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Abstract

The stiffness of foam concrete depends primarily on the added porosity. Nevertheless, by
performing 3D elastic numerical simulations on artificial unit cells in the frame of periodic
homogenization, it is shown that describing foam concrete as a porous material is not sufficient
to explain the experimental measurements of the Young modulus for added porosity higher
than 40%. Indeed, introducing sand as a third phase enables to recover accurate estimates
of the Young Modulus. Furthermore, for highly porous concrete foams, it is shown that the
stress concentrates in thin members deprived of stiff sand particles, thus leading to a softer
overall stiffness.
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Introduction

Foam concrete, also named cellular concrete, offers many advantages as a building ma-
terial. Indeed, it features a low density, a low thermal conductivity and a valuable fire and
water resistance [1, 2]. Lastly, it can easily be manipulated, pumped and cast into various
shapes [3]. Regarding the formulation of foam concrete, the volume fraction of void, hereby
called the porosity, can be tuned to trade cost, density and insulation properties for dura-
bility, strength and stiffness [4, 5, 6, 3, 1, 7]. Typical uses include floors, trench fills, roof
insulation and masonry units [8].

For lightweight concrete containing soft EPS beads formulated in [4], extending [9], it has
been shown that the Young modulus does not depend on the size of the beads in the range
1mm–6.3mm, for porosities in the range 0%–50%. As a result, the Young modulus mainly
depends on the porosity, exhibiting a one-to-one relationship in this domain. In addition,
different mean-field homogenization schemes have been defined with the view to explain
the dependence of the Young Modulus to the added porosity, thus aiming at a scientific
modelling of the stiffness. For instance, the fact that the experimental measurements of the
Young Modulus are compliant with the Hashin–Shtrikman upper bound [10] has been checked
and the trisphere model [11, 12] has been successfully applied to provide a better estimate
of the stiffness [9]. Furthermore, the differential scheme [13] ensures a good agreement on
a wider range of porosity (0≤ p ≤56%) as the Young Modulus varies directly with (1 − p)2
[14]. This exponent of 2 is consistent with expected and measured trends for foams where the
bending is mainly attributed to the bending of the cell ribs [15, 16]. Nevertheless, for foam
concretes featuring high porosities (up to 75%), power laws featuring exponents higher than
2 (E = 24GPa(1− p)2.5 [17] or E = 32.9GPa(1− p)2.8 [6]) have been fitted to experimental
results, thus questioning the use of the differential scheme for porous materials.

As an alternative to Eshelby-based mean-field schemes, full-field numerical elastic simu-
lations can be performed on an artificial unit cell of periodic composite materials to estimate
the effective overall stiffness [18, 19, 20, 21]. Two steps are involved in the process. First,
an artificial periodic unit cell complying with the observed microstructure of the composite
material must be built. Parameters such as volume fractions, pore size distributions and min-
imum spacing may be accounted for in this step. Then, elastic computations help estimating
the effective stiffness of the composite material by relying on the periodic homogenization
theory.
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The description of foam concrete as a biphasic material will be questioned by performing
numerical simulations. First, concrete foam is considered as a biphasic material and the
Young Modulus will be estimated for different volume fractions, pore size distributions and
parameters driving the geometry of the microstructure. These estimates will be compared to
experimental measurements to show that foam concrete can hardly be described as a biphasic
composite material at high porosity. Then, sand is introduced as the third phase and the
estimated Young Modulus is compared to the experimental measurements.

1. 3D numerical modelling

1.1. Generation of artificial unit cells

So as to perform 3D numerical simulations, unit cells complying with the morphology of
the considered material must be generated. By mean of X-ray tomography, foam concrete can
visibly be described as porous matrix-inclusion material, where the pores are rather spherical
(Fig. 1.1). In addition, the sieve curve of the sand and the pore size distribution are such that
the sand particles are smaller than the pores (Fig. 1.2). Nevertheless, there is no separation
of scale between the sand and the pores. In the present section, a procedure to obtain unit
cells satisfying this description is proposed.

Figure 1.1: A 6×6mm2 slice extracted from a X-ray tomographic image of a foam concrete
of density 0.6 and porosity 70% [17], the pixel size being 6µm. Dark areas are pores, grey
uniform areas are sand particles, white dots are likely related to unhydrated cement particles.

On the one hand, for matrix-inclusion composite materials, the random sequential ad-
sorption algorithm [22] or the Lubachevsky-Stillinger algorithm [23] are often applied to pack
spherical inclusions and reach the targeted volume fractions. On the other hand, the mi-
crostructure of closed-cell foams is often modelled by using Voronoi or Laguerre diagrams.
In the present work, a continuum of microstructures between these geometries is defined to
model closed-cell foams of any volume fractions. First, the Lubachevsky-Stillinger algorithm
[23] is adopted to produce periodic unit cells featuring thousands of spherical inclusions and
volume fractions up to about 60% [24]. This algorithm is briefly recalled in the next section.

1.1.1. The Lubachevsky-Stillinger algorithm for periodic unit cells

The Lubachevsky-Stillinger algorithm [23, 25] is an event-driven algorithm designed to
pack hard spherical particles in a given volume. As input, it requires the size of the unit cell
and both the targeted volume fractions φi and size distributions for each kind of particles
i ∈(sand,pore).

The size distribution of sand particles or pores, named the sieve curve, is defined by the
volume fraction of particles Pi(v) of volume lower than the volume v (Fig. 1.2). For the shake
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of simplicity, it is modelled as a piecewise linear function on intervals [vj , vj+1], j ∈ 0..N s
i ,

the volume fraction of particles in these range being pi,j . N
s
i is the number of sieves. A list of

targeted volumes vi,k, k ∈ 0..Nu
i is randomly picked according to the sieve curve so as to fill a

volume
∑

k vi,k = V φi, where V is the volume of the rectangular unit cell. Nu
i is the number

of spheres of kind i to be placed in the unit cell. The Lubachevsky-Stillinger algorithm is
seeded by randomly placing dots in the unit cell at time t = 0. Each dot becomes a sphere
as time goes by, the growth of its radius being linear. Consequently, the growth rate is set
to ai,k = (3/(4π)vi,k)1/3 so that all spheres reach their targeted volume vi,k at time t = 1.
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Figure 1.2: Pore size distributions are extracted from tomographic images at the Navier
Laboratory and the size distribution of sand grains is obtained by using sieves. The pore size
distribution slightly depends on the amount of foam added to the mix, i. e. the porosity.

The Lubachesky-Stillinger [23, 25] enforces that the growing spheres do not overlap. In-
deed, the spheres are allowed to move at uniform velocity and collisions are handled by
changing these velocities at the time of collisions. The time of the potential collision can be
analytically computed since the velocities are uniform and the growth rate is linear. Con-
sequently, the algorithm can jump from one collision to the next without time-stepping.
Other potential events are encounters with the boundaries of the unit cell, where instances
of the sphere must be introduced to ensure periodicity [26, 24]. Indeed, either the sphere
hits a boundary and a new connected instance of the sphere must be created at the opposite
boundary or an instance leaves the unit cell and it can be destroyed to save memory. An
additional improvement consists in splitting the domain into rectangular sectors to reduce
the number of potential events. Consequently, if N instances of different spheres overlap with
a sector, N(N − 1)/2 + 6N potential events can occur in that sector.

The output of the Lubachevsky-Stillinger algorithm specifies the center, the volume and
the kind of each sphere in the unit cell. The algorithm is very efficient at packing spherical
particles as it can reach volume fractions of 74% for an unimodal pore size distribution.
Nevertheless, the degree of order increases monotonically with the jammed packing fraction
[27] and reaching high volume fractions (≥ 64.5%) requires more time as the growth rates
need to be reduced [25]. To avoid these shortcomings, an additional step allowing to reach
any volume fractions of pores is introduced in the next section, though the pores become
non-spherical.

1.1.2. A continuum of microstructures between spherical inclusions and Laguerre diagrams

Foams are often modelled by considering Laguerre diagrams, also called Power diagrams.
These partitions of space into convex polyhedral cells are built starting from n seeds charac-
terized by their position xk and a scalar, named power, rk. The cell i is defined as the set of
points x such that:

||x− xi||2 − r2i ≤ ||x− xk||2 − r2k ∀k (1)

If all powers rk are equal, the resulting tessellation is a Voronoi diagram. Seeding a Laguerre
diagram with the centers and radii of non-overlapping spheres is a practical way to gain some
control on the volume and shape of each cell of the foam (or polycristal) [28, 29, 30, 31,
24]. Indeed, by doing so, the Laguerre cells obviously contain their corresponding spheres.
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Finally, to complete the modelling of the closed cell foam, a thickness bik is associated to
each solid planar member of the Laguerre diagram [29], providing that the total solid volume
is consistent with the targeted porosity φ.

Nevertheless, the generated microstructures features convex polyhedral pores and it clearly
conflicts with the round pores of foam concrete due to the equilibrium between pore pressure
and surface tensions. This issue is now to be tackled.

Starting from a sphere packing at an intermediate volume fraction φpore ≤ φ, each spher-
ical pore can be dilated until the minimum thickness bik becomes the limiting factor. A
dilation parameter d is introduced and a point x is in a pore i if and only if three conditions
are met:

1. The point is in the corresponding Laguerre cell i

2. The point is not in the closed-cell foam defined by the minimum thickness bik
3. The point is in the dilated sphere:

||x− xi||2 − (ri + d)2 ≤ 0 (2)

The value of the dilation parameter d must be set according to the targeted porosity by
mean of a dichotomy algorithm. Lastly, a unique minimum thickness b = bik∀i, k is set for

all planar members so as to limit the number of parameters. Consequently, the complete
procedure is driven by a couple of parameters:

� The size of the unit cell l

� The targeted volume fractions of sand φsand

� The grain size distribution of sand vsand,j , psand,j

� The targeted porosity φ

� The pore size distribution vpore,j , ppore,j

� The intermediate volume fraction of pores φpore

� The minimum thickness of planar members b

The only requirement on l is that it must be big enough for the estimated effective stiffness
to be representative of the composite material. Volume fractions and size distributions can
be extracted from the formulation or tomography images. Then, parameters φpore and b
are yet to be set. If the difference φ − φpore is significant, the microstructure deviates from
well-dispersed spherical inclusions. Indeed, large planar members are created between pores
which are close to one another. Then, if the minimum thickness b were null, the pores would
percolate and the solid skeleton could be fragmented. Moreover, the minimum thickness b
divides the matrix into two parts: the matrix is either mainly in the planar member (large
b) or concentrated at the foam nodes.

It can be noticed that the modelling of highly porous foams by such a procedure is not
perfect, due to the fact that the Plateau’s laws are almost always infringed: angles between
the planes defining edges are likely not equal to 120°and angles between edges can be very
different from arccos(−1/3) ≈ 109.47. In addition, a given non-spherical pore can feature
both a flat face and curved boundaries. Since the curvature is related to the pressure drop
across the interface, and since the pressure within a pore is uniform, the solid skeleton is
assumed to be able to withstand some deviatoric stress during setting, through viscous effects
for instance.

The resulting unit cell defines the microstructure of a periodic foam concrete (Fig. 1.3).
The next section addresses the numerical computation of the effective elastic properties of
this material.

1.2. 3D numerical simulations by the Fast Fourier Transform (FFT) algorithm

Periodic boundary conditions are applied, a mean stress is applied to the microstructure
and the local strain is computed. Finally, a component of the overall stiffness is obtained by
integrating the local elastic energy. By generating a unit-cell respecting periodic constrains,
boundary effects are avoided and the estimated overall stiffness corresponds to that of the
material defined by periodizing the unit cell. Nevertheless, the unit cell must be large enough
to ensure an estimated Young modulus representative of the composite material. Different
algorithms can be applied to solve the elastic problem, including the finite element method
and the FFT method. The latter is preferred in the present study due to its versatility and
ease of use.
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Figure 1.3: Top left: spheres are packed at the intermediate volume fraction of 61% according
to the considered size distribution. The corresponding Laguerre diagram is colored in blue.
Top right: the distance to the nearest pore is displayed. Bottom: the resulting periodic unit
cells of size 6mm×6mm×6mm at porosities of 67%, the minimum thickness being b = 0 (left)
and b = 24µm (right). A binning has be applied to provide an estimate of the local porosity.

1.2.1. The FFT algorithm

The FFT algorithm is recognized as one of the most powerful tool for computing the over-
all response of composites featuring complex periodic microstructures [32, 33, 34]. As input,
the local elastic stiffness C(x) must be provided at each point of a regular grid representing
the unit cell. Then, either a macroscopic strain E or a macroscopic stress Σ is applied to the
unit cell. As output, the algorithm provides a value of the local strain ε(x) and stress σ(x)
for each voxel x of the grid as well as averages of local stresses σ̄ and strains ε̄. Finally, the
elastic energy can be computed according to Hill’s lemma. Since the accelerated scheme of
Eyre and Milton [33] has been pointed as the most efficient regarding the convergence rate at
high contrast [34], it is applied without modification in the present study. If a macroscopic
strain E is applied to the unit cell, its iteration writes:

εi+1 = εi + 2(C + C0)
−1 : C0 :

(
�0 ∗

(
(C0 − C) : εi

)
− εi + E

)
(3)

where ∗ denote a convolution and �0 is the Green operator describing the strain triggered by
an eigenstress in an infinite homogeneous material of an isotropic reference stiffness C0. This
convolution is turned into a product in the Fourier space. Indeed, the Green operator �0 is
explicitly known in the Fourier space for any frequency ξ [32]:

�̂0
ijkh(ξ) =

1

4µ0||ξ||2
(δkiξhξj + δhiξkξj + δkjξhξi + δhjξkξi)−

λ0 + µ0

µ0(λ0 + 2µ0)

ξiξjξkξh
||ξ||4

(4)
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where λ0 and µ0 are the Lamé coefficients of the isotropic reference material C0. The fastest
convergence rate is obtained for a reference material defined as [33, 34]:

k0 =
√

max
x

k(x) min
x
k(x)

µ0 =
√

max
x

µ(x) min
x
µ(x)

(5)

where k(x) and µ(x) are respectively the bulk and shear modulus of the isotropic stiffness
C(x). The complete algorithm [34] writes :

ε0(x) = E ∀x
while not converged

τ(x) = (C0 − C(x)) : εi(x) ∀x
τ̂ = FFT(τ)

ê(ξ) = �̂0(ξ) : τ̂(ξ) ∀ξ 6= 0 ê(0) = E
e = FFT−1(ê)
e(x) = e(x)− εi(x) ∀x
ε(x)i+1 = εi(x) + 2(C(x) + C0)

−1 : C0 : e(x) ∀x
σ(x)i+1 = C(x) : ε(x)i+1 ∀x
convergence tests

(6)

If a macroscopic stress Σ is applied, the overall strain is to be updated at each iteration as
[32]:

E = C−1
0 : (Σ− σ̄i) + ε̄i (7)

The previous algorithm requires little memory since only two fields need to be stored if
the Fast Fourier Transform (FFT) is computed in place. The complexity of the iteration
is that of FFT, that is n log(n) where n is the size of the grid. The number of iteration
needed to ensure convergence varies directly with the square root of the maximum contrast
(max k/min k,maxµ/minµ). Convergence criteria are related to the balance of the stress,
compatibility of the strain and respect of the applied overall loading as defined in [34]. Among
improvements of the FFT algorithms that are not considered in the present article, the use of
a finite difference based Green operator [35] or a Green operator consistent with voxel-wise
constant polarization fields [36, 37] may lead to more accurate local fields [35] or provide
bounds on the macroscopic properties based on variational principles [36, 37].

1.2.2. Handling of pores and grey voxels

A porous material is considered: the Young modulus of the solid skeleton is set to Em =
24GPa, its Poisson’s ratio being 0.2. Therefore, the bulk and shear modulus of the matrix
respectively are Km = 13.33GPa and Gm = 10.00GPa. The accelerated scheme of Eyre
and Milton [33] is not able to handle pores as the contrast becomes infinite. Consequently,
a non-null stiffness must be associated to the pores so as to recover a finite contrast. The
larger the contrast is, the softer the pore are and the more accurate the estimated overall
response becomes. Nevertheless, the computation time increases as the square root of the
contrast. As a consequence, a sensitivity study to the contrast is to be performed: contrasts
of 100, 1000 and 10000 are tested for a given porous unit cell featuring a porosity of 63.61%
(Fig. 1.4). While changing the contrast from 100 to 1000 leads to a significant decrease of the
estimated moduli, increasing the contrast from 1000 to 10000 induces a smaller decrease of
the estimated moduli. In addition, the sensitivity of the fineness of the discretization is to be
checked. Lastly, some of the voxels overlap on both the pores and the solid skeleton: a rule
must define the stiffness of such voxels. To this end, an estimate of the porosity in the voxel
is produced by using 64 sensing points in each voxel. The stiffness is then set according to
an averaging rule, by applying either the Voigt bound (arithmetic average of stiffness) or the
Reuss bound (harmonic average of stiffness). As the Reuss bound is applied, it is observed on
figure 1.4 that the estimated moduli vary directly with the size of the pixel, that is the volume
fraction of grey voxels. On the contrary, it is also shown on figure 1.4 that choosing the Voigt
bound leads to an estimate of the overall stiffness that is less sensitive to the discretization.
It must be noticed that the Reuss bound could have been chosen for the very same reason if
the inclusions were stiffer than the matrix [38]. Other mixing rules [39, 40] have also been
proposed: a macroscopically consistent rules defining the stiffness of grey voxels would likely
be non-local, as introduced in [41]. Scaling the Young modulus of the solid skeleton would
not affect the outcome of the sensitivity study due to the fact that the estimated overall bulk
and shear moduli vary directly with it. In the sequel, all computations are performed using
the Voigt bound for grey voxels and a contrast of 10000 to account for the pores.
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Figure 1.4: Effect of the discretization of the unit cell on the estimated stiffness. For a
given cubic unit cell featuring 44 spherical inclusions and a volume fraction of 63.61%, the
effective bulk modulus (left) and shear modulus (right) are estimated by using the FFT
algorithm. Parameters to be tested are the discretization (643, 963, 1283, 1443, 1603), the
contrast (100,1000,10000) and the rule defining the stiffness of the grey voxels (Voigt or
Reuss).

1.2.3. Representativity of the unit cell

It must be checked that the generated unit cell is a representative elementary volume
(REV). Generating the unit-cell of a periodic matrix-inclusion microstructure and applying
periodic boundary conditions ensures that the estimated overall response is representative of
the effective stiffness of that particular microstructure. Indeed, the overall response is not
plagued by boundary effects which occur as displacement or force boundary conditions are
considered, as investigated in [42]. Nevertheless, if the unit cell is too small, the estimate of
the stiffness can be erroneous since the unit cell does not account for the size distribution
and other statistics of the material. For a maximum error of 5% on the estimated overall
modulus of matrix-inclusion materials, the unit cell must be at least twice as large as the
reinforcement diameter [43].

Furthermore, the statistical variability of the estimated stiffness can be plotted as a
function of the size of the unit cell to justify the choice of this size [18, 19, 21, 44]. Unit cells
of periodic microstructures featuring a porosity of 61% and a pore size distribution given
in figure 1.2 (maximum diameter D = 2.21mm) are generated by using the Lubachevsky-
Stillinger algorithm. Unit cells of sizes 4 × 4 × 4 mm3, 6 × 6 × 6 mm3 and 8 × 8 × 8 mm3

are discretized on grids of respective sizes 803, 1203 and 1603 so as to discard the effect due
to the pixel size. Ten unit cells of each size are created so as to compute the average and
the standard deviation of the estimated bulk and shear moduli. It is shown on figure 1.5
that the standard deviation is reduced as the size of the unit cell increases. Moreover, all
the estimated bulk moduli and shear moduli respectively fall into ranges (2.63GPa, 2.69GPa)
and (1.72GPa, 1.85GPa). Consequently, it can reasonably be assumed that the relative error
on the estimated bulk and shear moduli due to representativity is less than 5% for a given
unit cell of size 6× 6× 6 mm3 or larger.

2. Comparison between numerical estimates and experimental measurements

2.1. Foam concrete as a porous material

Various unit cells featuring different pore size distributions, different intermediate porosi-
ties and minimum thicknesses are considered.

2.1.1. Influence of the pore size distribution

For each porosity, three pore size distributions are considered:

� An unimodal pore size distributions, where all pores feature an equivalent diameter of
1.5mm.

� A bimodal pore size distribution, where half the porosity corresponds to pores of equiv-
alent diameter 2mm and the other half to pores of diameter 0.5mm.

� A multimodal pore size distribution, given in figure 1.2 (maximum diameter D =
2.21mm).
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Figure 1.5: Effect of the size of the unit cell on the estimated stiffness. For cubic unit cells
of sizes 4× 4× 4 mm3, 6× 6× 6 mm3 and 8× 8× 8 mm3 and a porosity of 61%, the scaled
effective bulk modulus K/Km (left) and shear modulus G/Gm(right) are estimated by using
the FFT algorithm. Error bars represent the standard deviation of each series of 10 unit
cells.

For generating the unit cells, the intermediate volume fraction is set to 61% if the poros-
ity is larger than 61% and the minimum thickness is set to 0. The size of the unit cells
is 6 × 6 × 6 mm3 and these unit cells are discretized on 1203 grids for the FFT algorithm.
For different porosities, the overall moduli estimated by the 3D numerical computations are
compared to those stemming from mean field schemes in figure 2.1. It is shown that these
numerical estimates comply with the Hashin-Shtrikman upper bound and could be approx-
imated by using the differential scheme. In addition, the different pore size distributions
cannot be distinguished starting from the estimated moduli, keeping in mind their limited
accuracy. As a result, the effect of the pore size distribution can be described as small and
non-significant. Lastly, the experimental measurements of the Young moduli of foam con-
crete cannot be properly approximated by any of the computed estimates. For instance, the
measured Young modulus at a porosity of 67% is about 5% of that of the solid matrix, while
the ratio estimated by 3D numerical simulations is about 12.7%. That ratio becomes 11.0%
for the differential scheme and 19.7% for the Hashin-Shtrikman upper bound. In the next
section, the intermediate porosity and the minimum width will be tuned to try to match the
measured moduli.

2.1.2. Influence of the intermediate porosity and minimum thickness

The pore size distribution being set to that given in figure 1.2 (maximum diameter
D = 2.21mm), the effect of the intermediate porosity and minimum thickness are to be inves-
tigated. As the intermediate volume fraction becomes significantly lower than the targeted
porosity, the pores tend to bundle, thus forming larger pores of complex shapes. Conse-
quently, this clustering induces a significant decrease of the estimated stiffness (Fig. 2.2),
thus getting closer to the experimental measurements of the Young modulus of foam concrete.
Nevertheless, explaining the experimental measurements by introducing a single intermediate
volume fraction is hardly possible. Indeed, even if the intermediate volume fraction is null,
the estimated stiffness is still stiffer than that measured at high porosities. In addition the
generated unit cell does not look like the tomographic image of a real sample of foam concrete.
Indeed, as the intermediate porosity becomes close to zero, the resulting microstructure be-
comes similar to that obtained by randomly placing overlapping spheres and the pore network
is almost entirely percolated. Lastly, introducing a minimum thickness raises the estimated
stiffness and does not solve the mismatch between numerical estimates and measurements.

Depending on the porosity, the following conclusions arise. On the one hand, for porosities
lower than 40%, the upper Hashin-Strickman bound accurately estimates the overall stiffness.
In addition, there is a little dependence to the pore size distribution, to the intermediate
volume fraction or the minimum thickness. Indeed, the clustering of pores only results
in bigger pores without affecting the stiffness. On the other hand, for porosities higher
than 40%, the upper Hashin-Strickman bound slightly overestimates the effective stiffness
of the considered unit cells. Hence, the differential scheme becomes a valuable alternative.
Nevertheless, the estimated stiffness proves sensitive to the intermediate porosity and the
minimum thickness and the mean-field schemes should be used with care.

However, the estimated Young Modulus is significantly higher than that experimentally
measured on foam concrete. Thus, introducing the sand as a third phase could improve the
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Figure 2.1: The scaled effective bulk modulus K/Km(left), shear modulus G/Gm(middle)
and Young modulus E/Em(right) estimated by numerical simulations are compared to those
stemming from the Hashin-Shtrikman upper bound and the differential scheme. Different
pore size distributions are considered for the 3D numerical simulations.
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Figure 2.2: The scaled effective bulk modulus K/Km(left), shear modulus G/Gm(middle)
and Young modulus E/Em(right) estimated by numerical simulations are compared to those
stemming from the Hashin-Shtrikman upper bound and the differential scheme. Different
intermediate volume fractions are considered for the 3D numerical simulations.

numerical estimates and resolve the mismatch.
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2.2. Foam concrete as a three-phase composite material

2.2.1. Questioning the scale separation

Scale separation of sand and pores is not ensured. Indeed, pores and sand particles
features comparable radii, as shown on tomographic images and size distributions. Even if
the sand particles were much smaller than the pores, scale separation would be questionable
due to the small spacing δ between the pores. The order of magnitude of the spacing between
the pores can be estimated by considering the mortar as a uniform coating on the pores. The
thickness δ/2 of that coating must be consistent with the volume fraction of the solid skeleton,
thus leading to the following equation:

Ns
pore−1∑
j=0

pjvpore,j = φ

Ns
pore−1∑
j=0

pjvpore,j

[
1 + 3

√
4π

3vj

δ

2

]
(8)

If a single diameter dpore is provided, this equation boils down to δ = dpore(φ
−1/3 − 1). If

61% of pores of equivalent diameter 1mm are considered, the spacing δ is about 179µm. If
67% of pores of equivalent diameter 0.5mm are considered, this thickness decreases to about
71µm. Therefore, the characteristic spacing between the pores is comparable to the size
of the smaller sand particles (≥ 65µm). Consequently, it is likely that there are little or
no sand particles in the thin members of the solid skeleton, where the stress concentrates.
As the cement paste is softer than the sand particles, neglecting this phenomenon is likely
responsible for the overestimation of the overall stiffness encountered as foam concrete is
considered as a two phase material. Therefore, sand is to be introduced as a third phase in
the homogenization process.

On the contrary, for the EPS concrete formulated in [4], featuring porosities lower than
50% and EPS beads larger than 1mm, the thickness δ becomes larger than 260µm, which is
comparable to the maximum diameter of the considered rounded quartz fine sand (300µm).
As a consequence, the mortar can be considered as an homogeneous matrix and the differential
scheme provides a valuable estimate of the Young modulus.

The present reasoning can be applied to other foam composite materials. For instance,
the solid skeleton of the composite metal foam considered in [45] is made of an aluminum
matrix reinforced by 22µm silicon carbide particles. The porosity is about 83% and the size
of the pores is about 3mm. As a result, the spacing δ = 280µm is much larger than the
particles and the particles are clearly visible on BSE and SE micrographs of the cell walls
[45]. Another example is the case of reinforced polyurethane foams dedicated to acoustic
insulation [46]. The typical porosities and cell size are 95% and 350µm. The corresponding
thickness is about 6µm. It is to be compared to the size of the fillers : 13µm for talc, 10µm
for Zinc Borate and 33µm for Aluminum Hydroxide. The fact that Zinc Borate particles
lead to a better improvement of the storage modulus than Aluminum Hydroxide particles
[46] is likely related to their smaller size: more of these particles are located in the thin cell
walls and ribs, where the strain concentrates during dynamic tests. Nevertheless, while talk
particles are slightly bigger than the Zinc Borate particles and despite the fact that they
induce smaller pores, the storage modulus is improved. As explained in [46], these particles
are likely trapped in the thinner cell walls during the synthesis of the foam due to their
particular hydrophobic property. Consequently, the size and microstructural locations of the
particles are clearly influencing the elastic properties of the reinforced polyurethane foam,
which is modelled as a three-phase material in [47].

Regarding foam concrete, the segregation of sand particles at foam nodes could be at-
tributed to a capillary effect. Indeed, in a fresh mortar, the occurrence of a big particle in a
thin wall would lead to an important curvature of the mortar-pore interface. The resulting
capillary pressure would push the particle toward the nodes of the foam so as to recover
smooth spherical pores or flat interfaces. This phenomenon, investigated in [48, 49, 50] ( see
[51] for a review), led to the definition of a confinement parameter λ which is close to the
ratio dp/δ, where dp is the diameter of the solid particles. The confinement parameter for a
porosity of 61%, a pore diameter of 1mm and a particle diameter of 0.5mm is about λ ≈ 1.8.
Therefore, the sand particles are likely trapped at the nodes of the considered foam concrete.

The segregation of sand particles at foam nodes is made obvious by analysing the 3D
tomographic images (Fig. 1.1). Nevertheless, distinguishing the siliceous sand particles from
the cement paste by processing the image is hardly achievable because the X-ray linear
attenuations of both materials are similar within the considered X-ray energy range [52, 53].
As an alternative, the image is treated so as to segment the volume of the solid skeleton that
could be occupied by spherical sand particles larger than a given volume (Fig. 2.3). To this
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end, a median filter is first applied to reduce noise (Fig. 2.3a) followed by an Ostu threshold
to segment the solid skeleton (Fig. 2.3b). The segmented volume fraction for the foam
concrete of porosity 70% is 42%. Therefore, the segmented solid skeleton likely overestimates
the extend of the actual solid skeleton. Then an opening morphological filter is applied so
as to define the volume that could be occupied by sand grains larger than a given diameter.
Hence, the structuring element of the morphological filter is a ball featuring the considered
diameter. As the diameter of the ball increases from 60µm to 144µm, the remaining volume
accessible to sand grains significantly decreases from 37% to 24%. Hence, a significant volume
of the solid skeleton is made of thin members of cement paste deprived of sand grains, since
the considered sieve curve starts at an equivalent diameter of 250µm (Fig. 1.2). Lastly, the
different connected components of the remaining volume are labelled (Fig. 2.3d). All these
treatments are performed on the 3D image using the Insight Segmentation and Registration
Toolkit (ITK) [54, 55]. Unsurprisingly, right after thresholding, the solid skeleton is found
to be made of a single continuous component, apart from some small spurious components
near the edges of the image. On the contrary, once the thin members deprived of sand grains
are removed, the solid skeleton becomes disconnected. Indeed, at diameter 144µm, in an
abstract of size 1.8mm×3mm×3mm (Fig. 2.3), the three largest components respectively
occupy volume fractions of 7.8%, 3.5% and 3.4% and components disconnected from the
edges of the domain reach a volume fraction of 1.1%. It proves that these thin members are
essential to the stiffness of the foam.

(a) Median filter (b) Ostu filter

(c) Opening, 60µm diameter (d) Opening, 144µm diameter

Figure 2.3: 3mm×3mm slices of a treated tomographic abstract of size 1.8mm×3mm×3mm.
First a median filter is applied, then an Ostu threshold filter, an opening by a ball and a
labelling of the components. As the diameter of the ball increases, the colored components
depicting the volume potentially occupied by sand grains of diameter bigger than that of the
ball become disconnected.

2.2.2. 3D numerical estimates of the stiffness

Both sand particles and pores are now accounted for. The volume fraction of sand in the
mortar is fs/m = 35% and the size distribution of sand is plotted in figure 1.2 (maximum
diameter D = 2mm), along with that of pores (maximum diameter D = 2.21mm). Hence,
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φ being the final porosity, the volume fraction of sand in foam concrete is fs/m(1− φ). The
total volume fraction of particles and pores is therefore fs/m(1 − φ) + φ. An intermediate
volume fraction is to be introduced for the pores: it is set to 61% − fs/m(1 − φ) and sand
particles are not modified during the dilation process, thus preserving their spherical shape.

Now that the sand and the cement paste are distinguished, it is required to set a stiffness
for each of these phases. The Young modulus and Poisson’s ratio of the quartz sand particles
are respectively set to Es = 95.5GPa and νs = 0.078 [56] (see also [57]). The Poisson’s
ratio of the cement paste is set to 0.2 and its Young modulus to 14.1GPa so as to recover
a Young modulus of Em = 24GPa for the mortar by using a Mori-Tanaka scheme. The
bulk modulus and shear modulus estimated by the Mori-Tanaka scheme respectively are
Km = 12.5GPa and Gm = 10.2GPa. Such a Young modulus of 14.1GPa for a cement paste
of water-to-cement ratio of 0.38 is very low compared to that measured on pure cement paste
of similar age and water-to-cement ratios, around 20–25GPa [58]. The difference can partly
be attributed to the mismatch between static moduli and dynamic moduli, since dynamic
moduli are measured in [58] while the moduli considered in the present study are static
moduli measured by performing three loading cycles between 0% and 30% of the compressive
strength. Furthermore, it may be attributed to a slow hydration and curing conditions: the
cement (CEM I 42.5N) is rather coarse as it features a Blaine fineness of 3200 cm2/g and
the samples are unmolded at 6-8 hours and stored in open air. However, the occurrence of
an ITZ or microcracking of the cement paste in the mortar are not visible on tomographic
images of foam concrete. Lastly, though the Young modulus of the mortar estimated by using
the Mori-Tanaka scheme is set so as to be consistent with its experimental measurement, the
Poisson’s ratio is estimated at 0.18 without experimental calibration.

The stiffness of grey voxels containing three phases must be set according to a mixing
rule for elastic linear simulations using the FFT algorithm. First, the cement paste and sand
grains are merged using a Reuss bound, as performed in [38]. Then, this mix is merged with
the pores using a Voigt bound, as justified in section 1.2.2.

First, the minimum thickness is set to zero. The porosity being set, the overall estimated
moduli are softer that those estimated by assuming the mortar to be homogeneous (Fig. 2.4).
As a result, the estimates of the Young modulus accounting for sand grains are more consis-
tent with the experimental measurements of the Young moduli on foam concrete samples. In
addition, the artificial unit cells seem closer to the tomographic images and the thin mem-
bers squeezed between pores are actually deprived of sand grains (Fig. 1.1,2.5). Displaying
components of the local stress unveils stress concentrations patterns (Fig. 2.5). On the one
hand, at low porosity (29%), the stress concentrates in the sand particles, thus leading to
an efficient stiffening of the concrete foam. On the other hand, at high porosity (67%), the
stress concentrations are driven by the geometry of the solid skeleton. Indeed, the stress
concentrates in thin members made of soft cement paste, thus explaining the lower overall
estimated moduli: these thin members acting as soft microscopic pillars. The occurrence
of large stress concentrations at high porosities could also explain the reduced compressive
strength of concrete foam [17].

Finally, the estimated moduli are found to be sensitive to the minimum thickness of the
members for high porosities. Indeed, introducing a minimum thickness of 24µm induces a
16% increase of the estimated Young moduli at 67% porosity. Nevertheless, the tomographic
images do not feature such a measurable minimum thickness. In addition, keeping a null
minimum thickness leads to the most accurate estimates of the overall moduli Young moduli.

2.2.3. Discussion

The proposed model of foam concrete does not account for the potential occurrence of
an interfacial transition zone (ITZ) around the sand particles that might affect the elastic
stiffness [59, 60]. Indeed, the typical width of the ITZ is similar to the size of the cement
grains (50µm), that is comparable to the voxel size (6mm/120) in the elastic simulations:
representing the ITZ in elastic simulations at the scale of mortars would likely result in
reducing the stiffness of grey voxels around the sand particles [61], replacing each sand particle
by a bigger softer particle incorporating the ITZ [62] or handle the ITZ as an imperfect
interfaces [63] since the discretization is too coarse to represent the ITZ as an effective layer
[64, 38]. The occurrence of an ITZ is often attributed to the wall effect: based on geometrical
considerations, the volume fraction of big cement particles near sand grains must be very
low. Hence, the water to cement ratio is these areas is supposed to be higher, thus triggering
a lower water to cement ratio far from the sand grains. In the case of foam concrete featuring
a high porosity, if the ITZ were limited to sand particles, the thin members of the foam
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Figure 2.4: The scaled effective bulk modulus K/Km(left), shear modulus G/Gm(middle)
and Young modulus E/Em(right) estimated by numerical simulations are compared to those
stemming from the Hashin-Shtrikman upper bound and the differential scheme for a porous
material. The cement paste, the sand particles and the pores are distinguished for the 3D
numerical simulations. The moduli estimated by the Mori-Tanaka scheme, using the cement
paste as the matrix, are also displayed.

Figure 2.5: Top: Generated three-phase artificial microstructures are discretized on regular
grids for porosities of 29% (left) and 67% (right). Pores are black, sand grains are white and
the cement paste is grey. Bottom: the component σxx(x) of the local stress is displayed for
a hydrostatic load Σxx = Σyy = Σzz = 1..

deprived of sand particles would become stiffer. Since the stress concentrates in these thin
members, the overall stiffness of the foam concrete could be improved.

On the contrary, the ITZ may not be limited to sand particles. Indeed, if it is admitted
that the capillary forces are strong enough to exclude small sand particles from the thin
members of the foam, this phenomenon might also affect big cement particles. It would
result to a capillary-induced ITZ around the pores: the water to cement ratio in the thin
member of the foam would be higher, thus lowering the stiffness where the stress concentrates.
As a consequence, the overall stiffness would be lower.
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3. Conclusion

The present study is dedicated to foam concrete, showing that the scales of sand, pores
and cement paste can hardly be uncoupled to upscale the elastic stiffness. While 3D numerical
simulations and mean field schemes provide consistent estimates of the overall stiffness of a
biphasic composite material made of spherical pores embedded in a matrix, the comparison to
some moduli measured on foam concrete samples is puzzling, notably for high porosities. To
resolve the mismatch, foam concrete can be modelled as a three-phase material by considering
the cement paste, the sand and the air voids. Indeed, at high porosity, the width of the mortar
members becomes so small that the big sand particles are expected to be segregated at the
foam nodes. Since the stiffness of the foam is mainly driven by the ribs and walls where
the strain concentrates, the effective stiffness is lower than the one expected if the mortar
was homogeneous. The thickness of the foam members can be estimated according to the
equation 8 and compared to the maximum diameter of the sand to decide whether considering
the mortar as homogeneous is acceptable. This procedure could be extended to various porous
materials. Regarding the formulation of foam concrete, the present study unveils that a fine
sand is often required to ensure an homogeneous mortar and an optimized stiffness.

The elastic stiffness is not the only physical property of interest as concrete foam is
considered. Whether the sand is to be considered or not as other physical linear phenomena
(electrical or thermal conductivity) are investigated remain unanswered. Indeed, the pores
and the sand may both provide insulation and contrasts of electric or thermal conductivities
can be different from the contrast of elastic stiffnesses. The numerical simulations can be
adapted to provide estimates of the overall electrical of thermal conductivities if corresponding
conductivities are provided for the air pores, the cement paste and the sand particles. Finally,
the increase of local stress concentrations as porosity increases could be related to a lower
overall strength of foam concrete.
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[44] J. Zeman, M. Å ejnoha, Numerical evaluation of effective elastic properties of graphite fiber tow im-
pregnated by polymer matrix, Journal of the Mechanics and Physics of Solids 49 (1) (2001) 69 – 90.
doi:http://dx.doi.org/10.1016/S0022-5096(00)00027-2.
URL http://www.sciencedirect.com/science/article/pii/S0022509600000272

[45] S. Elbir, S. Yilmaz, A. K. Toksoy, M. Guden, I. W. Hall, Sic-particulate aluminum composite foams
produced by powder compacts: Foaming and compression behavior, Journal of Materials Science 38 (23)
(2003) 4745–4755. doi:10.1023/A:1027427102837.
URL http://dx.doi.org/10.1023/A:1027427102837

[46] G. Sung, J. H. Kim, Influence of filler surface characteristics on morphological, physical, acoustic prop-
erties of polyurethane composite foams filled with inorganic fillers, Composites Science and Technology
146 (2017) 147 – 154. doi:http://dx.doi.org/10.1016/j.compscitech.2017.04.029.
URL http://www.sciencedirect.com/science/article/pii/S0266353817306693

[47] A. Siegmann, S. Kenig, D. Alperstein, M. Narkis, Mechanical behavior of reinforced polyurethane foams,
Polymer Composites 4 (2) (1983) 113–119. doi:10.1002/pc.750040206.
URL http://dx.doi.org/10.1002/pc.750040206
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[53] O. Stamati, E. Roubin, E. AndÃ², Y. Malecot, Phase segmentation of concrete x-ray tomographic images
at meso-scale: Validation with neutron tomography, Cement and Concrete Composites 88 (2018) 8 – 16.
doi:https://doi.org/10.1016/j.cemconcomp.2017.12.011.
URL http://www.sciencedirect.com/science/article/pii/S095894651730642X
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