixing matrices space, an estimate (to be

defined below) of some criterion of the form

B 7→ J (B) := Jsep(B) + Jreg(y), (15)

where

y(t) := Bx(t) ∈ Rp,

and x(t) = (x1(t), . . . , xp(t))
> ∈ Rp is obtained from (14); Jsep(·) is some separating criterion,

while Jreg(y) is a regularization term devoted to denoising. For the denoising phase, for both

cases, of independent or dependent source components, we propose to use as regularization

term the following one

Jreg(y) := γ
1

2T

∫ T

0

‖y(t)− y(t)‖2 dt+ µ
1

T

∫ T

0

|∇y(t)| dt, γ > 0, µ > 0, (16)

where y = Bx; the real numbers γ and µ are regularization parameters to be suitably chosen

by the user. In the above display, ‖ · ‖ is used to denote the Euclidian norm on Rp, and
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|∇y(t)| =
∑p

i=1 |y′i(t)|, for all t. The first term Jsep(·), in (15), is a measure of dependence,

or similarity between copula densities, and it depends obviously on the fact that the source

components are independent or dependent. Hence, to describe the criterion Jsep(·) hereafter,

we will consider separately, the case where the source components are independent and the

case where they are dependent. First, we will consider the following stochastic modeling of the

analog signals s(t), x(t) and y(t) := Bx(t), t ∈ [0, T ]. We assume that the above last random

processes are stationary, so that the corresponding sampled versions, with certain time period,

say Te,

s(n) := s(nTe), x(n) := x(nTe) and y(n) := y(nTe) = Bx(n), n = 1, . . . , N, (17)

can be considered as copies (realizations) of random vectors in Rp, which will be denoted

S, X and Y := BX, (18)

respectively. It has been shown, in [13], for the noisy-free mixtures case, that if we dispose of

some prior information about the copula density of the random source vector S, we can detect,

under some assumptions, both the mixing matrix and the sources uniquely (up to scale and

permutation indeterminacies) for both cases of independent or dependent source components.

Denote by

FY (·) : y ∈ Rp 7→ FY (y) := FY (y1, . . . , yp) := P(Y1 ≤ y1, . . . , Yp ≤ yp), (19)

the joint distribution function of the random vector Y := (Y1, . . . , Yp)
> ∈ Rp, with continuous

marginal distribution functions

FYi(·) : yi ∈ R 7→ FYi(yi) := P(Yi ≤ yi), ∀i = 1, . . . , p.

Let, if it exists, fY (·) be the probability density of the random vector Y , and, respectively,

fY1 , . . . , fYp , the marginal probability densities of the components Y1, . . . , Yp. The mutual in-

formation (MI) of Y is defined by

I(Y ) :=

∫
Rp

log
fY (y)∏p
i=1 fYi(yi)

fY (y) dy = E
(

log
fY (Y )∏p
i=1 fYi(Yi)

)
(20)

which equals the Kullback-Leibler divergence, denote it K(·, ·), between the joint density fY (·)
and the product density

∏p
i=1 fYi(·) of the margins fYi(·), i = 1 . . . , p, that is

I(Y ) = K

(
fY ,

p∏
i=1

fYi

)
. (21)
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In (20), E(·) is the mathematical expectation. Note also that the above criterion I(Y ) is

nonnegative and achieves its minimum value zero iff fY (·) =
p∏
i=1

fYi(·), i.e., iff the components

of the vector Y are statistically independent. We give now, the form of the separating term

Jsep(·) of the criterion (15).

4.2.1. The case of independent source components

Assume that the source components are independent. Using the relation (12), and applying

the change variable formula for multiple integrals, we can show that I(Y ) can be written, in

terms of copula densities, as follows

I(Y ) =

∫
[0,1]p

log (cY (u)) cY (u) du (22)

= E
(
log cY

(
FY1(Y1), . . . , FYp(Yp)

))
=: −H(cY ) (23)

=

∫
[0,1]p

log

(
cY (u)

1

)
cY (u) du (24)

=

∫
[0,1]p

log

(
cY (u)

c∏(u)

)
cY (u) du (25)

= E
(

log
cY (FY1(Y1), . . . , FYp(Yp))

c∏(FY1(Y1), . . . , FYp(Yp))

)
= K (cY , c∏) , (26)

where cY (·) is the copula density of Y , c∏(·) := 1[0,1]p(·) is the copula density of independence,

and E(·) the mathematical expectation operator. The above equations mean that the MI of a

random vector Y can be seen as the opposite of the Shannon entropy H(·) of the copula density

cY (·) of Y , or as the Kullback-Leibler divergence between the copula density cY (·) of Y and

the copula density c∏(·) of independence. Moreover, I(Y ) = K (cY , c∏) is nonnegative and

achieves its minimum value zero iff cY (u) = c∏(u), ∀u ∈ [0, 1]p, namely, iff the components of

the vector Y are independent. The separating term will be chosen then to be

Jsep := J ind
sep (B) := KL (cY , c∏) = E

(
log cY

(
FY1(Y1), . . . , FYp(Yp)

))
. (27)

We have that the function B 7→ J ind
sep (B) is nonnegative and attains its minimum value zero iff

B = A−1 (up to scale and permutation indeterminacies of rows).

4.2.2. The case of dependent source components

In the case where the source components are dependent, we assume that we dispose of some prior

information about the copula density of the random source vector S. Note that this is possible
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for many practical problems, it can be done, from learning samples of S, by a model selection

procedure, see e.g. [22], among semiparametric copula density models {cθ(·); θ ∈ Θ ⊂ Rd},
typically indexed by a multivariate parameter θ; see e.g. [19] and [18] for many examples of

such models. The parameter θ can be estimated using maximum semiparametric likelihood,

see e.g. [23]. Denote then by θ̂, the obtained value of θ and cθ̂(·) the copula density modeling

the dependency structure of the source components. Obviously, since the source components

are assumed to be dependent, cθ̂(·) should be different from the density copula of independence

c∏(·). Hence, we naturally replace in (26), c∏ by cθ̂, and propose the following separating

criterion Jsep(·)

Jsep(B) := J dep
sep (B) :=

∫
[0,1]p

log

(
cY (u)

cθ̂(u)

)
cY (u) du := E

(
log

cY (FY1(Y1), . . . , FYp(Yp))

cθ̂(FY1(Y1), . . . , FYp(Yp))

)
,

(28)

which equals K(cY , cθ̂), the Kullback-Leibler divergence between the copula densities cY (·) and

cθ̂(·). Moreover, we can show that the function B 7→ J dep
sep (B) is nonnegative, and attains its

minimum value iff B = A−1 (up to scale and permutation indeterminacies of rows), provided

that the copula density cθ̂(·) of the random vector source S satisfies the following assumption

: for any regular matrix M , if the copula density of the random vector M S equals cθ̂(·), then

M = DP , for some diagonal matrix D and permutation matrix P .

Remark 1. The criterion (29) proposed in the above section supposes the knowledge of the

copula density model cθ̂(·) (with known parameter θ̂), or the availability of learning samples

of the random vector source S by which we can obtain the copula density cθ̂(·) modeling the

dependency structure of the source components, as described in Subsection 4.2.2. When only

the model is known and the parameter is unknown, we can adapt the above criterion as follows.

Denote by {cθ(·); θ ∈ Θ} the density copula model of the dependency structure of the sources.

The criterion (29) can be in this case replaced by

Jsep(B) := inf
θ∈Θ

∫
[0,1]p

log

(
cY (u)

cθ(u)

)
cY (u) du := inf

θ∈Θ
E
(

log
cY (FY1(Y1), . . . , FYp(Yp))

cθ(FY1(Y1), . . . , FYp(Yp))

)
. (29)

In the more general case, when both the model and the parameter are unknown, the criterion

may be adapted in a similar way as in our previous work [13] Section 5.3.
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5. Discretization and Statistical estimation

In this section, we describe how to make operational the above methodology. Precisely, using

both numerical and statistical techniques, we will describe hereafter the discrete versions of the

regularization terms (14) and (16), as well as statistical estimates of the separation criterions

(27) and (29). In all the sequel, analog signals are sampled with a certain period Te. We need

to define additional notation. To each scalar signal, say u(t), t ∈ [0, T ], one associate a vector

U := (u(1), . . . , u(N))> ∈ Xd := RN such that u(k) := u(kTe) for all k = 1, . . . , N. The vector

space Xd := RN will be equipped with the euclidian inner product

〈U,V〉 :=
N∑
k=1

u(k)v(k),

for all U,V ∈ Xd. The numerical first derivative of any U ∈ Xd, denoted U′ := (u′(1), ..., u′(N))>,

belongs to Xd, and is defined by

u′(k) :=
u(k + 1)− u(k)

Te
, for all k = 1, . . . , N − 1, (30)

and u′(N) = 0. Due to the discretization of the first derivatives and in order to avoid the edge

effect, we define also the backward derivative of any U ∈ Xd, denoted U∗ := (u∗(1), ..., u∗(N))>,

by

u∗(1) :=
u(1)

Te
, u∗(N) := −u(N − 1)

Te

and

u∗(k) :=
u(k)− u(k − 1)

Te
for all k = 2, . . . , N − 1.

Here, the backward derivatives (·)∗ is the discrete adjoint operator of −(·)′. That is, for all

U,V ∈ Xd, we have

〈U∗,V〉 = −〈U,V′〉. (31)

All these definitions can be extended in a natural way to elements of the cartesian product

space X p = Rp × RN . In the sequel, elements of the vector space Xd = RN will be denoted by

double capital symbols, while the elements of the vector space X p
d are denoted by bold double

capital symbols, which can be considered as p×N dimension matrices.
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5.1. Denoising the discrete observed signal

In this section, we show how to compute the denoisy observations

X :=
(
x(n) = (x1(n), . . . , xp(n))> , n = 1, . . . , N

)
from the observed noisy ones

X :=
(
x(n) = (x1(n), . . . , xp(n))> , n = 1, . . . , N

)
.

This will be obtained by solving the discrete version

xi(·) = arg min
Wi∈Xd

{
1

N

N∑
n=1

1

2
(wi(n)− xi(n))2 + λ

1

N

N∑
n=1

|w′i(n)|

}
, i = 1, . . . , p, (32)

of the optimization problem (14). We start with the following proposition which gives a simple

characterization of the solution; see [24] for a proof.

Proposition 5.1. The discrete version (32) of the optimization problem (14) has a unique

solution given by

X = X−
∏

λG
X, (33)

where
∏

λG is the euclidian orthogonal projection operator on the convex set λG with

G := {V∗/V ∈ X p
d , |vi(n)| ≤ 1, ∀(i, n) ∈ {1, . . . , p} × {1, . . . , N}}. (34)

Thus, to compute X, we are led to compute the projection operator
∏

λG on the convex set

λG. For the denoising step, we propose then the algorithm 1 below; the reader may refer to

[16] for more details, particularly, for a proof on convergence of this algorithm.

In all the sequel, the filtered observed signal X will be considered as the denoised version of

the observed signal X.

5.2. BSS by minimizing an estimate of KL-divergence, between copulas, penalized by TV regu-

larization

5.2.1. The case of independent source components

Recall that, when the source components are independent, the criterion function (15) is defined

by

B 7→ J ind(B) := J ind
sep (B) + Jreg(y), (35)

13



Algorithm 1 The denoising step.

1: Data: X the observed noised signal

2: Result: X the denoised signal

3: Initialization: q = 0, X(0) = X. Given ε > 0, λ > 0 and ρ > 0 suitably chosen

4: Do: q = q + 1

5: for j = 1, . . . , p

6: X
(q)
j =

∏
λG(X

(q−1)
j + 2λρ(λ(X

(q−1)
j )∗ −Xj)

′

7: end

8: Until ||X(q) −X(q−1)|| < ε

9: X = X(q).

where J ind
sep (B) is given by, see (27),

J ind
sep (B) := KL (cY , c∏) = E

(
log cY

(
FY1(Y1), . . . , FYp(Yp)

))
and

Jreg(y) := γ
1

2T

∫ T

0

‖y(t)− y(t)‖2 dt+ µ
1

T

∫ T

0

|∇y(t)| dt, γ > 0, µ > 0,

with y(t) = Bx(t) and y = Bx(t). Using the stochastic modeling (17) and the relation (27),

we propose to approximate the criterion (35) by

B 7→ Ĵ ind(B) := Ĵ ind
sep (B) + Jreg,d(y), (36)

where

Jreg,d(y) :=
γ

2N

N∑
i=1

‖y(i)− y(i)‖2 +
µ

N

N∑
i=1

|∇y(i)| (37)

is the discrete version of Jreg(y), and B 7→ Ĵ ind
sep (B) is the statistical estimate, of the separating

criterion B 7→ J ind
sep (B), which we define as follows

B 7→ Ĵ ind
sep (B) :=

1

N

N∑
i=1

log
(
ĉY (F̂Y1(y1(i)), . . . , F̂Yp(yp(i)))

)
, (38)

where

ĉY (F̂Y1(y1(i)), . . . , F̂Yp(yp(i))) :=
1

NH1 · · ·Hp

N∑
`=1

p∏
j=1

k

(
F̂Yj(yj(i))− F̂Yj(yj(`))

Hj

)
,

14



is the kernel estimate of the copula density cY (·), and F̂Yj(·), ∀j = 1, . . . , p, is the estimate of

the marginal distribution function FYj(·) of the random variable Yj, defined for any real number

r ∈ R, by

F̂Yj(r) :=
1

N

N∑
`=1

K

(
r − yj(`)

hj

)
,

where K(·) is the primitive of a kernel k(·), a symmetric centered probability density. In

our forthcoming simulation study, we will take as kernel k(·) a standard Gaussian probability

density. A more appropriate choice of the kernel k(·), for estimating the copula density, can

be done according to [25], which copes with the boundary effect. The bandwidth parameters

H1, . . . , Hp and h1, . . . , hp will be chosen according to Silverman’s rule of thumb, see [26], i.e.,

for all j = 1, . . . , p, we take Hj =

(
4

p+ 2

) 1
p+4

N
−1
p+4 Σ̂j, and hj =

(
4

3

) 1
5

N
−1
5 σ̂j, where Σ̂j and

σ̂j are, respectively, the empirical standard deviation of the data F̂Yj(yj(1)), . . . , F̂Yj(yj(N)) and

yj(1), . . . , yj(N). The source vector signal s(i), i = 1, . . . , N , will be then estimated by

ŝ(i) = B̂ x(i), i = 1, . . . , N,

where

B̂ := arg inf
B
Ĵ ind(B),

which can be computed using a gradient descent type algorithm. In fact, straightforward

computation shows that, the gradient in B of the estimated criterion B 7→ Ĵ ind(B), can be

written as
dĴ ind(B)

dB
=

1

N

N∑
i=1

d
dB
ĉY (u(i))

ĉY (u(i))
+
γ

N

N∑
i=1

(y(i)− y(i))(x(i)− x(i))> +
µ

N

N∑
i=1

(
∇y(i)

|∇y(i)|

)∗
x(i)> (39)

where,
d

dB
:=

(
∂

∂Bl,j

)
, l, j = 1, . . . , p, u(i) := (F̂Y1(y1(i)), . . . , F̂Yp(yp(i)))

> and,

∂ĉY (F̂Y1(y(i)), . . . , F̂Yp(yp(i)))

∂Bl,j

=
1

NH1 · · ·Hp

N∑
m=1

p∏
j=1,j 6=i

k

(
F̂Yj(yj(m))− F̂Yj(yj(i))

Hj

)

× k′
(
F̂Yj(yj(m))− F̂Yj(yj(i))

Hj

)
1

Hj

∂(F̂Yj(yj(m))− F̂Yj(yj(i)))
∂Bl,j

,

(40)
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with
∂(F̂Yj(yj(m))

∂Bl,j

=
1

Nhj

N∑
i=1

k

(
yj(i)− yj(m)

hj

)
(xj(i)− xj(m)). (41)

We can then derive the following Algorithm 2.

Algorithm 2 BSS algorithm for independent source components.

Data: x the observed signal

Result: ŝ the estimated source signal

Initialization: Compute x = x−
∏

D x from Algorithm 1, B(0) = Ip, y
(0) = B(0) x. Given

ε > 0, ν > 0.

Do: Update B and y:

B(q+1) = B(q) − ν dĴ
ind(B)

dB
y(q+1) = B(q+1) x.

Until ||B(q+1) −B(q)|| < ε

ŝ = y(q+1).

5.2.2. The case of dependent source components

Recall that, in the case where the source components are dependent, the criterion function (15)

is defined by

B 7→ J dep(B) := J dep
sep (B) + Jreg(y), (42)

where J dep(B) is defined by, see (29),

J dep
sep (B) :=

∫
[0,1]p

log

(
cY (u)

cθ̂(u)

)
cY (u) du := E

(
log

cY (FY1(Y1), . . . , FYp(Yp))

cθ̂(FY1(Y1), . . . , FYp(Yp))

)
.

and

Jreg(y) := γ
1

2T

∫ T

0

‖y(t)− y(t)‖2 dt+ µ
1

T

∫ T

0

|∇y(t)| dt, γ > 0, µ > 0.

Using the stochastic modeling (17) and the relation (29), we propose to approximate the crite-

rion (42) by

B 7→ Ĵ dep(B) := Ĵ dep
sep (B) + Jreg,d(y), (43)

where

Jreg,d(y) :=
γ

2N

N∑
i=1

‖y(i)− y(i)‖2 +
µ

N

N∑
i=1

|∇y(i)| (44)
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is the discrete version of Jreg(y), and B 7→ Ĵ dep
sep (B) is the statistical estimate, of the criterion

B 7→ J dep
sep (B), which we define as follows

B 7→ Ĵ dep
sep (B) :=

1

N

N∑
i=1

log

(
ĉY (F̂Y1(y(i)), . . . , F̂Yp(yp(i)))

ĉθ̂(F̂Y1(y(i)), . . . , F̂Yp(yp(i)))

)
. (45)

The source vector signal s(i), i = 1, . . . , N , will be then estimated by

ŝ(i) = B̂ x(i), i = 1, . . . , N,

where

B̂ := arg inf
B
Ĵ dep(B),

which can be computed using a gradient descent type algorithm. In fact, straightforward

computation shows that, the gradient in B of the estimated criterion B 7→ Ĵ dep(B), can be

written as
dĴdep(B)

dB
=

1

N

N∑
i=1

d
dB
ĉY (u(i))

ĉY (u(i))

ĉθ̂(u(i))
d
dB
ĉθ̂(u(i))

+
γ

N

N∑
i=1

(y(i)− y(i))(x(i)− x(i))> +
µ

N

N∑
i=1

(
∇y(i)

|∇y(i)|

)∗
x(i)>,

(46)

where u(i) := (F̂Y1(y(i)), . . . , F̂Yp(yp(i))); the gradients d
dB
ĉY (u(i)) and d

dB
ĉθ̂(u(i)) can be

explicitly computed in a similar way as in Subsection 5.2.1 above. We obtain then the following

Algorithm 3.

Algorithm 3 BSS algorithm for dependent source components.

Data: x the observed signal

Result: ŝ the estimated source signal

Initialization: Compute x = x−
∏

D x from Algorithm 1, B(0) = Ip, y
(0) = B(0) x. Given

ε > 0, ν > 0.

Do: Update B and y:

B(q+1) = B(q) − ν dĴdep(B)

dB
y(q+1) = B(q+1)x.

Until ||B(q+1) −B(q)|| < ε

ŝ = y(q+1).
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6. Simulation results

In this section, we present simulation results illustrating the performance of our proposed

method. For simplicity, we will deal with only the case of two mixtures/two sources. We will

consider many examples of independent/dependent source component signals. The results will

be compared with those of [16] under the same conditions. Recall that the separating algorithm

proposed in [16] is based on minimizing a kernel type estimate of mutual information between

probability densities, penalized by the same TV-regularization term. In all examples the number

of samples is N = 2000. The two sources are mixed with the matrix A := [1 0.5; 0.5 1]. A

centered gaussian noise with standard deviation 0.01 was added to the normalized mixtures,

so that the signal-to-noise ratio equals −20 dB. The gradient descent parameter is taken to be

ν = 0.1. In the denoising step, see Algorithm 1, we take ρ = 0.1, λ = 0.01, and ε = 0.001.

In the second step, see Algorithm 2 and Algorithm 3, we chose γ = 0.001 and µ = 0.01. All

simulations are repeated 100 times, and the accuracy of source estimation is evaluated through

the following criterion, called again the signal-to-noise-ratio (SNR), defined by

SNRi := 10 log10

∑N
n=1 si(n)2∑N

n=1(ŝi(n)− si(n))2
, i = 1, 2. (47)

6.1. Examples where the source components are independent

We consider two noisy mixed signals of two kinds of sample sources: uniform i.i.d with in-

dependent components (Fig. 1); i.i.d sources with independent components drawn from the

4-ASK (Amplitude Shift Keying) alphabets (−3,−1,1,3 with the same weights 0.25) at which

was added a centered gaussian random variable with variance equals 0.25 (Fig. 2). We observe

from Fig. 1 and Fig. 2, that our proposed method (Algorithm 2) gives accurate estimation of

sources in the standard case of independent component sources, with performance around 27

dB in term of SNR. Fig. 3 and Fig. 4 shows the criterion values versus iterations. Observe

that the criterion values Ĵ Ind(·) converges to 0 when the separation is achieved. In Fig. 11

and Fig. 12, we compare Algorithm 2 with the MI-TV presented in [16], to separate the same

instantaneous mixtures with independent sources. We can see, from figures 11 and 12, that the

two approches are equivalent, in this standard case, as expected.

6.2. Examples where the source components are dependent

In this subsection, we show the capability of the proposed algorithm using BSS-copula-TV (Al-

gorithm 3) to successfully separate two noisy mixed source signals with dependent components.
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We dealt with noisy instantaneous mixtures of five kinds of sample sources: i.i.d. random vector

sources (with uniform marginals in Fig. 5, and binary phase-shift keying (BPSK) marginals

in Fig. 6), with dependent components generated from Ali-Mikhail-Haq (AMH) copula model

where θ̂ = 0.6. i.i.d. vector sources (with uniform marginals in Fig. 7, and binary phase-

shift keying (BPSK) marginals in Fig. 8) where the components are dependent, generated

from Clayton copula with θ̂ = 1. i.i.d vector sources (with uniform marginals) with dependent

components, generated from Fairlie-Gumbel-Morgenstern (FGM) copula model where θ̂ = 0.8

(Fig. 9). It can be seen from the results, in Fig. 5 to Fig. 9, that the proposed method is

able to separate, with good performance (with level equivalent to that of independent source

case, around 27 dB). Fig. 10 shows the convergence of the criterion ĴDep(·) to 0 when the

separation is achieved for the last example. We compare, for the following two examples of

dependent mixtures, the present approach (Algorithm 2) and the MI-TV of [16]. We consider

i.i.d. vector sources (with uniform marginals in Fig. 14, and BPSK marginals in Fig. 15) where

the component are dependent, generated from FGM copula (with θ̂ = 0.8). We can see, clearly,

that separating dependent sources - with classical criterion devoted to the independent case -

fails, and that our criterion is able to deal with the dependent case with good performance.

7. Conclusion

We have presented a new BSS approach in presence of noise, by minimizing a new regularized

criterion. The approach is able to separate instantaneous linear mixtures of both independent

and dependent source components. It proceeds in two steps: a preprocessing which consists

in reducing the noise on the observations, and a second one minimizing a separation criterion

based on Kullback-Leibler divergence between copula densities regularized through total varia-

tion. In Section 7, the accuracy and the consistency of the obtained algorithms are illustrated

by simulation, for 2 × 2 mixture-source. It should be mentioned, however, that our proposed

algorithms based on copula densities, rather than the classical ones based on probability den-

sities, are more time consuming, since we estimate both copulas density of the vector and the

marginal distribution function of each component. The present approach can be extended to

deal with convolutive mixtures of independent/dependent sources, that will be addressed in

future communications.
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Figure 1: Average output SNRs versus iteration number : Uni-

form independent sources.

Figure 2: Average output SNRs versus iteration number : ASK

independent sources.

Figure 3: The criterion value vs iterations : uniform indepen-

dent sources.

Figure 4: The criterion value vs iterations : Bpsk independent

sources.

Figure 5: Average output SNRs versus iteration number : Uni-

form dependent sources from AMH-copula.

Figure 6: Average output SNRs versus iteration number : Bpsk

dependent sources from AMH-copula.



Figure 7: Average output SNRs versus iteration number : Uni-

form dependent sources from Clayton-copula.

Figure 8: Average output SNRs versus iteration number : Bpsk

dependent sources from Clayton-copula.

Figure 9: Average output SNRs versus iteration number : Uni-

form dependent sources from FGM-copula.

Figure 10: The criterion value vs iterations : Uniform depen-

dent sources from FGM-copula.

Figure 11: Average output SNRs versus iteration number: Uni-

form independent sources.

Figure 12: Average output SNRs versus iteration number:

Bpsk independent sources.



Figure 13: Average output SNRs versus iteration number: Uni-

form dependent sources from FGM-copula.

Figure 14: Average output SNRs versus iteration number:

Bpsk dependent sources from FGM-copula.

Figure 15: Average output SNRs versus iteration number: Uni-

form dependent sources from Clayton-copula.

Figure 16: Average output SNRs versus iteration number:

Bpsk dependent sources from AMH-copula.
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