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The denoising problem is the process of removing the noise from a degraded image. As we know, the Rodin Osher Fatemi (ROF) denoising model based on total variation is a robust approach for solving the ill-posed problem. To avoid the staircasing effects caused by the first order total variation, the second order one is proposed. In this work, we present an orthogonal projection algorithm for solving the ROF model with first and second order total variation. The efficiency and robustness against noise of the proposed model are illustrated and compared with the classical methods through numerical simulations.

Introduction

The general idea behind variational denoising models is to consider an observed image u 0 as a noiseless version of an image one u. In denoising problems, u is the solution of an ill-posed inverse problem which is presented as follow

u 0 = u + n, (1) 
where u 0 is noisy image and n is an additive Gaussian noise.

The ROF denoising model introduced in [START_REF] Rudin | Nonlinear total variation based noise removal algorithms[END_REF] is one of the most successful variational algorithms, which consists of minimizing the first order total varia-tion. To reconstruct the true image u from u 0 , Rodin Osher Fatemi proposed to minimize the following function inf

u∈BV (Ω) λT V (u) + 1 2 u -u 0 2 L 2 (Ω) (ROF 1 )
where T V (u) represents the total variation of a u ∈ BV (Ω) defined as follows

T V (u) = Ω |Du|dx = sup Ω u div ϕ dx ϕ ∈ C 1 (Ω, R), ϕ ∞ ≤ 1 ,
and BV (Ω) is the space of integrable functions with bounded variations on a bounded domain Ω. This space appears to be a suitable functional space for image analysis, since it contains functions that can be discontinuous across edges. The first term in (ROF 1 ) is a regularization part, controlled by a positive weighting parameter λ, the second one, measures the difference between the original image u and the noised one using the L 2 (Ω) fidelity norm. The existence and uniqueness of the solution of (ROF 1 ) has being studied in [START_REF] Vese | A study in the BV space of a denoising-deblurring variational problem[END_REF][START_REF] Acart | Analysis of bounded variation penalty methods for ill-posed problems[END_REF]. To treat the very noised images, Chambolle proposes in [START_REF] Chambolle | An algorithm for total variation minimization and applications[END_REF] an efficient algorithm to approximate this solution. In fact, the use of the T V in the (ROF 1 ) model favors piecewise constant structures more than smooth structures, this makes staircasing effect. One of the solutions of this problem has been proposed in [START_REF] Bergounioux | A second-order model for image denoising[END_REF],

the authors propose to use the second order total variation in ROF 1 , then the problem writes as follows inf

u∈BV 2 (Ω) λT V 2 (u) + 1 2 u -u 0 2 L 2 (Ω) (ROF 2 )
where BV 2 (Ω) is the space of bounded hessian functions and T V 2 is the second order total variation defined as

T V 2 (u) = Ω | D 2 u | dx (2)
with D 2 u is the second distributional derivative of the function u. In the same reference [START_REF] Bergounioux | A second-order model for image denoising[END_REF] the authors present an other version Chombolle algorithm for resolving the problem (ROF 2 ). On the other hand, the (ROF 1 ) can be resolved with another projection orthogonal algorithm which has been presented in [START_REF] Rhabi | A robust algorithm for convolutive blind source separation in presence of noise[END_REF] in dimension one and is based on a projected gradient method. In this work we generalize this algorithm for minimizing the first and second total variation of an image of dimension two.

The ROF1 model

The theoretical framework

The image restoration problem consists of finding an original image u : Ω → R from a degraded one u 0 and the image u 0 is related to u by the degradation model ( 1) with a Gaussian noise n. According to the maximum likelihood principle u can be approximated by solving the following least-square problem

inf u Ω |u -u 0 | 2 dx (3) 
but this problem is ill-posed in the sense of Hadamard and it has been regularized in [START_REF] Tikhonov | Solutions of ill-posed problems[END_REF] by Tickonov and Arsenin by adding a regularization term to [START_REF] Aubert | Mathematical problems in image processing. Partial differential equations and the calculus of variations[END_REF]. The authors proposed to consider the following problem

inf u λ ∇u 2 L 2 (Ω) + 1 2 Ω |u -u 0 | 2 dx. (4) 
The associated Euler-Lagrange equation of ( 4) is very strong isotropic and then the edges are not preserved. The Rodin Osher Fatemi (ROF 1 ) based on variation total is an efficient model for removing the noise and preserve the image edges. Solving this problem leads to minimizing the following expression:

inf u∈BV (Ω) λT V (u) + 1 2 Ω |u -u 0 | 2 dx. (ROF 1 )
The following theorem has been proved in [START_REF] Vese | A study in the BV space of a denoising-deblurring variational problem[END_REF][START_REF] Acart | Analysis of bounded variation penalty methods for ill-posed problems[END_REF].

Theorem 1. The problem (ROF 1 ) has an unique solution in BV (Ω) space.

The Euler-Lagrange equation associated to (ROF 1 ) is

λ∂T V (u) + (u -u 0 ) 0 (5) 
where ∂T V (u) is the sub-differential of the function T V (u) defined as

w ∈ ∂T V (u) ⇔ T V (v) ≥ T V (u)+ < w, v -u > L 2 (Ω) ∀v
the equation ( 5) can be written

(u 0 -u) ∈ λ∂T V (u)
and according to convex analysis [START_REF] Rockafellar | Convex Analysis[END_REF] we have

u ∈ ∂T V * u 0 -u λ with T V * is the Legendre-Fenchel transform of T V . Equivalently, u 0 λ ∈ (u 0 -u) λ + 1 λ ∂T V * u 0 -u λ we get that w = (u 0 -u) λ is the minimizer of 1 2 w - u 0 λ 2 + u 0 λ T V * (w). (6) 
Since T V is a convex and one-homogeneous (T V (λu) = λT V (u) for all u and λ > 0) function and according to convex analysis results [START_REF] Rockafellar | Convex Analysis[END_REF] T V * is the indicator function of a closed convex set K:

T V * (u) =      0 u ∈ K ∞ otherwise
where K is given by

K = u ∈ L 2 (Ω) : u, v L 2 (Ω) ≥ T V (v) ∀v ∈ L 2 (Ω)
from the definition of total variation (2), K can be seen as the closure of the following set

div ξ ξ ∈ C 1 c (Ω, R), ξ ∞ ≤ 1 .
Since the solution w of ( 6) is given by an orthogonal projection of u0 λ on K, and then the solution of (ROF 1 ) can be computed by

u = u 0 -π λK (u 0 ) (7)
where π λK is the projection operator onto K.

Computing the discrete solution with the orthogonal projection algorithm

Form the formula [START_REF] Rhabi | A robust algorithm for convolutive blind source separation in presence of noise[END_REF], resolving total variation problem is equivalent to computing the projection π λK (u 0 ), to this end Chambolle (2004) has been proposed an efficient algorithm for estimating this projection based on a fixed point method. In other way, it could be computed by a projected gradient method, this idea was proposed in [START_REF] Rhabi | A robust algorithm for convolutive blind source separation in presence of noise[END_REF] applied in the case of a 1-D noisy signal, in this section we will generalize this for an image of dimension two. Now we will give some notation, we denote by u i,j , i = 1, ...N, j = 1, ..., M a discrete image and X = R N ×M the set of all discrete images of size N × M and Y = X × X.

The spaces X and Y are both equipped respectively with scalar product < ., . > X and < ., . > Y where

∀u, v ∈ X, < u, v > X = N i=1 M j=1 u i,j v i,j and ∀p = (p 1 , p 2 ), q = (q 1 , q 2 ) ∈ Y, < p, q > Y = N i=1 M j=1 p 1 i,j p 1 i,j + p 2 i,j p 2 i,j
The gradient of an element u written ∇u belongs to Y and could be defined by several manners. One of them consists to set ∇u = ((∇u) 1 , (∇u) 2 ) with

(∇u) 1 i,j =      u i+1,j -u i,j if i < N 0 if i = N (∇u) 2 i,j =      u i,j+1 -u i,j if j < M 0 if j = M (8) 
The adjoint operator of -∇ is defined as div :

X 2 → X with, for all p = (p 1 , p 2 ) ∈ X 2 we have ∀w ∈ X, < div p, w >= -< p, ∇w >
When the gradient is given by ( 8) then

(div p) i,j = (div p) 1 i,j + (div p) 2 i,j (9) 
where

(div p) 1 i,j =            p 1 i,j -p 1 i-1,j if 1 < i < N p 1 i,j if i = 1 -p 1 i-1,j if i = N (div p) 2 i,j =            p 2 i,j -p 2 i,j-1 if 1 < i < M p 2 i,j if i = 1 -p 2 i,j-1 if i = M
Then the discrete version of T V denoted by J is defined as

J(u) = N i=1 M j=1 |(∇u) i,j |
where |.| is the Euclidean norm.

Then we can write the J as

J(u) = sup {< p, ∇u > Y , p ∈ Y, |p i,j | ≤ 1 i = 1, ..., N and j = 1, ..., M } = sup p∈G < p, u > X
and the set G is defined by 

G = {-div p| p ∈ Y, |p i,j | ≤ 1 i = 1,
According to the previous the solution of [START_REF] Tikhonov | Solutions of ill-posed problems[END_REF] is

u = u 0 -π λG (u 0 ) (11) 
where π λG (u 0 ) is the orthogonal projection of u 0 on the convex set λG.

Thus, to compute u we are lead to compute the projection operator π λG on the convex set λG, i.e., to solve the problem

min p∈λG F (u) ( 12 
)
where

F (p) = p -u 0 2 .
Let ρ > 0, the optimality condition for the problem (12) could be written as follows

p = Π D (p -ρ∇F (p)) (13) 
where

D = {p ∈ Y | ∀i, j |p i,j | ≤ 1 }, ∇F (p) = -2λ∇(λ div p -u 0 ) and Π D is
the orthogonal projection on D. It is straightforward to see that

Π D (q) i,j =      q i,j |q i,j | if |q i,j | > 1 q i,j otherwise
the problem can be solved by a classical projection algorithm which give as:

1. p 0 = 0.

2. for n ≥ 0

p n+1 = Π D (p n -ρ∇F (p n ))
where ρ > 0 suitably chosen. Then

p n+1 -p = Π D (p n -ρ∇F (p n )) -Π D (p -ρ∇F (p)) ≤ p n -p + 2ρλ 2 ∇ div (p n -p) ≤ (I + 2ρλ 2 ∇ div)(p n -p) ≤ |I + 2ρλ 2 ∇ div | p n -p
Since the eigenvalues of ∇ div are negative the sequence p n -p is necessary decreasing. Then, it converges when

λ 2 ρ < 1 |µ| = 1 ∇ div 2
where µ is the eigenvalue of ∇div having the largest absolute value.

In order to evaluate the performance of the proposed algorithm in sense of the convergence, we will compare it with the Cambolle algorithm [START_REF] Chambolle | An algorithm for total variation minimization and applications[END_REF] (see numerical implementation section).

The ROF2 model

The computed (ROF 1 ) solution makes some numerical perturbations. In fact, the computed solution turns to be piecewise constant which is called the staircasing effect. In order to resolve this problem it has been proposed to use the second order functional space of bounded variation BV 2 (Ω). This model leads to the minimisation of the following expression:

inf u∈BV 2 (Ω) T V 2 (u) + λ 2 u -u 0 2 L 2 (Ω) (ROF 2 )
where T V 2 is the second total variation define by

T V 2 (u) = sup Ω uH * ϕdx ϕ ∈ C 2 c (Ω, R), ϕ ∞ ≤ 1
and BV 2 (Ω) is space of bonded hessian function defined as

BV 2 (Ω) = u ∈ W 1,1 (Ω), T V 2 (u) < ∞
this space endowed with the norm . BV 2 (Ω) = . W 1,1 (Ω) + T V 2 (.) is a Banach space, for others properties of BV 2 (Ω) see [START_REF] Demengel | Fonctions à hessien borné[END_REF].

In the case of the finite dimension the following theorem has been proved in [START_REF] Bergounioux | A second-order model for image denoising[END_REF].

Theorem 2. The ROF 2 model has an unique solution in BV 2 (Ω) space.

Compute the discrete ROF2 solution

In this section we are going to compute the ROF 2 numerical solution with the proposed orthogonal projection algorithm. We first present some recalls and notations. The we note by X = R N ×M set of all discrete images and Z = X 4 .

Let u be an element of X, the Hessian matrix of u denoted by Hu is identified to a vector of Z and we denote by J 2 the discrete version of the T V 2 defined by

J 2 (u) = N i=1 M j=1 (Hu) i,j R 4 .
Thus, the discretization of the ROF 2 model can be defined as

min u∈X 1 2 |u -u 0 | X + λJ 2 (u) ( 14 
)
the associate Euler Lagrange equation of ( 12) is the following

u -u 0 + λ∂J 2 (u) 0 then u -u 0 λ ∈ J 2 (u)
this equivalent [START_REF] Rockafellar | Convex Analysis[END_REF] as

u ∈ J * 2 ( u -u 0 λ )
where J * 2 is the Legendre-Fenchel transform of J 2 . Therefore

u 0 λ ∈ z + 1 λ J * 2 (z) with z = u -u 0 λ solution the following problem min 1 2 z - u 0 λ 2 + u 0 λ J * 2 (z) (15) 
thus, the solution of ROF 2 is given as [START_REF] Bergounioux | A second-order model for image denoising[END_REF] 

u = u 0 -π λG2 (u 0 )
where π λG2 (u 0 ) orthogonal projection of u 0 on G 2 with

G 2 = {H * q, q ∈ Z, |q i,j R 4 ≤ 1 ∀i, j} .
In [START_REF] Bergounioux | A second-order model for image denoising[END_REF] the authors present a new version of Chambolle algorithm for computing the projection π λG2 (u 0 ), but here we are going to compute it with the proposed orthogonal projection algorithm which can be more efficient in sense of convergence and restoration. Computing the projection π λG2 (u 0 ) is equivalent to resolve the following problem

min z∈G2 z -u 0 2 X or min q∈D2 λH * q -u 0 2 X ( 16 
)
where D 2 is the following convex set

D 2 = {q ∈ Z, |q i,j R 4 ≤ 1 ∀i, j} .
We denote G(q) = λH * q -u 0 X then ∇G(q) = 2λH(λH * q -u 0 ).

Therefore, the numerical solution of (15) is given by 1. q 0 = 0.

2. for n ≥ 0

q n+1 = Π D2 (q n -2τ λH(λH * q n -u 0 )) (17) 
where τ > 0 is a real number.

Proposition 3. The sequence q n converges to q solution of (15), when n → ∞, if λ and τ satisfy the following condition:

τ λ 2 ≤ 1 HH * Proof. We have q n+1 -q R 4 = Π D2 (q n -2τ λH(λH * q n -u 0 )) -Π D2 (q -2τ λH(λH * q -u 0 )) R 4 ≤ q n -2τ λH(λH * q n -u 0 ) -q + 2τ λH(λH * q -u 0 ) R 4 = q n -q -2τ λ 2 HH * (q n -q) R 4 ≤ q n -q R 4 I -2τ λ 2 HH * this equivalent to q n -q R 4 ≤ q R 4 I -2τ λ 2 HH * n+1 then, q n -q R 4 → 0 if only if I -2τ λ 2 HH * < 1 we conclude that τ λ 2 ≤ 1 HH * .

Numerical implementation

In this section we will present some numerical examples of denoising process to illustrate the difference between the proposed algorithm (13, 17) and both the Chambolle 1 [5] and Chambolle 2 [4]. The comparison is about the speed of convergence.

First of all we consider two examples, the first one is the image of Lena degraded with an additive Gaussian noise of standard deviation σ = 28 and the second one is a color image degraded with the same noise. In the Figures 1 and3 we display these images with corresponding results of each algorithm. As we know that the ROF 1 approach makes staircasing effect, since the resulting image piecewise constant on smooth areas (Fig. 1 and Fig. 3: Chambolle 1 and projection 1), which is not the case with the ROF 2 model the staircasing effect disappears (Fig. 1 and Fig. 3: Chambolle 2 and projection 2). where u is the true image and u * is the denoised image. Table 1 displays the averages of the PSNR and SNR of the four algorithms. We show that the projection 1 and Chambolle 1 have probably the same results, but the proposed algorithm (projection 2) provides the best results in terms of both PSNR and SNR as Chombolle 2. To illustrate the efficiency of the proposed algorithm in sense of convergence, we display in the Figures 2 and4 the two examples. 

Conclusion

In this work, we have proposed an algorithm based on projected gradient method for solving the famous Rodin Osher Fatemi model (order one and two).

The numerical implementation is described and experiment results for image denoising have been tested and compared with the classical algorithms. The efficiency of this paper is about the convergence, indeed, the proposed algorithm converges faster than Chambolle algorithms (order one and two), in addition it has a best denoising results using the PSNR and SNR criteria for the second order total variation model compared with the two Chambolle algorithm.

1 2

 12 ..., N and j = 1, ..., M } from the previous notation the ROF 1 is equivalent to solve the following problem min u∈X |u -u 0 | Y + λJ(u)
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 1 Figure 1: From left to right and from top to bottom : true image, noisy image and denoised images provided by Chambolle 1, projection 1, Chambolle 2 and projection 2.
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 22 Figure 2: From left to right and from top to bottom: true image, noisy image and denoised images provided by Chambolle 1, projection 1, Chambolle 2 and projection 2.In addition, we can evaluate the performance of each algorithm, by using the Peak Signal to Noise Ratio (PSNR) and Signal to Noise Ratio (SNR) which is defined by

and 2 .

 2 the comparison of the criterion. The left-curve in the Figure 2 and 4 compare the convergence between the proposed algorithm and Chambolle 1 and the right-curve in the same figures present the comparison between projection 2 and Chambolle 2. We show that the proposed algorithm converge much faster to the solution than Chambolle 1 The parameter λ is selected appropriately for each algorithm, and the gradient descent parameter ρ and τ are respectively ρ = 0.01 and τ = 0.001 for

Figure 3 :

 3 Figure 3: Comparative study of convergence for the image Lena, from left to right: comparison of criterion for Chambolle 1(cham1) and projection (proj1), Chambolle 2(cham2) and projection (proj2).

Figure 4 :

 4 Figure 4: Comparative study of convergence for the image Onion, from left to right: comparison of criterion for Chambolle 1(cham1) and projection (proj1), Chambolle 2(cham2) and projection (proj2).

Table 1 :

 1 Comparison of measures PSNR and SNR.

	measures Chambolle1 Projection1 Chambolle2 Projection2
	PSNR	29.65	29.65	29.61	29.92
	21 cm Lena				
	SNR	23.97	23.96	23.95	24.25
	PSNR	29.41	29.38	29.18	29.51
	21 cm Onion				
	SNR	22.35	22.32	22.17	22.49
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