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A direct method for predicting the high-cycle
fatigue regime of shape-memory alloys
structures

Michaël Peigney

Abstract Shape Memory Alloys (SMAs) belong to the class of so-called smart
materials that offer promising perspectives in various fields such as aeronautics,
robotics, biomedicals or civil engineering. For elastic-plastic materials, there is an
established correlation between fatigue and energy dissipation. In particular, high-
cycle fatigue occurs when the energy dissipation remains bounded in time. Although
the physical mechanisms in SMAs differ from plasticity, the hysteresis that is com-
monly observed in the stress-strain response of those materials shows that some
energy dissipation occurs. It can be reasonably assumed that situations where the
energy dissipation remains bounded are the most favorable for fatigue durability. In
this contribution, we present a direct method for determining if the energy dissipa-
tion in a SMA structure (submitted to a prescribed loading history) is bounded or
not. That method is direct in the sense that nonlinear incremental analysis is com-
pletely bypassed. The proposed method rests on a suitable extension of the well-
known Melan theorem. An application related to biomedical stents is presented to
illustrate the method.

1 Introduction

The peculiar properties of Shape Memory Alloys (SMAs) - such as the supere-
lastic behavior or the shape memory effect - are the result of a solid/solid phase
transformation between different crystallographic structures (known as austenite
and martensite). That phase transformation takes place at the microscopic level and
is driven both by thermal and mechanical loading. The crystallographic structure of
the austenite is more symmetric than the crystallographic structure of the martensite.
This leads one to distinguish between several symmetry related martensitic variants

Michaël Peigney
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corresponding to different orientations of the martensitic lattice with respect to the
austenitic lattice [7]. Each martensitic variant is characterized by a transformation
strain that describes the deformation from the austenitic lattice to the martensitic
lattice.

Shape memory alloys can be relevant in a lot of applications, but for the time
being the most successful applications are to be found in the biomedical domain,
for devices such as endovascular stents. In vivo, such devices are submitted to a
cyclic loading due to the cardiac cycle, and therefore may be subjected to fatigue [9,
28, 30]. Metal fatigue is a crucial issue for structures submitted to variable loading.
A conventional way to estimate the fatigue behavior of a material is to establish the
so-called S-N curves that show the number of cycles to failure N versus the loading
amplitude. Three different regimes are typically observed on S-N curves:

• the low-cycle fatigue regime, corresponding to N< 104 − 105 cycles. In that
regime, N decreases rapidly with the loading amplitude S.

• the high-cycle fatigue regime, corresponding to N> 104−105 cycles, for which
the decrease of N with the loading amplitude S is much slower.

• the unlimited lifetime regime, in which the material shows no sign of fatigue.
That behaviour is observed for loading amplitudes S smaller than a characteristic
value referred to as the endurance limit.

The demarcation between low- and high-cycle fatigue depends on the material con-
sidered [17]. Similarly, depending on the material considered, the endurance limit
may exist or not. For Nitinol (which is the most common shape memory alloy used
in applications), the three regimes listed above have been observed in cyclic traction
experiments [28].

For designing Shape Memory Alloys structures subjected to variable loading, it
is essential to have tools for assessing the fatigue life. A case in point is the de-
sign of biomedical Nitinol stents. Since biomedical stents are required to have high
durability, it is essential to make sure that those devices operate in the high-cycle
fatigue regime or –even better– in the unlimited lifetime regime. Although they pro-
vide some valuable insight in the fatigue behavior, S-N curves are uniaxial in nature
and therefore are not sufficient for estimating the fatigue behavior of complex three-
dimensional structures subjected to multiaxial loading.

This contribution presents a rational method for predicting the high-cycle fatigue
regime of SMA structures. That method is based on the principle that high-cycle
fatigue corresponds to situations where phase transformation is limited, i.e. the en-
ergy dissipation is bounded. By analogy with plasticity, that situation is referred to
as shakedown. The proposed method relies on recent theoretical results that give a
sufficient condition for shakedown to occur in SMA structures submitted to variable
loading.

This contribution is organized as follows: We start by setting some notations and
making some observations on the constitutive laws commonly used for SMAs. From
there we comment on the structural evolution problem, with a special emphasis on
the large time behavior and recent results regarding the shakedown behavior. This
leads us to propose a direct method for predicting the high-cycle fatigue regime.
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The implementation of that method is detailed for a parametrized loading history.
An application related to biomedical stents is presented to illustrate the method. In
particular, the results delivered by the proposed method are compared with experi-
mental results from the literature.

2 Constitutive laws

In most existing material models for SMAs, the strain ε is decomposed in an elastic
part M : σ proportional to the stress σ and an inelastic part K : α related to phase
transformation, i.e.

ε = M : σ +K : α. (1)

In Eq.(1), M is the elasticity tensor, K is a fixed tensor, and α is an internal variable
that tracks the phase transformation. The Helmholtz energy w corresponding to (1)
is of the form

w(ε,α) =
1
2
(ε−K : α) : M−1 : (ε−K : α)+ f (α) (2)

where f is a positive function of α whose expression depends on the model consid-
ered (some examples will be given later on). In the following, we denote by A the
thermodynamical force associated with α , as defined by

A =−∂w
∂α

= KT : σ − f ′(α) (3)

where KT is the transpose of K.
To account for hysteresis effects, Eq.(1) is complemented with an elasticity do-

main C and a flow rule (describing the evolution of α) akin to plasticity. The elas-
ticity domain is assumed to be convex and to contain the origin. The normality flow
rule is commonly used, i.e.

α̇ ∈ ∂ IC (A) (4)

where the dot ˙ denotes left-time differentiation and ∂ IC (A) is the normal cone of
the elasticity domain T at point A, defined by

∂ IC (A) = {g|g : A≥ g : A′ for any A′ ∈ C }. (5)

For later reference, we note that the normality flow rule (4) respects the principle of
maximum dissipation

α̇ : (A−A′)≥ 0 ∀A′ ∈ C . (6)

As a first example, consider the model of Souza et al.[33]. In that model, the
internal variable α is a deviatoric strain (referred to as the transformation strain)
and K is taken as the projector on the deviatoric space, i.e.
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K = I− 1
3
1⊗1

where 1 and I are respectively the second- and fourth-order identity tensors. In such
a model, the thermodynamical force A specializes as

A = s− f ′(α)

where s is the deviatoric stress. The elasticity domain C considered by Souza et al.
is of the Von Mises type, i.e. defined by ‖s− f ′(α)‖ ≤ R where ‖·‖ is the Euclidean
norm and R is the yield limit for phase transformation. In addition, the internal
variable α is submitted to the constraint ||α|| ≤ εL, which expresses the fact that the
transformation strain cannot be arbitrarily large and is bounded by some material
parameter εL that depends on the alloy considered.

A typical superelastic stress-strain delivered by such a model is represented in
Fig. 1. Note in particular that εL is the strain amplitude of the plateaux exhibited by
the stress-strain response. The hysteresis displayed by the stress-strain curve is di-
rectly related to the energy dissipated in a strain-driven loading cycle of sufficiently
large amplitude ∆ε as represented in Fig. 1. If such a cyclic strain is applied to the
material, energy dissipation would occur at each cycle. In such a condition, the ma-
terial would be subjected to low-cycle fatigue. In contrast, if a cyclic strain of low
amplitude ∆ε is imposed (possibly around a non-zero mean value), then there would
be no dissipation in the stabilized regime so that high-cycle fatigue will prevail (Fig.
2).

The model of Souza et al., as well as its further refinements and extensions [4, 5]
are phenomenological. In contrast, other SMA models rely on a micromechanical
approach and make use of detailed information on the crystallography of the phase
transformation [2, 12, 13, 24, 25]. The simplest case is that of single crystals: the
internal variable is typically chosen as (θ1, ,θk) where θi is the volume fraction of
the martensite variant i. The stress-strain relation (1) specializes as

ε = M : σ +
k

∑
i=1

θiε
tr,0
i

Fig. 1 Superelastic stress-
strain response for a loading
cycle of large strain amplitude
∆ε .
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where ε
tr,0
i is the transformation strain for variant i and k is the number of martensitic

variants [7]. Both k and ε
tr,0
i (i = 1, · · · ,k) are to be considered as material parame-

ters. As mentioned in Sect. 1, the transformation strains ε
tr,0
i are symmetry-related

i.e. for any (i, j) there exists a rotation Ri j such that

ε
tr,0
i = RT

i j · ε
tr,0
j ·Ri j. (7)

A common choice is to define the elasticity domain by

max
i
|ε tr,0

i : σ − f,i| ≤ G

where G is a yield limit for phase transformation and f,i is the partial derivative of
f (θ1, ·,θn) with respect to θi. Note that the internal variable (θ1, ,θk) is bounded
because the volume fractions θi are positive and their sum is less than 1.

Such a micromechanical approach can be extended to polycrystals, which is the
common form of commercially produced SMAs. A polycrystal is an assemblage of
N crystalline orientations. Each orientation j is characterized by a rotation R j with
respect to a reference orientation (which can be chosen to coincide with that of the
single crystal considered in (7)). In most of micromechanical models of polycrys-
talline SMAs [13, 19, 20], the internal variable is taken as α=(θ11, ·, θkN) where
θi j is the volume fraction of martensite variant i in the crystalline orientation j. The
internal variable α=(θ11, , θkN) is submitted to the constraint

0≤ θi j,
k

∑
i=1

θi j = c j (8)

where c j is the volume fraction of orientation j. The stress-strain relation and the
elasticity domain are respectively defined by

ε = M : σ +
k

∑
i=1

N

∑
j=1

θiε
tr
i j

and

Fig. 2 Superelastic stress-
strain response for a loading
cycle of small strain ampli-
tude ∆ε .
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max
i, j
|ε tr

i j : σ − f,i j| ≤ G

where f,i j is the partial derivative of f with respect to θi j and ε tr
i j is the transforma-

tion strain of variant i in the crystalline orientation j. The transformation strain ε tr
i j

can be written as
ε

tr
i j = RT

j · ε
tr,0
i ·R j. (9)

In all the models mentioned, observe that the internal variable α used for tracking
the phase transformation is always bounded. This requirement can be written as

α ∈T (10)

where T is the bounded set of admissible values for α . For instance, in the model
of Souza et al., the set T is the set of deviatoric strains with norm less than εL.
The constraint (10) is a distinctive feature of SMAs (compared to plasticity) and
stems from the mass conservation in the phase transformation process. Rigorously
speaking, in the presence of such constraints, the normality flow rule (4) needs to be
modified as

α̇ ∈ ∂ IC (A−Ar); Ar ∈ ∂ IT (α) (11)

where ∂ IT (α) is the normal cone of T at point α and is defined in a similar fashion
as in Eq.(5). For a convex set T (which is assumed throughout this chapter), the
following inequality – formally similar to (6) – holds [8]:

Ar : (α−α
′)≥ 0 ∀α ′ ∈T . (12)

Reference is made to [11] for a derivation of (11) from the general principles of
thermodynamics. The term Ar in (12) can be interpreted as a ’reaction force’ and is
non zero only when α saturates the constraint (i.e. when α is on the boundary of
T ).

3 Structural evolution problem

Now consider a structure occupying a domain Ω and submitted to a given loading
history. For determining the evolution of the structure, the constitutive laws (1-10-
11) are to be satisfied at each point x and at each time t. In addition, the stress field
needs to satisfy the equilibrium equations and the strain field has to derive from a
displacement field that respects the boundary conditions, i.e.

σ ∈A σ (t) , ε ∈A ε(t) (13)

where A σ (t) and A ε(t) are respectively the sets of statically admissible stress and
kinematically admissible strain fields at time t, defined by
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A σ (t) = {σ |divσ + f d = 0 in Ω ;σ .n = T d on ΓT},
A ε(t) = {ε|ε = (∇u+∇T u)/2 in Ω ; u = ud on Γu}.

(14)

In (14), f d , T d and ud are functions of (x, t) and define the loading history. The
tractions T d and the displacements ud are applied respectively on a part ΓT and a
part Γu = ∂Ω −ΓT of the boundary ∂Ω .

Together the equations (1-10-11-13) define the structural evolution problem. That
problem is nonlinear and is usually solved incrementally using space- and time-
discretization techniques, resorting for instance to Finite Element Analysis (FEA).
Regarding numerical implementation, handling the constraint (10) on the internal
variable is an additional difficulty compared to plasticity [3, 4, 31], especially for
micromechanical models [12, 22, 23].

Asides from numerical issues, adding a constraint (10) has a profound impact
on the properties of the structural evolution problem, especially regarding the large-
time behavior. For large loadings, the large-time behavior is indeed strongly depen-
dent on the initial state. For instance, in the case of periodic loading, some initial
conditions may lead to shakedown while others may lead to alternate phase trans-
formation (i.e. a periodic but non constant evolution of the phase transformation)
[21, 26]. Interestingly, such dependence of the asymptotic regime on the initial state
has also been observed in other nonlinear mechanical problems, such as contact with
friction [1] and plasticity with temperature-dependent elastic moduli [27].

4 Shakedown theorem

For fatigue design, we are especially interested in situations where the solutions
of the structural evolution problem are such that the energy dissipation remains
bounded in time. That situation is referred to as shakedown and corresponds to
the most favorable case of high-cycle fatigue. In standard plasticity, the Melan’s
theorem is a well-known result that gives a sufficient condition for shakedown to
occur [18, 34, 15]. Melan’s theorem is path-independent, i.e. the obtained shake-
down condition is independent of the initial state. The original theorem cannot be
directly applied to SMAs because, contrary to standard plasticity, the internal vari-
able is bounded. The theoretical issue of extending Melan theorem to SMAs has
been addressed in [10, 21, 26]. In particular, a path-independent Melan’s theorem
has been obtained in [21, 26].

Let (σE ,εE) be the fictitious elastic response of the structure, defined by the
elasticity problem

ε
E = M : σ

E , σ
E ∈A σ (t) , ε

E ∈A ε(t) (15)

The statement of the theorem is the following:

Theorem 1. If there exists m > 1, τ ≥ 0 and a time-independent field Ar
∗(x) such

that
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mKT : σ
E(x, t)−Ar

∗(x) ∈ C ∀x ∈Ω ,∀t > τ (16)

then there is shakedown, whatever the initial condition is.

The proof of Theorem 1 is given in the Appendix. Some comments are in order. A
first observation is that Theorem 1 is path-independent, just as the standard Melan
theorem in perfect plasticity: If the condition in Theorem 1 is satisfied, then shake-
down occurs for all initial state. The shakedown condition provided by Theorem
1 is thus independent of any residual stress that may exist initially in the structure
(as a consequence of material process, for instance). When the loading is beyond
the limit provided by Theorem 1, shakedown may still occur for some (but not all)
initial conditions (see [21, 26] for some examples). In such case, the asymptotic
behavior is strongly dependent on the initial state.

Observe also that the field Ar
∗(x) in Theorem 1 is free from any constraint. This

makes for a simple geometrical interpretation of Theorem 1: Shakedown occurs if,
up to a time-independent translation, the local elastic response t 7→ KT : σE(x, t)
remains in the elasticity domain C at each point x (Fig. 3). The situation is reminis-
cent of linear kinematic hardening plasticity, for which shakedown is ensured under
a similar condition [16].

On a final note, we observe that Theorem 1 is largely independent of the details
of the SMA model considered. In particular, the function f (that appears in the
Helmholtz energy w in Eq. (2) ) and the exact expression of the set T (that defines
the constraints on the internal variable in Eq. (10)) do not play a role in Theorem 1.

5 Description of the method

The above theorem leads to a design method against fatigue that can be broken down
into two steps:

1. Calculate the elastic response σE(x, t) for the considered loading history.
2. Check if the local curve t 7→ σE(x, t) can be translated in C at each point x.

Note that Step 1. can be conveniently performed by a (linear elastic) FEA. Step 2.
is merely a post-processing of the results obtained in Step 1. Consider for instance a

Fig. 3 Geometric interpreta-
tion of the local shakedown
condition for shape memory
alloys.
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parametrized loading history: The loading consists of body forces f d(x, t), applied
tractions T d(x, t) and prescribed displacements ud(x, t) that vary respectively as

f d(x, t) = λ (t) f 0(x), T d(x, t) = λ (t)T 0(x), ud(x, t) = λ (t)u0(x)

where λ (t) is a time-dependent loading parameter. The elastic response σE(x, t)
being defined by a linear problem, we have

σ
E(x, t) = λ (t)σE

0 (x)

where σE
0 (x) is the elastic stress field for the loading ( f 0(x),T 0(x),u0(x)). At each

point x, the curve t 7→ KT : σE(x, t) thus describes the line segment

[λmin,λmax]KT : σ
E
0 (x)

where λmin = mint λ (t) and λmax = maxt λ (t).
Details of Step 2. depends on the model used. The simplest case is that of phe-

nomenological models, such as the model of Souza et al.[33] considered previously.
In that model, the elasticity domain C is a ball of radius R in the deviatoric space.
Denoting by sE

0 (x) the deviatoric part of σE
0 , performing Step 2. amounts to check-

ing that
(λmax−λmin)‖sE

0 (x)‖< 2R

at each point x, which is guaranteed if

(λmax−λmin)max
x
‖sE

0 (x)‖< 2R. (17)

If that condition is satisfied, then the structure experiences high-cycle fatigue, what-
ever the initial state is. In practice, the condition (17) can be used as a criterion for
the design of SMA structures against fatigue: For say a given loading history, the
geometry of the structure should be designed in such fashion that maxx ‖sE

0 (x)‖ re-
mains smaller than 2R/(λmax−λmin). Note that the exact knowledge of the loading
parameter λ (t) is not necessary: Only bounds on the extreme values are needed. In
particular, λ (t) does not need to be periodic in time.

Now consider a micromechanical model of polycystalline SMAs. Performing
Step 2. amounts to check whether there exists A∗i j(x) and m > 1 such that

|mλ (t)σE
0 (x) : ε

tr
i j−A∗i j(x)| ≤ G ∀(i, j)

i.e. that
(λmax−λmin)|σE

0 (x) : ε
tr
i j|< 2G ∀(i, j).

This last requirement can be rewritten as

(λmax−λmin)max
i, j
|σE

0 (x) : ε
tr
i j(x)|< 2G. (18)
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Proceeding further requires to evaluate maxi, j |σE
0 (x) : ε tr

i j(x)|. This can be done ex-
actly provided that the polycrystalline texture (i.e. the list of N rotations that appear
in (9) ) is given. As an alternative, a simple bound on maxi, j |σE

0 (x) : ε tr
i j| can be

used, as is now explained. For any (i, j) we have indeed

σ
E
0 (x) : ε

tr
i j =

1
3

trσ
E
0 (x) trε

tr
i j + sE

0 (x) : ε
tr,D
i j ≤

1
3

trσ
E
0 (x) trε

tr
i j +‖sE

0 (x)‖ · ‖ε
tr,D
i j ‖

where the superscript D denotes the deviatoric part. Two observations are in order.
The first one is that, for the most common shape memory alloys, the transformation
strains can be considered as trace-free [7]. The second observation is that, as a result
of (7-9), ‖ε tr,D

i j ‖ takes a constant value (denoted by ‖ε tr‖), independently of (i, j). It
follows that σE

0 (x) : ε tr
i j ≤ ‖ε tr‖ · ‖sE

0 (x)‖ for all (i, j), hence

max
i, j

σ
E
0 (x) : ε

tr
i j ≤ ‖ε tr‖ · ‖sE

0 (x)‖. (19)

In view of (18) and (19), a sufficient condition for shakedown to occur is thus that

(λmax−λmin)‖ε tr‖ · ‖sE
0 (x)‖< 2G

for all x ∈Ω . That condition is satisfied if

(λmax−λmin)max
x
‖sE

0 (x)‖< 2
G
‖ε tr‖

(20)

Observe that the final condition (20) is formally similar to that obtained in (17) for
a phenomenological model.

6 Application to biomedical stents

We now describe the application of the proposed method to biomedical stents. Such
devices have a tubular geometry and are typically an assemblage of elementary cells.
Those cells often have the shape of a ’strut V’, as represented in Fig. 4 (left). When
the stent is loaded radially (for instance a consequence of blood pressure), each cell
primarily experiences some uniaxial traction (along the horizontal direction in Fig.
4 ). Extensive fatigue tests have been reported in [2]. Those tests were performed
on a diamond-shape specimen that consists of 2 ’strut Vs’ arranged in a symmetric
fashion so as to be easily fitted in a fatigue test machine. A simplified model of
such specimen is shown in Fig. 4 (right). In the experiments reported in [2], each
sample was submitted to a given strain cyclically between a fixed minimum value
εmin and a maximum value εmax. The number of cycles to failure was recorded for
each sample. The obtained experimental results showed that a low- to high-cycle
fatigue transition occurs at 0.4-0.5% strain amplitude, without any clear influence
of the mean strain. In order to illustrate the proposed approach based on shakedown
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theory, we apply the method detailed previously and compare the predictions with
the experimental results in [2].

For the problem at hand, applying the proposed approach merely consists in per-
forming one single elastic calculation, namely calculating the elastic response of
the structure in Fig. 4 when it is submitted to a (arbitrary fixed) reference strain ε0.
Such a calculation has been performed in 2D (plane stress) with the FEA software
Freefem [14]. We used the values E=50 GPa, ν = 0.35 which are representative of
Nitinol [33]. Because of the symmetries, only one fourth of the structure needs to
be modeled, as represented in Fig. 4. The mesh used in the FEA consists of 121847
triangular elements with linear interpolation. In Fig. 5 is represented the map of
‖sE

0 (x)‖. The maximum value of ‖sE
0 (x)‖ (normalized with respect to ε0) is approx-

imatively equal to 6860 MPa.
Using the condition (17) with R = 40 MPa, we obtain that shakedown occurs

provided that
|εmax− εmin|< 0.58%. (21)

Using lattice parameters from the literature [7], the value ‖ε tr‖ for Nitinol is found
to be approximatively equal to 0.1048. Applying the conditions (20) with G = 4.7
MPa [2], we obtain that shakedown occurs for

|εmax− εmin|< 0.65%. (22)

Both values in (21) and (22) are above the low- to fatigue transition that is as-
sessed experimentally (0.4-0.5%). However, given the uncertainties in the material
parameters and the lack of data on the exact geometry used in the experiments, the
agreement with the experimental results can be considered as satisfactory. Also note
that the predicted limit is independent of the mean applied strain, which is in line
with the experiments.

Fig. 4 Strut V (left) and
diamond-shaped specimen
(right)
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7 Conclusions

The proposed method is relevant for the fatigue design of SMA structures. It enjoys
the following key features:

1. It is based on rational theoretical results.
2. It can be used with a lot of existing SMA models (either phenomenological or

micromechanical).
3. It only relies on elastic calculations: Incremental nonlinear analysis is bypassed.
4. Only a partial knowledge of the loading is required (namely the knowledge of

the extreme values).
5. It does not require the knowledge of any residual stress that may exist initially (

as a consequence of processing for instance).

In spite of all those attractive features, it should be reminded that the presented
method does not give all the information regarding the high-cycle fatigue: neither
the exact value of the endurance limit, nor the number of cycles to failure, are pro-
vided by the proposed approach (see [6] for recent progress in that direction). How-
ever, due to its simplicity, the proposed method could possibly be useful at least in
the early stages of design.

Appendix

For the sake of completeness, we give in this Appendix a proof of Theorem 1. Con-
sider a solution (ε,α,σ ,Ar,Ad) to the evolution problem (1-10-11-13). By (11) we
have

A = Ad +Ar

with
α̇ ∈ ∂ IC (Ad); Ar ∈ ∂ IT (α). (23)

The positive quantity

Fig. 5 Map of ‖εD
0 (x)‖ on

a stent cell (values are nor-
malized with respect to the
maximum value ‖εD

0 ‖max).
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D(t) =
∫

Ω

Ad .α̇dx

can be interpreted as the rate of dissipated energy. Note that D(t) is positive because
of the principle of maximum dissipation (6) and the fact that the elasticity domain C
contains the origin. Under the condition (16), we show in the following that the total
dissipated energy

∫ T
0 D(t)dt remains bounded as T → ∞. To that purpose, consider

the positive functional W (t) defined as

W (t) =
∫

Ω

w(ε(t)− ε
E(t),α(t))dx.

By time-differentiation we have

Ẇ (t) =
∫

Ω

[(σ −σ
E) : (ε̇− ε̇

E −K : α̇)+ f ′(α) : α̇]dx.

Since div(σ − σE) = 0 in Ω , (σ − σE).n = 0 on ΓT and u− uE = 0 on Γu, the
principle of virtual power gives

∫
Ω
(σ −σE) : (ε̇− ε̇

E)dx = 0. Therefore

Ẇ (t) =
∫

Ω

[−KT : (σ −σ
E)+ f ′(α)] : α̇ dx

which using (3) and (23) can be rewritten as

Ẇ (t) =−D(t)+
∫

Ω

[−Ar +KT : σ
E ] : α̇ dx. (24)

Let (Ar
∗,m) satisfying (16). Setting Ad

∗ = mKT : σE(t)−Ar
∗, we find

Ẇ (t) =−D(t)+
∫

Ω

[−Ar +
1
m
(Ad
∗+Ar

∗)] : α̇ dx. (25)

The property (16) shows that Ad
∗ ∈ C for t > τ . Since α̇ ∈ ∂ IC (Ad), the principle of

maximum dissipation (6) gives

(Ad−Ad
∗) : α̇ ≥ 0. (26)

Moreover, since Ar ∈ ∂ IT (α) and α ∈T , Eq. (12) gives Ar(t) : (α(t)−α(t ′))≥ 0
for any t ′. In the limit t ′ −→ t with t ′ < t, we obtain

Ar : α̇ ≥ 0 (27)

Combining (26-27) with (25) gives

Ẇ (t)≤ 1−m
m

D(t)+
1
m

∫
Ω

Ar
∗ : α̇ dx. (28)

Since Ar
∗ is time-independent, the time-integration of (28) on a time interval [τ,T ]

yields
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(m−1)
∫ T

τ

D(t)dt ≤ mW (τ)+
∫

Ω

Ar
∗ : (α(T )−α(τ))dx (29)

where the property W (T )≥ 0 has been used. The set T being bounded, there exists
a positive constant K such that ‖α‖ ≤ K for any α ∈T . Therefore∫

Ω

Ar
∗ : (α(t)−α(τ))dx≤ 2K

∫
Ω

‖Ar
∗‖dx.

Combining that inequality with (29) gives

(m−1)
∫ T

τ

D(t)dt ≤ mW (τ)+2K
∫

Ω

‖Ar
∗‖dx

The right-hand side of that inequality is independent of T . This proves that the
dissipated energy

∫ T
τ

D(t) remains bounded as T −→+∞.
From there we can show (under some technical assumptions) that α(t) tends to

a limit as t −→ +∞. Assume that the elasticity domain C contains a ball of radius
r > 0 centered at the origin. In such a condition, we have rα̇(t)/‖α̇(t)‖ ∈ C for any
t. Using the principle of maximum dissipation (6), we find

0≤ α̇ : (Ad− r
α̇

‖α̇‖
)

Hence
‖α̇‖ ≤ 1

r
Ad : α̇

which after space integration gives∫
Ω

‖α̇‖dx≤ 1
r

D(t). (30)

Let A be the vectorial space in which α(x) takes values and let L1(Ω ,A) be the
space of integrable functions with values in A. The inequality (30) can be rewritten
as

‖α̇‖L1(Ω ,A) ≤
1
r

D(t)

where ‖ · ‖L1(Ω ,A) is the norm in L1(Ω ,A). Since
∫ T

0 D(t) is bounded as T −→
+∞, the integral

∫ T
0 ‖α̇(t)‖L1(Ω ,A)dt converges as T −→ +∞. From Riesz-Fischer

theorem, the space L1(Ω ,A) is a Banach space. It follows (see [29] or Theorem 97
in [32]) that the integral

∫ T
0 α̇(t)dt converges as T −→ ∞. Hence α(t) converges

towards a limit as T −→ ∞. ut
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