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Abstract

The denoising problem is the process of removing the noise from a degraded

image. As we know, the Rodin Osher Fatemi (ROF) denoising model based on

total variation is a robust approach for solving the ill-posed problem. To avoid

the staircasing effects caused by the first order total variation, the second order

one is proposed. In this work, we present an orthogonal projection algorithm

for solving the ROF model with first and second order total variation. The

efficiency and robustness against noise of the proposed model are illustrated

and compared with the classical methods through numerical simulations.

Keywords: Projection algorithm, Denoising, Total variation, Second order

total variation, Partial differential equations.

1. Introduction

The general idea behind variational denoising models is to consider an ob-

served image u0 as a noiseless version of an image one u. In denoising problems,

u is the solution of an ill-posed inverse problem which is presented as follow

u0 = u+ n, (1)

where u0 is noisy image and n is an additive Gaussian noise.

The ROF denoising model introduced in [8] is one of the most successful

variational algorithms, which consists of minimizing the first order total varia-
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tion. To reconstruct the true image u from u0, Rodin Osher Fatemi proposed

to minimize the following function

inf
u∈BV (Ω)

λTV (u) +
1

2
‖u− u0‖2L2(Ω) (ROF1)

where TV (u) represents the total variation of a u ∈ BV (Ω) defined as follows

TV (u) =

∫
Ω

|Du|dx

= sup

{∫
Ω

u divϕ dx ϕ ∈ C1(Ω,R), ‖ϕ‖∞ ≤ 1

}
,

and BV (Ω) is the space of integrable functions with bounded variations on

a bounded domain Ω. This space appears to be a suitable functional space

for image analysis, since it contains functions that can be discontinuous across

edges. The first term in (ROF1) is a regularization part, controlled by a positive

weighting parameter λ, the second one, measures the difference between the

original image u and the noised one using the L2(Ω) fidelity norm. The existence

and uniqueness of the solution of (ROF1) has being studied in [11, 1]. To treat

the very noised images, Chambolle proposes in [5] an efficient algorithm to

approximate this solution. In fact, the use of the TV in the (ROF1) model

favors piecewise constant structures more than smooth structures, this makes

staircasing effect. One of the solutions of this problem has been proposed in [4],

the authors propose to use the second order total variation in ROF1, then the

problem writes as follows

inf
u∈BV 2(Ω)

λTV2(u) +
1

2
‖u− u0‖2L2(Ω) (ROF2)

where BV 2(Ω) is the space of bounded hessian functions and TV2 is the second

order total variation defined as

TV2(u) =

∫
Ω

| D2u | dx (2)

with D2u is the second distributional derivative of the function u. In the same

reference [4] the authors present an other version Chombolle algorithm for re-

solving the problem (ROF2). On the other hand, the (ROF1) can be resolved
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with another projection orthogonal algorithm which has been presented in [7]

in dimension one and is based on a projected gradient method. In this work we

generalize this algorithm for minimizing the first and second total variation of

an image of dimension two.

2. The ROF1 model

2.1. The theoretical framework

The image restoration problem consists of finding an original image u : Ω→

R from a degraded one u0 and the image u0 is related to u by the degradation

model (1) with a Gaussian noise n. According to the maximum likelihood

principle u can be approximated by solving the following least-square problem

inf
u

∫
Ω

|u− u0|2dx (3)

but this problem is ill-posed in the sense of Hadamard and it has been regularized

in [10] by Tickonov and Arsenin by adding a regularization term to (3). The

authors proposed to consider the following problem

inf
u
λ‖∇u‖2L2(Ω) +

1

2

∫
Ω

|u− u0|2dx. (4)

The associated Euler-Lagrange equation of (4) is very strong isotropic and then

the edges are not preserved. The Rodin Osher Fatemi (ROF1) based on vari-

ation total is an efficient model for removing the noise and preserve the image

edges. Solving this problem leads to minimizing the following expression:

inf
u∈BV (Ω)

λTV (u) +
1

2

∫
Ω

|u− u0|2dx. (ROF ′1)

The following theorem has been proved in [11, 1].

Theorem 1. The problem (ROF1) has an unique solution in BV (Ω) space.

The Euler-Lagrange equation associated to (ROF1) is

λ∂TV (u) + (u− u0) 3 0 (5)
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where ∂TV (u) is the sub-differential of the function TV (u) defined as

w ∈ ∂TV (u)⇔ TV (v) ≥ TV (u)+ < w, v − u >L2(Ω) ∀v

the equation (5) can be written

(u0 − u) ∈ λ∂TV (u)

and according to convex analysis [9] we have

u ∈ ∂TV ∗
(
u0 − u
λ

)
with TV ∗ is the Legendre-Fenchel transform of TV .

Equivalently,
u0

λ
∈ (u0 − u)

λ
+

1

λ
∂TV ∗

(
u0 − u
λ

)
we get that w =

(u0 − u)

λ
is the minimizer of

1

2
‖ w − u0

λ
‖2 +

u0

λ
TV ∗(w). (6)

Since TV is a convex and one-homogeneous (TV (λu) = λTV (u) for all u

and λ > 0) function and according to convex analysis results [9] TV ∗ is the

indicator function of a closed convex set K:

TV ∗(u) =

0 u ∈ K

∞ otherwise

where K is given by

K =
{
u ∈ L2(Ω) : 〈u, v〉L2(Ω) ≥ TV (v) ∀v ∈ L2(Ω)

}
from the definition of total variation (2), K can be seen as the closure of the

following set {
div ξ ξ ∈ C1

c (Ω,R), ‖ξ‖∞ ≤ 1
}
.

Since the solution w of (6) is given by an orthogonal projection of u0

λ on K, and

then the solution of (ROF1) can be computed by

u = u0 − πλK(u0) (7)

where πλK is the projection operator onto K.
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2.2. Computing the discrete solution with the orthogonal projection algorithm

Form the formula (7), resolving total variation problem is equivalent to

computing the projection πλK(u0), to this end Chambolle (2004) has been pro-

posed an efficient algorithm for estimating this projection based on a fixed point

method. In other way, it could be computed by a projected gradient method,

this idea was proposed in [7] applied in the case of a 1-D noisy signal, in this

section we will generalize this for an image of dimension two.

Now we will give some notation, we denote by ui,j , i = 1, ...N, j = 1, ...,M

a discrete image and X = RN×M the set of all discrete images of size N ×M

and Y = X ×X.

The spaces X and Y are both equipped respectively with scalar product

< ., . >X and < ., . >Y where

∀u, v ∈ X, < u, v >X=

N∑
i=1

M∑
j=1

ui,jvi,j

and

∀p = (p1, p2), q = (q1, q2) ∈ Y, < p, q >Y =

N∑
i=1

M∑
j=1

p1
i,jp

1
i,j + p2

i,jp
2
i,j

The gradient of an element u written ∇u belongs to Y and could be defined

by several manners. One of them consists to set ∇u = ((∇u)1, (∇u)2) with

(∇u)1
i,j =

ui+1,j − ui,j if i < N

0 if i = N

(∇u)2
i,j =

ui,j+1 − ui,j if j < M

0 if j = M

(8)

The adjoint operator of −∇ is defined as div : X2 → X with, for all p =

(p1, p2) ∈ X2 we have

∀w ∈ X, < div p, w >= − < p,∇w >

When the gradient is given by (8) then

(div p)i,j = (div p)1
i,j + (div p)2

i,j (9)
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where

(div p)1
i,j =


p1
i,j − p1

i−1,j if 1 < i < N

p1
i,j if i = 1

−p1
i−1,j if i = N

(div p)2
i,j =


p2
i,j − p2

i,j−1 if 1 < i < M

p2
i,j if i = 1

−p2
i,j−1 if i = M

Then the discrete version of TV denoted by J is defined as

J(u) =

N∑
i=1

M∑
j=1

|(∇u)i,j |

where |.| is the Euclidean norm.

Then we can write the J as

J(u) = sup {< p,∇u >Y , p ∈ Y, |pi,j | ≤ 1 i = 1, ..., N and j = 1, ...,M}

= sup
p∈G

< p, u >X

and the set G is defined by

G = {− div p| p ∈ Y, |pi,j | ≤ 1 i = 1, ..., N and j = 1, ...,M}

from the previous notation the ROF1 is equivalent to solve the following problem

min
u∈X

1

2
|u− u0|Y + λJ(u) (10)

According to the previous the solution of (10) is

u = u0 − πλG(u0) (11)

where πλG(u0) is the orthogonal projection of u0 on the convex set λG.

Thus, to compute u we are lead to compute the projection operator πλG on the

convex set λG, i.e., to solve the problem

min
p∈λG

F (u) (12)

where F (p) = ‖p− u0‖2.

Let ρ > 0, the optimality condition for the problem (12) could be written as

follows

p = ΠD(p− ρ∇F (p)) (13)
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where D = {p ∈ Y | ∀i, j |pi,j | ≤ 1 }, ∇F (p) = −2λ∇(λ div p − u0) and ΠD is

the orthogonal projection on D. It is straightforward to see that

ΠD(q)i,j =


qi,j
|qi,j |

if |qi,j | > 1

qi,j otherwise

the problem can be solved by a classical projection algorithm which give as:

1. p0 = 0.

2. for n ≥ 0

pn+1 = ΠD(pn − ρ∇F (pn))

where ρ > 0 suitably chosen. Then

‖pn+1 − p‖ = ‖ΠD(pn − ρ∇F (pn))−ΠD(p− ρ∇F (p))‖

≤ ‖pn − p+ 2ρλ2∇div (pn − p)‖

≤ ‖(I + 2ρλ2∇div)(pn − p)‖

≤ |I + 2ρλ2∇div |‖pn − p‖

Since the eigenvalues of ∇ div are negative the sequence ‖pn − p‖ is necessary

decreasing. Then, it converges when

λ2ρ <
1

|µ|
=

1

‖∇ div ‖2

where µ is the eigenvalue of ∇div having the largest absolute value.

In order to evaluate the performance of the proposed algorithm in sense of the

convergence, we will compare it with the Cambolle algorithm [5] (see numerical

implementation section).

3. The ROF2 model

The computed (ROF1) solution makes some numerical perturbations. In

fact, the computed solution turns to be piecewise constant which is called the

staircasing effect. In order to resolve this problem it has been proposed to use
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the second order functional space of bounded variation BV 2(Ω). This model

leads to the minimisation of the following expression:

inf
u∈BV 2(Ω)

TV 2(u) +
λ

2
‖ u− u0 ‖2L2(Ω) (ROF ′2)

where TV 2 is the second total variation define by

TV 2(u) = sup

{∫
Ω

uH∗ϕdx ϕ ∈ C2
c (Ω,R), ‖ϕ‖∞ ≤ 1

}
and BV 2(Ω) is space of bonded hessian function defined as

BV 2(Ω) =
{
u ∈W 1,1(Ω), TV 2(u) <∞

}
this space endowed with the norm ‖.‖BV 2(Ω) = ‖.‖W 1,1(Ω) +TV 2(.) is a Banach

space, for others properties of BV 2(Ω) see [6].

In the case of the finite dimension the following theorem has been proved in [4].

Theorem 2. The ROF2 model has an unique solution in BV 2(Ω) space.

3.1. Compute the discrete ROF2 solution

In this section we are going to compute the ROF2 numerical solution with

the proposed orthogonal projection algorithm. We first present some recalls and

notations. The we note by X = RN×M set of all discrete images and Z = X4.

Let u be an element of X, the Hessian matrix of u denoted by Hu is identified

to a vector of Z and we denote by J2 the discrete version of the TV 2 defined by

J2(u) =

N∑
i=1

M∑
j=1

‖(Hu)i,j‖R4 .

Thus, the discretization of the ROF2 model can be defined as

min
u∈X

1

2
|u− u0|X + λJ2(u) (14)

the associate Euler Lagrange equation of (12) is the following

u− u0 + λ∂J2(u) 3 0

then
u− u0

λ
∈ J2(u)
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this equivalent [9] as

u ∈ J∗2 (
u− u0

λ
)

where J∗2 is the Legendre-Fenchel transform of J2. Therefore

u0

λ
∈ z +

1

λ
J∗2 (z)

with z =
u− u0

λ
solution the following problem

min
1

2
‖ z − u0

λ
‖2 +

u0

λ
J∗2 (z) (15)

thus, the solution of ROF2 is given as [4]

u = u0 − πλG2
(u0)

where πλG2
(u0) orthogonal projection of u0 on G2 with

G2 = {H∗q, q ∈ Z, |qi,j‖R4 ≤ 1 ∀i, j} .

In [4] the authors present a new version of Chambolle algorithm for computing

the projection πλG2(u0), but here we are going to compute it with the proposed

orthogonal projection algorithm which can be more efficient in sense of con-

vergence and restoration. Computing the projection πλG2
(u0) is equivalent to

resolve the following problem

min
z∈G2

‖z − u0‖2X

or

min
q∈D2

‖λH∗q − u0‖2X (16)

where D2 is the following convex set

D2 = {q ∈ Z, |qi,j‖R4 ≤ 1 ∀i, j} .

We denote G(q) = ‖λH∗q − u0‖X then ∇G(q) = 2λH(λH∗q − u0).

Therefore, the numerical solution of (15) is given by

1. q0 = 0.
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2. for n ≥ 0

qn+1 = ΠD2
(qn − 2τλH(λH∗qn − u0)) (17)

where τ > 0 is a real number.

Proposition 3. The sequence qn converges to q solution of (15), when n→∞,

if λ and τ satisfy the following condition:

τλ2 ≤ 1

‖HH∗‖

Proof. We have

‖qn+1 − q‖R4 = ‖ΠD2(qn − 2τλH(λH∗qn − u0))−ΠD2(q − 2τλH(λH∗q − u0))‖R4

≤ ‖qn − 2τλH(λH∗qn − u0)− q + 2τλH(λH∗q − u0)‖R4

= ‖qn − q − 2τλ2HH∗(qn − q)‖R4

≤ ‖qn − q‖R4‖I − 2τλ2HH∗‖

this equivalent to

‖qn − q‖R4 ≤ ‖q‖R4‖I − 2τλ2HH∗‖n+1

then, ‖qn − q‖R4 → 0 if only if

‖I − 2τλ2HH∗‖ < 1

we conclude that

τλ2 ≤ 1

‖HH∗‖
.

4. Numerical implementation

In this section we will present some numerical examples of denoising process

to illustrate the difference between the proposed algorithm (13, 17) and both

the Chambolle 1 [5] and Chambolle 2 [4]. The comparison is about the speed

of convergence.
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First of all we consider two examples, the first one is the image of Lena degraded

with an additive Gaussian noise of standard deviation σ = 28 and the second

one is a color image degraded with the same noise. In the Figures 1 and 3 we

display these images with corresponding results of each algorithm. As we know

that the ROF1 approach makes staircasing effect, since the resulting image is

piecewise constant on smooth areas (Fig. 1 and Fig. 3: Chambolle 1 and

projection 1), which is not the case with the ROF2 model the staircasing effect

disappears (Fig. 1 and Fig. 3: Chambolle 2 and projection 2).

Figure 1: From left to right and from top to bottom : true image, noisy image and

denoised images provided by Chambolle 1, projection 1, Chambolle 2 and projection

2.
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Figure 2: From left to right and from top to bottom: true image, noisy image and

denoised images provided by Chambolle 1, projection 1, Chambolle 2 and projection

2.

In addition, we can evaluate the performance of each algorithm, by using

the Peak Signal to Noise Ratio (PSNR) and Signal to Noise Ratio (SNR) which

is defined by

PSNR = 10 log 10

(
2552

‖u− u∗‖22

)
and

SNR = 10 log 10

(
‖u‖2

‖u− u∗‖2

)
where u is the true image and u∗ is the denoised image. Table 1 displays the

averages of the PSNR and SNR of the four algorithms. We show that the

projection 1 and Chambolle 1 have probably the same results, but the proposed

algorithm (projection 2) provides the best results in terms of both PSNR and

SNR as Chombolle 2. To illustrate the efficiency of the proposed algorithm in

sense of convergence, we display in the Figures 2 and 4 the comparison of the

criterion. The left-curve in the Figure 2 and 4 compare the convergence between

the proposed algorithm and Chambolle 1 and the right-curve in the same figures

present the comparison between projection 2 and Chambolle 2. We show that

the proposed algorithm converge much faster to the solution than Chambolle 1

and 2. The parameter λ is selected appropriately for each algorithm, and the

gradient descent parameter ρ and τ are respectively ρ = 0.01 and τ = 0.001 for
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measures Chambolle1 Projection1 Chambolle2 Projection2

21 cm Lena
PSNR 29.65 29.65 29.61 29.92

SNR 23.97 23.96 23.95 24.25

21 cm Onion
PSNR 29.41 29.38 29.18 29.51

SNR 22.35 22.32 22.17 22.49

Table 1: Comparison of measures PSNR and SNR.

the two examples.

Figure 3: Comparative study of convergence for the image Lena, from left to right:

comparison of criterion for Chambolle 1(cham1) and projection (proj1), Chambolle

2(cham2) and projection (proj2).
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Figure 4: Comparative study of convergence for the image Onion, from left to right:

comparison of criterion for Chambolle 1(cham1) and projection (proj1), Chambolle

2(cham2) and projection (proj2).

5. Conclusion

In this work, we have proposed an algorithm based on projected gradient

method for solving the famous Rodin Osher Fatemi model (order one and two).

The numerical implementation is described and experiment results for image

denoising have been tested and compared with the classical algorithms. The

efficiency of this paper is about the convergence, indeed, the proposed algorithm

converges faster than Chambolle algorithms (order one and two), in addition it

has a best denoising results using the PSNR and SNR criteria for the second

order total variation model compared with the two Chambolle algorithm.
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