
HAL Id: hal-01801018
https://enpc.hal.science/hal-01801018

Submitted on 28 May 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A mapping tool for configurable pipeline co-processors
Elias Barbudo, Eva Dokladalova, Thierry Grandpierre, Laurent George

To cite this version:
Elias Barbudo, Eva Dokladalova, Thierry Grandpierre, Laurent George. A mapping tool for config-
urable pipeline co-processors. Colloque National du GDR SoC-SiP, GDR-SOC-SIP, Jun 2018, Paris,
France. �hal-01801018�

https://enpc.hal.science/hal-01801018
https://hal.archives-ouvertes.fr

A mapping tool for configurable pipeline co-processors

Elias Barbudo, Eva Dokladalova, Thierry Grandpierre, Laurent George
Université Paris-Est, ESIEE Paris

Laboratoire d’Informatique Gaspard Monge
UMR CNRS 8049

{name.surname}@esiee.fr

Abstract

The increasing real-time processing requirements have
lead to the significant use of heterogeneous computing
architectures. In this context, the time-critical tasks are
frequently processed by a coarsely configurable pipelined
FPGA-based hardware. Obviously, the manual applica-
tion mapping on this architectures leads to a tedious work.
In this paper, we resume the first results of our approach
to the automated mapping of a real-life application on a
data stream pipeline-based architecture.

1 Introduction

The need for real-time processing has lead to the sig-
nificant use of heterogeneous computing architectures in
order to face the increasing complexity of current applica-
tions and their implementations.

Pipeline-based systolic architectures, such as the Mor-
phological Co-processing Unit (MCPU) [1] or the Pro-
grammable Pipeline Image processor (P 2IP) [5], are ex-
amples of a part of such complex systems designed specif-
ically for applications where the latency is critical.

The manual application mapping in this architectures
leads to a tedious work, considering the number of param-
eters one has to tune finely with a minimum knowledge,
on the part of the end user, of the internal structure and the
functions of every allocatable module.

A solution to this problem is through task modeling
by a Directed Acyclic Graph (DAG). The DAG model
is exploited in several mapping algorithms such as List
Scheduling Heuristics[6], Clustering Heuristics [3] or
Guided Random Search Techniques [7]. Most of the DAG
mapping algorithms direct their efforts on a processor and
thread level, trying to map and schedule the tasks on a
processor or on an array of processors. Our approach
aims to extend this work to the mapping of an appli-
cation on data stream pipeline based hardware architec-
tures equipped with coarsely programmable processing el-
ements. Moreover, be suitable for hardware architectures
such as a Convolutional Neural Network[2].

The rest of this paper is organized as follows. Section
2 defines the framework of the case study: the character-

istics of the architecture under study and a real-life ap-
plication example. Section 3 describes the principles of
the proposed methodology and the steps required to ob-
tain the final mapping. It includes the preliminary results
summary. Section 4 recalls the study objectives and out-
lines shortly future work.

2 Problem statement

To illustrate the problem on a concrete example, we
consider the MCPU as a candidate for the study of the
mapping approach.

2.1 Morphological Co-processing Unit
The MCPU is a programmable FPGA-based system

able to implement applications based on basic morpho-
logical operators such as erosion and dilation, and their
deep concatenation and combinations. The architecture of
the MCPU is depicted in Figure 1.

Figure 1: Architecture of the Morphological CO-
Processor Unit

The system contains several processing pipelines. And
the pipelines are composed by a concatenation of sev-
eral stages. A stage consists of main processing elements
called Mathematical Morphological Block (MMB), arith-
metic logic units (ALU), data-path multiplexers (MUX),
image properties measurement module (MEA) able to per-
form, i.e. the intensity integral computation.

The MCPU is controlled by two sets of parameters:
i) hardware configuration parameters (image resolution,
MMB pipeline depth, number of pipelines; ii) run-time
parameters: MMBs operations, kernel size, shape, data-
path inside MMBs.

The configuration of the system is done through an em-
bedded server able to communicate with a distant client
connected by an Ethernet Link. The client enables the
blocks needed to implement his algorithm and select the
type of operation that the MMB blocks will perform.

The objective of the proposed approach is to automat-
ically map the application onto the MCPU. In this paper,
we focus on the mapping problem on only the large SE1

(kernel) pipeline (Fig. 2).

Figure 2: Architecture graph of the Large SE Pipeline.
2.2 Application example

Let’s consider a text orientation detection application
as an example [4]. The application detects the slope of
text by searching the maximum over all orientations of
linear morphological openings.

The application consists in a series of independent 1-D
openings with an arbitrary angle. Then it computes in-
tensity integrals vector where the index of the maximal
element corresponds to the rotation angle(Fig. 3).

Figure 3: Graph of the text orientation application.
3 Proposed methodology

To automate the mapping of the mentioned applica-
tion onto targeted architecture, and later generate the pro-
gramming context, we propose an approach based on three
models, each based on a DAG graph formalism:

1. Architecture graph: a node represents one comput-
ing module with operator types for parameters; also
we define the weight of an edge as the computing la-
tency of the tail node.

2. Application graph: a node represents a one operator
of the application and the edges are oriented accord-
ing to the application data flow.

3. Implementation graph: is obtained by transforma-
tions of the two previous graphs. From this graph,
we generate the mapping list, which is a list of the
resulting configurations and parameter data.

At first, we perform a topological sorting of the archi-
tecture graph and the application graph. Then, we apply

1SE - Structuring Element

a decision procedure. Here, we pass through the topolog-
ical sorting result to define the correspondences between
nodes, related to the type of module and the type of oper-
ation, on the architecture graph. Progressively, the imple-
mentation graph is created, from which we will build the
final mapping list to configure the architecture.

3.1 Preliminary results
The text skew detection requires to implement 17 inde-

pendent processing steps (Figure 3). Considering that the
MCPU allows to implement only two steps at the same
time, the applied methodology allows to create the 9 re-
quired processing instances. Indeed, when the application
graph cannot be mapped onto the architecture graph, the
mapping process iterative creates the needed instances, by
storing the partial results in one or several temporal sub-
graphs, depending on the needs. When the process fin-
ishes, the created subgraphs merge in the final implemen-
tation graph.

4 Conclusions
In this paper, we presented a first study of an appli-

cation mapping on pipeline-based architectures dedicated
to the latency critical tasks. The objective is to automate
this application process. We explore the possibilities of
extension of the graph-based mapping methodology. We
developed the mapping algorithm for the MCPU, and we
compared it to the empirical results. The future work will
focus on the development of a framework that includes
the mapping algorithm and the application of a scheduling
methodology, by introducing the latency optimization.

References

[1] J. Bartovský, P. Dokladal, M. Faessel, and at al. Morpholog-
ical co-processing unit for embedded devices. JRTIP, pages
pp. 1–12, Jul 2015.

[2] C. Farabet, B. Martini, B. Corda, P. Akselrod, E. Cu-
lurciello, and Y. LeCun. Neuflow: A runtime recon-
figurable dataflow processor for vision. In CVPR 2011
WORKSHOPS, pages 109–116, June 2011.

[3] Y. Ma, B. Gong, and L. Zou. Energy-efficient scheduling al-
gorithm of task dependent graph on dvs-unable cluster sys-
tem. In 2009 10th IEEE/ACM International Conference on
Grid Computing, pages 217–224, Oct 2009.

[4] L. Najman. Using mathematical morphology for docu-
ment skew estimation. In SPIE Document Recognition and
Retrieval IX, pages 182–191, 2004.

[5] P. Possa, N. Harb, and et al. P2IP: A novel low-latency
programmable pipeline image processor. Microprocessors
and Microsystems, 39(7):529 – 540, 2015.

[6] A. M. Sllame and V. Drabek. An efficient list-
based scheduling algorithm for high-level synthesis. In
Proceedings Euromicro Symposium on Digital System
Design. Architectures, Methods and Tools, pages 316–323,
2002.

[7] Y. Xu, K. Li, and at al. A genetic algorithm for task schedul-
ing on heterogeneous computing systems using multiple
priority queues. Information Sciences, 270:255 – 287, 2014.

2

