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ABSTRACT

Multiframe image super-resolution is a technique to obtain a high-resolution image by fusing
a sequence of low-resolution ones. This paper deals with a new approach to robust super
resolution based on regularization framework. Since registration is an important step that
ensures the success of super resolution algorithms, must choose the most suitable method.
We suggest a new algorithm specified at low resolution images with small deformations
using fourth-order partial differential equations (PDE) regularization in the last step of super
resolution. The deformations are not parametric and differs from one image to another. We
use a curvature registration specially because image are slightly deformed. Experimental
results show the robustness of the proposed method compared to classical super resolution
methods.

Keywords: robust, super resolution, curvature registration, PDE, MAP estimator, image
restoration, regularization.
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1 Introduction

Multiframe super-resolution (SR) aim to improve the spatial resolution by combining detail of a
set of low-resolution (LR) degraded images of the same scene to reconstruct a high resolution
(HR) image of that scene. The degradation is modelled by different operators representing
motion, blur, subsampling and additive noise. The SR process is possible if there exists a sub-
pixel motion between the LR images. Therefore, each information about LR frame complete
details of the original HR image. Robust Super-resolution (RSR) reconstruction is separate



in three main steps: registration, interpolation and restoration. Registration is the process of
estimating the deformation operator derived directly from the LR frame. In the interpolation
step, the LR images are superimposed on to the HR image grid, while in the restoration step
we remove noise and blur that is present in the degraded HR image.

The multiframe image super-resolution problem was first proposed by Tsai and Huang in
E. Lee’s 2003 (Tsai and Huang, 1984), many methods have been proposed to overcome
the ill-posedness of this problem using a prior distribution on the image as a regulariza-
tion (E. Lee, 2003; Milanfar, 2010; Sina Farsiu and Milanfar, OCTOBER 2004; Sanches and
Marques, 2001). Regularization method is widely used to solve SR problem viewed as a
maximum a posteriori approach. Popular Tikhonov regularizer was applied in SR problem in
(Nguyen, October 3, 2006; E. Lee, 2003), Ng et al. used the total variation (TV) regularizer for
video SR, and illustrate their efficient results using PSNR criteria (M. Ng, n.d.). Another inter-
esting regularisation was proposed by Farsiu et al., they introduced the bilateral filter with the
L1 norm and showed that L1 norm is more robust against noise and misregistration (Sina Far-
siu, 2003; Sina Farsiu and Milanfar, OCTOBER 2004), hence in fact the name of the method
RSR.

A key issue that guarantees the success of the SR algorithm is the image registration tech-
nique. The motion in LR images may include simple translations (Sina Farsiu and Milanfar, OC-
TOBER 2004; Term, 2007; Hiep Luong and Philips, 2006), affine (Elad, 2007; Tsai and Huang,
1984) as well as non parametric transformations (Thomas M. Lehmann and Spitzer, NOVEM-
BER 1999; Modersitzki, 2009; Modersitzki, 2007).

In this paper, we propose a curvature approach (Modersitzki, 2007) to register the LR frames
estimating the deformations that differ between all LR images. The main of this technique is
minimizing the distance between the estimation of the HR image and each upsampled LR im-
age. In addition we propose a second PDE order regularisation in the debluring step (Lysaker,
2010; Bergounioux, 2010), since we know they success to recover smoother surfaces.
Numerical results indicate the superiority of the new SR algorithm in noise and misregistration
removing compared with TV regularization. To evaluate the robustness of our algorithm we
use the PSNR criteria.
This paper is organized as follows. Section 2 explains the main concepts of the SR. We justify
the use of curvature registration and explain the use of second order PDE regularisation. Sim-
ulations and comparisons of our result with other classical methods are presented in Section
3.

2 Problem formulation

The observed images of a real scene are usually in low resolution due to some degradation
operators. In practice, the acquired image is corrupted by noise, blur and decimation. In almost
all cases the degradation is generated by inappropriate camera parameters or configuration.



In addition we have the effects of atmospheric turbulence. All these facts corrupt the resolution
of the images, and improvement of resolution techniques is therefore required in those cases.
We assume that the LR images are taken under the same environmental conditions using the
same sensor.
The unknown and desired high-resolution image X is related to the captured low-resolution
images Yk (represented by a column vector of size M ) by this formulation (Sina Farsiu and
Milanfar, OCTOBER 2004):

Yk = DFkHX + Ek ∀k = 1, 2, ..., n (2.1)

Where Ek represents the additive noise for each image, which is assumed to be zero-mean
Gaussian distributed (with a standard deviation σk). H and D represent respectively the blur-
ring operator of size N × N and decimation matrix of size M × N . Fk is a geometric warp
matrix representing a curvature transformation.

We Also suppose that the noise is independent and identically distributed (i.i.d), following a
Gaussian distribution with a standard deviation σ:

p(Ek) =
1

(2π)
N
2 σN

exp{
−Eᵀ

kEk

2σ2
} (2.2)

Due to the complexity of the problem, we separate it in four steps. This is the same approach
used in the RSR algorithm (Sina Farsiu and Milanfar, OCTOBER 2004).

1. Fusing the low-resolution images Yk into a blurred HR version B = HX.

2. Finding the estimation of the HR image X from the blurring one B.

3. Computing the warp matrix Fk for each image using curvature registration.

4. Resolving the magnification problem.

We will detail these steps in the next subsections.

2.1 The fusing step

The first part of our algorithm is computing the blurred HR version B = HX. Then we use
the maximum likelihood estimator (ML) which suggests the choice of B̂ that maximizes the
likelihood function (2.6).

B̂ = argmax
B
{p(Yk/B)} (2.3)

= argmin
B
{−log(p(Yk/B))}

= argmin
B

n∑
k=1

‖Yk −DFkB‖2L2 (2.4)

In this case, the matrix (DFk)ᵀ(DFk) is positive definite, the problem is well posed, and has a
unique solution:

B̂ =
n∑

k=1

((DFk)ᵀ(DFk))−1(DFk)ᵀYk (2.5)



If the problem is ill posed we use TV as a robust regularization, and the minimization problem
become:

B̂ = argmin
B

n∑
k=1

‖Yk −DFkB‖2L2 + ‖∇B‖1 (2.6)

2.2 Deconvolution and denoising Step

Since X has been known in the presence of white noise, the vector measured Yk is also a
Gaussian one. Via Bayes rule, finding the HR image X̂ is equivalent to solve the minimization
problem (2.7) using the Maximum a posteriori (MAP).

X̂MAP = argmax
X

{p(X/B̂)}

= argmax
X

{p(B̂/X).p(X)

p(B̂)
}

= argmin
X

{−log(p(B̂/X))− log(p(X))} (2.7)

where p(B̂/X) represents the likelihood term and p(X) denotes the prior knowledge in the
high-resolution image. To solve this problem we need to describe the prior Gibbs function
(PDF): p.

2.3 The prior Gibbs function

To describe the PDF function we us a second order TV regularisation as we know they robust-
ness to remove noise and misregistration in smoother surfaces.

p(X(x)) = c. exp
{
−α||f(|∇2X(x)|)||1

}
(2.8)

Where f is a linear growth increasing function defined: R −→ R+.
And c is a normalizing constant, guaranteeing that the integral over all x is 1.
|.|: is the euclidean norm of R4.
α: is the regularisation parameter verifying 0 < α < 1

2.4 The construction of warp matrix Fk

We obtain the warp matrix Fk for each frame trough a curvature registration algorithm, after
a transition from discrete to continuous images using 2-linear interpolation. Let us denote by
Yk(x) the intensity of the kth image of coordinate x ∈ Ω ⊂ R2 where Ω is defined as the do-
main of the image. So the expression of the new continuous image Yk(x) (Modersitzki, 2007)
is given by this formulation :

Yk(x) =
∑

k∈{0,1}2
Yk

(
E(n1x1) + k1

n1
,
E(n2x2) + k2

n2

)

×
2∏

j=1

(
(−1)kj

nj
(E(xjnj) + 1− kj − xjnj)

)
(2.9)



With:
n = (n1, n2) is the size of Yk and E(x) is the integer part of x.
In the first step we choose arbitrarily one image Yi from Yk as an image of reference, and we
try to find the deformations uk between Yi and the other images, such that:

Yi(x) = Yk(uk(x)) for k 6= i and ∀x ∈ Ω

An intuitive way to find the deformation uk between the images is to minimize the so-called
distance measure D. Since the problem is ill-posed, we have to choose an appropriate regu-
larization R.
The image registration problem is now to find a minimizer uk of the variational problem (2.10)
defined by the functional J :

J (uk) = D(Yi, Yk, uk) + βR(uk) for uk ∈ T (2.10)

Where T denotes the set of admissible transformations, and β is the regularisation parameter.
A typical choice for the distance D is the mass-preserving MP measure defined as:

DMP (Yi, Yk, uk) =

∫
Ω

(Yk(uk(x))det(∇uk(x))− Yi(x))2 dx (2.11)

In this paper we use a curvature regularisation based on strain tensor. This tensor is gener-
ally defined via the displacement vk, and we suppose that uk(x) = x + vk(x), so 5uk(x) =

I2 +5vk(x).

Scurv(uk) =
2∑

i=1

∫
Ω

(4uki)
2dx (2.12)

The registration problem is now well defined in (2.13).

min
uk

Jcurv(uk) (2.13)

With:
Jcurv(uk) = DMP (Yi, Yk, uk) + βScurv(uk) (2.14)

To solve this problem, numerical schemes are required after a discretization of the domain and
the objective function Jcurv. Since we have a curvature registration, we choose a cell-centred
grid in the discretization step (Modersitzki, 2007). The objective function depends on the
discretization h and defined in (2.15).

J h
curv(uhk) = Dh

MP (Y h
i , Y

h
k , u

h
k) + βSh

curv(uhk) (2.15)

To solve the minimisation problem (2.14) we use the Newton Gauss method (Jorge Nocedal,
2006), since this problem is nonlinear. We finally find the deformation ûk between the k low
resolution images Yk. We can now define easily the matrix of deformation Fk easily using ûk.



2.5 Resolution of the MAP estimator problem

Since we have defined the prior function p and the operators Fk, we rewrite the equation of the
MAP estimator:

X̂MAP = argmin
X

{
∑
x∈Ω

‖HX(x)− B̂(x)‖1

+ α||f(|∇2X(x)|)||1} (2.16)

where Ω contains all the pixels on the HR grid X. The norm ‖HX − B̂‖1 is used because it is
very robust against outliers (Sina Farsiu and Milanfar, OCTOBER 2004).
To minimise the problem (2.16) we use the classical steepest descent algorithm. We finally
have the HR image X̂ as follows.

X̂n+1(x) = X̂n(x)− α′{Hᵀsing(HX̂n(x)− B̂(x))

+ αdiv2(g(|∇2X(x)|)∇2X(x))} (2.17)

Where the second order divergence operator div2 : (Rn×m)4 −→ Rn×m with the adjointness
property:

div2X.Y = X.∇2Y, ∀X ∈ (Rn×m)4, Y ∈ Rn×m

And:

g(s) =
f

′
(s)

s

3 RESULTS

In this section we evaluate the performance of the proposed algorithm specified at slightly de-
formed low resolution images. We construct a synthetic LR image to test our algorithm, and
compare it with the SR using TV regularization and RSR algorithm with bilateral regulariza-
tion (Sina Farsiu and Milanfar, OCTOBER 2004). The peak-signal-to-noise ratio (PSNR) is
used to measure the quality of our approach. The SR algorithm is used after an curvature
registration, while we use the same data for the RSR resolution and our proposed method. we
choose the Lisa (the Simpson’s) (1) as the original image with size 256× 256.

We illustrate in figure (2) four of the N = 30 input low-resolution frames chosen arbitrary and
blurring with 5× 5 Gaussian blur kernel with standard deviation equal to 1.5, and sub-sampling
by a factor of 3. In addition we add a noise Ek arbitrary in each frame. The parameters chosen
for our algorithm are α

′
= 0.1, α = 0.6 and maxiter = 100 iteration for the steepest descent,

finally we choose β = 0.1 the curvature registration regularization.

In figure (4d) We show the image obtained using different algorithm compared with our method.
To measure the robustness of the proposed algorithm we use the PSNR in the table (3), we
can clearly show the efficiency of our algorithm.



Figure 1: The original image of peppers

Figure 2: Four of low resolution images

Figure 3: PSNR results obtained by each method with Gaussian noise

4 CONCLUSION

In this paper, we present a new approach to the Robust SR image reconstruction problem
based on curvature registration ans new PDE regularization in the restoration step. The pro-
posed algorithm differs from the others in the registration and restoration step, here we use a
non parametric curvature one. Using different images and small deformations, we can see that
our algorithm has better results compared with other methods in the literature.



(a) Original image (b) TV regularization (c) RSR algorithm

(d) proposed regularization

Figure 4: Our result compared with the classical approaches
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