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Assumption 1 in our original paper can be replaced with the
following, less stringent assumption.

Assumption 1. There exists A > 0 such that at any point X € Q,
the eigenvalues of [C(x) — Cy] are greater than A in absolute
value.

Proof of Theorem 4 requires that the local stiffness be bounded
from below and above. Therefore, Assumption 2 must be altered
as follows

Assumption 2. There exists Kmax > Kmin > 0 and fimax > Umin >
0 such that at any point x € Q

Kmin < K(X) < Kmax,  Mmin < H(X) < fmax.

Then, the end of the proof of Theorem 4 (starting from
“Taking advantage of the isotropy”’) must be modified as follows.

Proof of Theorem 4. [...] Taking advantage of the isotropy of
both local and reference materials, the above volume averages
can be expanded
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from which the following bound results
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The proof of the first statement is complete, since ||@|lv = ||T||v,
and @ > 0. a

!n this definition of e, it is assumed that Kpin < Ko < Kmax and fimin < Ho <
HUmax- The proof remains valid if any of these inequalities are not verified. For
example, if pmin > (o, then, from Assumption 2, u(X) > o at any point x € Q.
In other words, the integral over the set of points x € Q such that p(x) < o is
null. Then Eq. (49) still holds, provided that « is defined as follows
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