K. Alzebdeh, Evaluation of the in-plane effective elastic moduli of single-layered graphene sheet, International Journal of Mechanics and Materials in Design, vol.56, issue.14, pp.269-278, 2012.
DOI : 10.1016/j.jmps.2007.07.013

M. Bornert, C. Stolz, and A. Zaoui, Morphologically representative pattern-based bounding in elasticity, Journal of the Mechanics and Physics of Solids, vol.44, issue.3, pp.307-331, 1996.
DOI : 10.1016/0022-5096(95)00083-6

J. Cho, J. J. Luo, D. , and I. M. , Mechanical characterization of graphite/epoxy nanocomposites by multi-scale analysis, Composites Science and Technology, vol.67, issue.11-12, 2007.
DOI : 10.1016/j.compscitech.2007.01.006

L. Dormieux, S. Brisard, and D. Kondo, Hashin-Shtrikman bounds on the bulk modulus of a nanocomposite with spherical inclusions and interface effects, Comput. Mater. Sci, vol.48, issue.3, pp.589-596, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00904517

L. Dormieux, S. Brisard, and D. Kondo, Hashin-Shtrikman bounds on the shear modulus of a nanocomposite with spherical inclusions and interface effects, Comput. Mater. Sci, vol.50, issue.2, pp.403-410, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00539812

E. Mouden, M. Molinari, and A. , Thermoelastic properties of composites containing ellipsoidal inhomogeneities, J. Therm. Stresses, vol.23, issue.3, pp.233-255, 2000.

. Downloaded, Copyright ASCE. For personal use only; all rights reserved, Ecole Nationale des Ponts et Chaussees on 04

J. D. Eshelby, The determination of the elastic field of an ellipsoidal inclusion and related problems, Proc. R. Soc. London. Ser. A, pp.241-376, 1226.

M. E. Gurtin, A continuum theory of elastic material surfaces, Archive for Rational Mechanics and Analysis, vol.52, issue.4, pp.291-323, 1975.
DOI : 10.1007/BF00249093

Z. P. Huang, H. L. Duan, J. Wang, and B. L. Karihaloo, Size-dependent effective elastic constants of solids containing nanoinhomogeneities with interface stress, J. Mech. Phys. Solids, issue.7, pp.53-1574, 2005.

E. Kroener, Bounds for effective elastic moduli of disordered materials, Journal of the Mechanics and Physics of Solids, vol.25, issue.2, pp.137-155, 1977.
DOI : 10.1016/0022-5096(77)90009-6

S. I. Kundalwal, R. , and M. C. , Effective properties of a novel composite reinforced with short carbon fibers and radially aligned carbon nanotubes, Mechanics of Materials, vol.53, pp.47-60, 2012.
DOI : 10.1016/j.mechmat.2012.05.008

L. Quang, H. He, and Q. , Size-dependent effective thermoelastic properties of nanocomposites with spherically anisotropic phases, Journal of the Mechanics and Physics of Solids, vol.55, issue.9, pp.55-1899, 2007.
DOI : 10.1016/j.jmps.2007.02.005

URL : https://hal.archives-ouvertes.fr/hal-00693606

L. Quang, H. He, and Q. , Variational principles and bounds for elastic inhomogeneous materials with coherent imperfect interfaces, Mechanics of Materials, vol.40, issue.10, pp.865-884, 2008.
DOI : 10.1016/j.mechmat.2008.04.003

URL : https://hal.archives-ouvertes.fr/hal-00733644

H. Li and W. Guo, Transversely isotropic elastic properties of single-walled carbon nanotubes by a rectangular beam model for the C???C bonds, Journal of Applied Physics, vol.38, issue.10, pp.1-11, 2008.
DOI : 10.1103/PhysRevB.72.064101

T. C. Lim, Interfacial Stiffness, Journal of Thermoplastic Composite Materials, vol.5, issue.5, pp.601-611, 2011.
DOI : 10.1177/002199836700100205

H. Liu and L. C. Brinson, Reinforcing efficiency of nanoparticles: A simple comparison for polymer nanocomposites, Composites Science and Technology, vol.68, issue.6, 2008.
DOI : 10.1016/j.compscitech.2007.10.033

A. Molinari, E. Mouden, and M. , The problem of elastic inclusions at finite concentration, International Journal of Solids and Structures, vol.33, issue.20-22, pp.20-22, 1996.
DOI : 10.1016/0020-7683(95)00275-8

P. Ponte-castaneda, W. , and J. R. , The effect of spatial distribution on the effective behavior of composite materials and cracked media, J. Mech. Phys. Solids, issue.12, pp.43-1919, 1995.

E. Saether, S. J. Frankland, and R. B. Pipes, Transverse mechanical properties of single-walled carbon nanotube crystals. Part I: determination of elastic moduli, Composites Science and Technology, vol.63, issue.11, pp.63-1543, 2003.
DOI : 10.1016/S0266-3538(03)00056-3

L. Shen and J. Li, Transversely isotropic elastic properties of single-walled carbon nanotubes, Physical Review B, vol.18, issue.4, p.45414, 2004.
DOI : 10.1088/0256-307X/18/11/323

E. T. Thostenson, C. Li, and T. Chou, Nanocomposites in context, Composites Science and Technology, vol.65, issue.3-4, pp.491-516, 2005.
DOI : 10.1016/j.compscitech.2004.11.003

J. Tsai, S. Tzeng, and Y. Chiu, Characterizing elastic properties of carbon nanotubes/polyimide nanocomposites using multi-scale simulation, Composites Part B: Engineering, vol.41, issue.1, pp.106-115, 2010.
DOI : 10.1016/j.compositesb.2009.06.003

L. J. Walpole, Elastic behaviour of composite materials: Theoretical foundations Advances in applied mechanics, pp.169-242, 1981.

J. R. Willis, Variational and related methods for overall properties of composites Advances in applied mechanics, 1678.

J. R. Willis, The Overall Elastic Response of Composite Materials, Journal of Applied Mechanics, vol.50, issue.4b, pp.1202-1209, 1983.
DOI : 10.1115/1.3167202