
HAL Id: hal-01763263
https://enpc.hal.science/hal-01763263

Submitted on 23 Jun 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Recursive least-squares temporal difference learning for
adaptive traffic signal control at intersection

Biao Yin, Mahjoub Dridi, Abdellah El Moudni

To cite this version:
Biao Yin, Mahjoub Dridi, Abdellah El Moudni. Recursive least-squares temporal difference learning
for adaptive traffic signal control at intersection. Neural Computing and Applications, 2017, 31,
pp.1013 - 1028. �10.1007/s00521-017-3066-9�. �hal-01763263�

https://enpc.hal.science/hal-01763263
https://hal.archives-ouvertes.fr

This is the final version published in Neural Computing and Applications, 2017

DOI10.1007/s00521-017-3066-9

1

Recursive least-squares temporal difference learning for

adaptive traffic signal control at intersection

Biao Yin1,*, Mahjoub Dridi2, Abdellah El Moudni2

1LVMT-City Mobility Transport Laboratory, École des Ponts ParisTech, IFSTTAR, UPEM, 77455

Champs-sur-Marne, France

2NIT-O2S, Université de technologie de Belfort-Montbéliard, 90000 Belfort, France

*Corresponding author: Biao Yin; e-mail: biao.yin@enpc.fr; telephone: +33(0)787130511

Abstract This paper presents a new method to solve the scheduling problem of adaptive traffic signal

control at intersection. The method involves recursive least-squares temporal difference (RLS-TD(λ))

learning that is integrated into approximate dynamic programming. The learning mechanism of RLS-TD(λ)

is to make an adaptation of linear function approximation by updating its parameters based on

environmental feedback. This study investigates the method implementation after modelling a traffic

dynamic system at intersection in discrete time. In the model, different traffic control schemes regarding

signal phase sequence are considered, especially the defined adaptive phase sequence (APS). By simulating

traffic scenarios, RLS-TD(λ) is superior to TD(λ) for updating functional parameters in the approximation,

and APS outperforms other conventional control schemes on reducing traffic delay. By comparing with

other traffic signal control algorithms, the proposed algorithm yields satisfying results in terms of traffic

delay and computation time.

Keywords adaptive traffic signal control; recursive least-squares temporal difference; approximate

dynamic programming; adaptive phase sequence

This is the final version published in Neural Computing and Applications, 2017

DOI10.1007/s00521-017-3066-9

2

1 Introduction

Traffic congestion has critical impacts on people’s daily life and environment. It leads to excess delays,

reduced safety, and increased environmental pollution. Traffic signal timing aims to schedule flows at

intersection efficiently to reduce congestion. In earlier research, a fixed-time (or pre-timed) cyclical signal

plan is made for traffic management. Control parameters, such as cycle length, phase splits, and offset, are

off-line optimized by using historical traffic data, and then are set in advance for signal controller. Fixed-

time control is limited to low flow fluctuations, and is inefficient for traffic changes. Later, adaptive control

occurs that it can adjust the control parameters in real time, responding to traffic demands. Adaptive control

is more flexible in operation than fixed-time control. Adaptive traffic signal control systems have been

available in practice, but most of them use conventional control methods. As the development of intelligent

transportation systems, intelligent algorithm plays an important role to be implemented in signal controller.

One of the most well-known intelligent algorithms is reinforcement learning [1-3], which can

make an agent (signal controller) do goal-directed learning and decision making by interacting with

unknown environment. Over the past decade, many research has been worked on reinforcement learning

with function approximation, which has been brought together with approximate dynamic programming

(ADP) community [4-6]. Reinforcement learning mainly focuses on control problems based on Markov

decision process (MDP) without model information, such as Q-learning. Differently, ADP usually obtains

near-optimal solutions of MDP with some model information, which can be viewed as planning cases for

sequential decision making [3]. From literature [7-9], MDP can describe the traffic signal control problems

well in a discrete-time dynamical way. However, conventional dynamic programming (DP) algorithm

meets “curse of dimensionality” due to a large state space, according to the MDP description of this problem.

ADP offers a near-optimal solution and reduces computation cost tremendously using an approximate

technique in its learning mechanism. In order to update the approximate function in ADP, there are several

candidates for the learning mechanism, such as gradient descent [10], TD(λ) [11], RLS-TD(λ) [12], and

kernel-based learning [13].

Here, we focus on RLS-TD(λ) learning. Bradtke and Barto [14] firstly proposed Least-Squares

TD (LS-TD) and its recursive version RLS-TD in a linear regression. Afterward, in [15] and [12], LS-TD(λ)

and RLS-TD(λ) were presented, respectively, as the extensions of LS-TD and RLS-TD with trace-decay

parameter λ (from λ=0 to general 0 1 ). As mentioned by Boyan [15], LS-TD(λ) offers several

significant advantages by comparing with TD(λ), such as fewer training samples, no step-size coefficient,

and independence on arbitrary initial values. Similar advantages also appear in RLS-TD(λ). Moreover,

RLS-TD(λ) has a recursive computation so that it is more suitable for online learning than LS-TD(λ).

In the other aspect, signal controller operates a traffic control scheme to schedule different

directional flows, in order to make them evacuate from intersection without conflicts. Based on an MDP

model framework, we study three kinds of traffic control schemes, namely fixed phase sequence (FPS),

variable phase sequence (VPS), and adaptive phase sequence (APS), to know the effectiveness of the

control strategies. All schemes take into account the properties of compatible traffic flows and signal phase

sequences. In FPS, both of traffic flow combination and phase sequence are fixed. In VPS, traffic flow

combination is fixed but phase sequence is variable. In APS, both of traffic flow combination and phase

This is the final version published in Neural Computing and Applications, 2017

DOI10.1007/s00521-017-3066-9

3

sequence are variable. In other words, compatible traffic movements can be grouped optionally in APS to

occupy the intersection zone. But control performance is unknown when APS is integrated into a related

algorithm.

Considering the advantages of RLS-TD(λ) learning and the flexibility of APS scheme, the

objective of this study is to design an related algorithm to make some improvements in control

performances regarding traffic delay and computing efficiency. Two main contributions are made in the

paper. First, we propose an algorithm that integrates RLS-TD(λ) learning into ADP in an application to

real-time adaptive traffic signal control at a typical intersection. Second, APS control scheme is

implemented to compare with the other schemes based on the proposed algorithm, and its effectiveness for

adaptive control is verified.

The rest of the paper is organized as follows. A literature review of related works is presented in

Section 2. Main principles of ADP approach with RLS-TD(λ) learning in linear function approximation are

described in Section 3. Section 4 presents an on-line control algorithm after modelling a typical signalized

intersection with the three kinds of traffic control schemes. In Section 5, we do experiments and analyse

simulation results. Finally, we draw conclusions and give the future work.

2 Literature review

Nowadays, adaptive traffic control systems are widely used around the world. From the view of

system deployment, more and more adaptive traffic control systems are decentralized, although centralized

systems (e.g., SCOOT [16], SCATS [17]) have been higher degree of control logic on the intersection level

[18]. In methodology, many distributed systems, such as OPAC [19], PRODYN [20], and RHODES [21],

uniformly recognized the importance of DP in solving the multi-stage decision-making problems. DP is not

implemented directly for these complex systems because of its weakness in computation. There are two

ways often taken into account for computation efficiency. One is to apply heuristic techniques and the other

one is to simplify state variables, for example, state aggregation method. Control performances in these

ways are not guaranteed. By reducing search states, forward DP algorithms are proposed to obtain exact

solutions of traffic control problems [22, 23]. However, related research has common limitations of the

short-term planning and the requirement of perfect information about traffic arrivals.

There is considerable literature focusing on intelligent algorithms for adaptive traffic signal

control systems [24-28]. A literature overview on this subject can be found in [29]. We introduce some

influential references as follows. Park and Chang [24] used genetic algorithm for preliminary study of

adaptive signal control at isolated intersection, provided that perfect knowledge of individual vehicle

arrivals is available. Lee et al. [26] developed the work in [24] using rolling horizon approach for real-

time adaptive signal optimization. García-Nieto et al. [30] proposed a swarm intelligence approach to find

successful cycle programs of traffic lights, using a microscopic traffic simulator. However, these

evolutionary algorithms are generally limited by the explorations of micro-evolutionary processes and the

planning models based on cellular processes, which cost much computation in simulation. Srinivasan et al.

[31] presented an approach about hybrid neural networks with fuzzy rules for real-time traffic signal control

by introducing multi-agent system. The proposed system is proven to control a large-scale traffic network

effectively. This approach is fine, but it is not sensitive to traffic environmental impacts. Recently,

This is the final version published in Neural Computing and Applications, 2017

DOI10.1007/s00521-017-3066-9

4

reinforcement learning and ADP methods obtain much attention in applications to traffic signal control

problems, especially in micro-simulation models [7, 32-35]. These methods are sensitive to environment

due to their learning mechanisms for updating values in time. With regard to the distinctions of

approximation processes, there are several learning methods to update the value of approximate function.

In [36], Q-learning is used to update the cooperative multi-agent, according to the best-response of Q-value

at next state. In each intersection agent, the large state-space still remains. The likelihood of Q-value

evaluated by the count of visit states need to take a long simulation time to converge. In the works of Arel

et al. [32], Box and Waterson [34], and Li et al. [37], reinforcement learning with the approximation of

neural networks, namely action network and critic network, are implemented to adaptive traffic signal

control. The parameters in these neural networks are updated by gradient descent. Cai et al. [7] suggest that

a simple linear approximation is sufficient for online operation. Because non-linear functions, such as

neural networks, for exploring the complex approximation may not prove cost effective due to some

difficulties in network training [38], especially for the complex and discrete-time traffic control problem

[39]. In [7, Erreur ! Signet non défini.], linear approximations based on feature-extraction function were

successfully employed, using TD(0) (λ=0) learning to update parameters. As mentioned before, RLS-TD(λ)

is superior to TD(λ) in theory study. However, the effectiveness of RLS-TD(λ) has not been researched in

field study, for example, in the application to adaptive traffic signal control problem.

In addition, to authors' knowledge, works on traffic control scheme at intersection are usually

discussed on fixed flow combinations. It means that compatible flows always remain the same group,

owning the right-of-way to occupy the conflict zone. On the other hand, signal phase sequence mostly

operates in a fixed or variable way (see the survey in [40]). In the paper, FPS and VPS control schemes do

in this way, too. Moreover, we will test the performance of the defined APS scheme, and make the

comparisons with FPS and VPS in experiments.

As discussed above, the parameter learning techniques in ADP algorithm and the traffic control

schemes of signal plan should be further studied, aiming to find an appropriate solution of traffic signal

control problem.

3 Approximate dynamic programming with RLS-TD(λ)

Although DP can achieve an optimal control policy under MDP model framework. Powell [4] has

mentioned that DP has computation burden as “three curses of dimensionality”, which refers to the

dimensions of state space, information space (space of random noise), and decision space. While, ADP

approach with machine learning is computationally efficient to obtain a near-optimal solution. This section

presents RLS-TD(λ) learning that is integrated into ADP approach due to the computational benefits of its

learning efficiency.

3.1 Markov decision process

The environment of the decision problem we discuss is described by a finite MDP in [41]. A finite MDP is

a tuple , , ,S A p R  , where S is the finite set of environment states, A is the finite set of actions,

This is the final version published in Neural Computing and Applications, 2017

DOI10.1007/s00521-017-3066-9

5

: [0,1]p S A S   is the state transition probability function, and :R S A S   is the reward

function. In detail, the state ts S describes the environment at each time t. The controller can choose the

state at each time by taking actions ta A . As a result of the action ta , the environment changes its state

from ts to some 1ts S  , according to the state transition probability given by p which is represented as

1(, ,)t t tp s a s  . The controller receives immediately a scalar reward tr  according to the reward function

1: (, ,)t t t tR r R s a s  .

For a given admissible policy π involving a sequence of decisions :ta S A , the expected total

reward is given by the following infinite-horizon discounted value function J  , which is expressed as

0

() ,t

t t

t

J s E r 




 
  

 
 (1)

where (0 1)   is a discount factor. The objective is to find an optimal policy by minimizing Eq. (1).

The following Bellman's equation offers a recursive solution to this goal. That is,

1

* *

1 1
()

() min (, ,) ()
t t

t

t t t t t t
a A s

s S

J s r p s a s J s


 




  
  

  
 (2)

for all ts S .

3.2 ADP with linear function approximation

Traditional DP algorithms, such as value iteration and policy iteration, can solve the Bellman's equation

given in Eq. (2) [42]. From practical experiences, there are two limitations of DP algorithms. First, the

knowledge of transition probability 1(, ,)t t tp s a s  is required, and it is subject to the complete information

from the environment. This makes DP in a short-term planning, which affects the performance over the

whole horizon. Although some methods weaken this impact, such as rolling horizon approach and model

predictive control, they will cost additional computation especially in large-scale DP problems. Second, it

has to loop over the entire state space to evaluate the decisions such that an optimal stationary policy is

finally obtained. The computation complexity is in an exponential order to the size of state variables. The

computation requirement grows extremely even for a small size problem. For example, there is an isolated

intersection with 8 lanes in 4-phase signal plan. Each lane can contain at most 19 queuing vehicles. Arrival

information is either 0 or 1 for each lane and signal decision for each lane is either 0 remaining green or 1

switching current status. Thus, the computation order (without any simplification by control scheme) is

8 8 8 154 20 2 2 6.71 10     . It is impractical to evaluate the states by all iterations for model convergence.

Whereas in ADP, the characteristics of function approximation, parameter adaptation by learning,

and real-time forward operation can address the DP drawbacks mentioned above. The structure of ADP

refers to a continuous approximation function that is defined to replace the exact cost-to-go value function

in DP. From literature [7, 37], ADP with linear function approximation is easier to be trained than neural

This is the final version published in Neural Computing and Applications, 2017

DOI10.1007/s00521-017-3066-9

6

network, and is more suitable to be implemented for discrete state-space problems. Generally, a linear

function approximation can be expressed as

T(,)t t t tJ s    (3)

where t refers to the feature-extraction function that maps state ts to valued feature (column) vector with

N-dimension, and t refers to the associated parameter (column) vector as the same dimension with t .

Using linear function approximation, consequently, the objective value function in ADP is given by

1
()

ˆ() min { (,)}
t t

t t t t
a A s

J s E r J s 


  (4)

where ˆ()tJ s is the observed value of current state according to environment.

In ADP, the estimated value J of visiting actual state by following a learning process will

approximate the optimal value J  in convergence. Instead of computing the optimal J  with huge-

dimensional states, we compute the low-dimensional parameter vector t . As a result, computation

requirement is substantially reduced. For linear function approximation, it has been proven that there is

only one optimum * , which is achieved ultimately in convergence [11]. Due to limited state resources and

solutions from this approximation, the parameter t is updated to an ideal goal * by an incremental

process to minimize some error metric between the estimated value J and observed value Ĵ . In the

following part, we will use RLS-TD(λ) learning technique to find * .

3.3 RLS-TD(λ)

Suppose that we observe a sequence of states ts based on the simulation with random input information

tw , i.e., 0 0 1 1 1 2 1(, , , , , , , , ,)T T Ts a w s a w s a w  . Temporal difference t (also called TD error) is defined

corresponding to the transition from ts to 1ts  by

1+ (,) (,)t t tt t tr J s J s    (5)

Since the linear case
T(,)t t t tJ s    , TD error in Eq. (5) at time t can be rewritten as

T

1()t t t t tr      (6)

Then, for t =0, 1, … ,T, multi-step TD (also called TD(λ)) updates t according to the formula

1

0

() (,)
t

t
t k

t t t t t t

k

J s     





   (7)

This is the final version published in Neural Computing and Applications, 2017

DOI10.1007/s00521-017-3066-9

7

where 0 is initialized to an arbitrary vector, t is a sequence of scalar step-size, λ is a parameter in  0,1 ,

and (,)
t t tJ s  is the vector of partial derivatives with respect to the components of t .

In the case of linear function approximation, a more convenient representation of TD(λ) is obtained

by defining a sequence of eligibility vectors tz . That is,

0

0

() (,)

() .

t

t
t k

t t t

k

t
t k

t

k

z J s 

 









 






 (8)

With this notation, Eq. (7) can be rewritten as

1t t t t tz      (9)

and the eligibility vectors can be updated recursively according to

1 1t t tz z    (10)

initialized with 0z  0 .

In the study of Tsitsiklis and Van Roy [11], the above linear TD(λ) algorithm is proved to converge

with probability 1 under certain assumptions. For special case λ=0, TD(0) is an equivalent to single-step

TD algorithm where only the most recent observation matters to calculate the value function as well as the

update of approximation.

To improve the efficiency of linear TD(λ) learning, LS-TD and RLS-TD learning methods are

suggested in [14]. In LS-TD, the least-squares approximation to * at time t (1)t  is the vector t that

minimizes the quadratic objective function

 
2

T

1

1

1
() () .

t

t ii t

i

iO r
t

   



   (11)

By taking the partial derivative of ()tO  with respect to t , as well as employing the instrumental variable

approach, LS-TD solution of Eq. (11) gives us the tht estimate to * . That is,

1

T

1

1 1

1 1
() .

t

i i

t

t i

i

i

i

ir
t t

    





 

   
    
   
  (12)

LS-TD method requires the computation of a matrix inverse at each time step. Thus, recursive

least-squares technique is used to derive a modified algorithm, namely RLS-TD, to reduce the

computational complexity of LS-TD. The weight update rules of RLS-TD are as follows:

T

1 1()t t tt tr       (13)

This is the final version published in Neural Computing and Applications, 2017

DOI10.1007/s00521-017-3066-9

8

T

1 1 1

1 T

1 1

()

1 ()

t t t t t

t t

t t t t

P P
P P

P

  

  
  



 


 

 
 (14)

1

1 T

1 1

.
1 ()

t

t t t t

t t t t

P

P
   

  




 

 
 

 (15)

Notice that Eq. (15) looks like the TD(0) learning rule for function approximation that is linear in the

parameters, except that the scalar step-size parameter in TD(0) is replaced by a gain matrix. To use RLS-

TD method, users must specify 0 and 0P . 0 is normally set to be vector 0. 0P is typically to use 0P I ,

where I is the identity matrix and  is a small positive constant.

According to [12], RLS-TD(λ) can be viewed as the extension of RLS-TD with 0 1  . Besides

Eq. (13), the weight update rules of standard RLS-TD(λ) are given by

T

1 1 1

1 T

1 1

()

1 ()

t t t t t

t t

t t t t

P z P
P P

P z

 

 
  



 


 

 
 (16)

1

1 T

1 1

.
1 ()

t

t t t t

t t t t

P
z

P z
  

 




 

 
 

 (17)

The detailed derivation of RLS-TD(λ) and convergence proof can be found in [12]. In the next section, we

will focus on adaptive traffic signal control system, in which the ADP with RLS-TD(λ) learning is

implemented.

4 Adaptive traffic signal control algorithm

In this section, firstly, we present modeling framework of traffic signal control at intersection based on

MDP. Then, traffic control schemes and related decisions are discussed. Finally, we summarize the

algorithm using a multi-step planning for online adaptive control.

4.1 Traffic dynamic system

Traffic signal control at intersection is considered as a stochastic discrete event system. Time intervals refer

to identical divisions of a planning horizon. Assume that one interval is from t to t+1. At first, the following

principal assumptions are given:

(1) Traffic signal durations are divided by discrete unit intervals. The size of one interval is 2 seconds,

which is usually set to be a safe headway.

(2) Signal phases are composed of effective greens and reds only, excluding amber intervals. There is

no pedestrian phase.

(3) Each phase contains at least mandatory intervals including inter-green intervals and minimum

green intervals, during which no signal switching is admissible. The extension of green signal is

one interval per step. There is no lost time for vehicle receiving green signal.

This is the final version published in Neural Computing and Applications, 2017

DOI10.1007/s00521-017-3066-9

9

(4) The discharge rate (saturation flow) on each lane is one vehicle per interval. This rate is equivalent

to 1800 vehicles per hour.

Under the framework of MDP, as mentioned in Section 3.1, model formulation requires the

characterizations of state, action, transition probability, and reward (cost) function. At time t, for an isolated

intersection with total N lanes, traffic state can be expressed by (,),t t t ts k x s S  , where tk is a vehicle

state vector with element ()tk n representing actual number of queuing vehicles on lane n (1,...,n N); tx

is a signal state vector with element ()tx n representing the signal state on lane n. Assign () 1tx n  to green

signal and () 0tx n  to red signal. The decision or action of the system is ()t ta A s . Let ()
ts S tA A s 

denote action space. We define ()ta n to be a binary variable that () 1ta n  means signal switches on lane

n, otherwise, () 0ta n  . During the mandatory intervals, we have () 0ta n  as well. Once the system makes

a decision at time t, the traffic state ts will change. The transitions of signal state and vehicle state are

expressed respectively by

1() (() ())mod 2t t tx n x n a n   (18)

1() () () ()t t t tk n k n w n y n    (19)

where ()tw n denotes traffic arrival satisfying a distribution according to traffic arrival rates. It adopts the

value of either 0 or 1 vehicle/interval (veh/int). The traffic departure rate ()ty n is also a binary variable

restricted by

1, if () 1 and () () 1
()

0, otherwise.

t t t

t

x n k n w n
y n

  
 


 (20)

Because transition probabilities are hard to achieve for all state transitions, we can use the power of

computer to generate random observations, which satisfy a specific distribution. The process is referred as

Monte Carlo sampling. We have deterministic state transitions described in Eqs. (18) and (19). Vehicle

state at next time step is determined by the system state ts , information of vehicle arrival tw , and policy

decision ta at the current step t. Since state transitions are influenced by random arriving vehicles, the

process of vehicle state can be seen as a stochastic process with Markov property. As for the reward function

tr , in our study, it is defined by the sum of queue lengths at the next time 1t  . That is,

1 1

1

(, ,) ().
N

t t t t t

n

r R s a s k n 



  (21)

According to Eq. (2), the objective of the control problem is to minimize the discounted total queue

lengths corresponding to traffic delay.

This is the final version published in Neural Computing and Applications, 2017

DOI10.1007/s00521-017-3066-9

10

4.2 Traffic control schemes

A typical four-approach isolated intersection with conflicts is depicted in Fig. 1. The right-turn movement

is integrated into the straight one sharing the same signal. Compatible traffic flows are grouped into

combinations that have the right-of-way to occupy the conflict zone. In this section, three traffic control

schemes, namely FPS, VPS, and APS are discussed.

As shown in Fig. 2 (a), the intersection is controlled by typical four signal phases. The eight

movements are divided into four flow combinations, denoted by 1 2 3, ,G G G , and 4G . In FPS scheme, signal

controller organizes these combinations in a continuous loop, e.g., 1 2 3 4 1G G G G G    . Generally,

the inter-green interval or red clearance time represented by the barrier is used to separate phases for

different flow directions. Adaptive signal control operates FPS to either extend or terminate current green

phase, according to the detected traffic arrival information. In a particular state ts , the action space FPS ()tA s

has only 2 possible action vectors such that
0 1

FPS() { , }t t tA s a a . The action of signal unchanged is

0 T(0,0,0,0,0,0,0,0)ta  and the action of signal switch is, for example,
1 T(1,1,0,0,1,1,0,0)ta  for the next

particular phase. The action
1

ta indicates that signals on lane 1 and lane 5 will change from green to red,

and on lane 2 and lane 6 they do contrarily. As calculated by Eq. (18), the next transferred signal state is

1 T

1 ()mod 2 (0,1,0,0,0,1,0,0)t t tx x a    .

The flow combinations for signal phases in VPS are the same with those in FPS. Differently, the

phase in VPS may operate one after another in an uncertain or unordered way. For example, in Fig. 2 (b),

the phase sequence operates as 1 3 2 4 1G G GG G    . With VPS scheme, signal controller makes the

phase sequence optimization and skips to another one considering its performances, such as queue length

and vehicle waiting time. Therefore, the action space VPS()tA s has 4 possible action vectors, one for

remaining the same phase and three actions for switching to other phases.

In APS scheme, the possibilities of phase choice are more than those in four-phase mechanism

referring to FPS and VPS. It means that there are additional traffic flow combinations which can avoid flow

conflicts, e.g., lane 1 can be combined with one of lanes 4, 5, and 6. We list all combination possibilities,

as shown in Fig. 2 (c). For the relationship (combination coefficient) between two lanes, assign “1” if they

are non-conflicting, and assign “0” otherwise. One possible phase sequence may operate like (1, 5) (1,

6) (3, 8) (2, 6) (4, 7) …. In total, there are 12 combinations considering the upper triangular

matrix as symmetry. APS groups all possible compatible traffic flows for signal phases. In other words, the

action space APS()tA s has 12 possible action vectors. This scheme is firstly considered in our study for the

adaptive traffic signal control algorithm.

The control behaviors of traffic flows organized by FPS, VPS, and APS get sequentially more and

more flexible. For numerous adaptive traffic signal control systems, signal phase duration is not fixed and

phase sequence is cyclic, such as FPS scheme. When next alternative phase does not work in a particular

phase order but in an acyclic way, it operates like VPS scheme. Moreover, in APS, any compatible traffic

flows can be serviced at intersection. It does not have strict phase sequence requirement, which is

significantly different from the conventional four-phase mechanism.

This is the final version published in Neural Computing and Applications, 2017

DOI10.1007/s00521-017-3066-9

11

4.3 Control algorithm

Regarding the RLS-TD(λ) learning in ADP approach and our traffic system modeling above, some

specifics are required to design the algorithm for traffic signal control.

The linear function approximation ()J  containing feature-extraction function t and associated

parameter t is related to the traffic state () ((), ())t t ts n k n x n . That can be expressed as

T T

1

(,) ((), ()) ()
N

t t t t t t t t

n

J s k n x n n    


  (22)

where
T(((), ()), 1,2, ,)t t t tk n x n n N   and

T((), 1,2, ,)t t n n N   . We define ((), ())t t tk n x n as

T

T

((),0) , if () 1 (signal green)
((), ())

(0, ()) , otherwise.

t t

t t t

t

k n x n
k n x n

k n


 
 


 (23)

and define
T() ((), ())g r

t t tn n n   , allowing ()g

t n and ()r

t n to the corresponding queue length variable

()tk n if lane n receives green signal and red signal, respectively.

As mandatory intervals include inter-green intervals and minimum green intervals, we adopt

multi-step planning forward in the dynamic process. The objective function in M-step planning is

formulated as

1
* *

()
() min () .

k
t t

t M
k t M

t w k t M
a A s

k t

J s E r J s 
 








 
  

 
 (24)

With linear function approximation ()J  in ADP, the above Eq. (24) can be modified by

1

()

ˆ() min (,) .
k

t t

t M
k t M

t w k t M t
a A s

k t

J s E r J s  
 








 
  

 
 (25)

And signal controller can implement the following optimal action greedily

1
*

()
arg min (,) .

k
t t

t M
k t M

t w k t M t
a A s

k t

a E r J s  
 








 
  

 
 (26)

According to Eqs. (13), (16), and (17), the update of t in RLS-TD(λ) learning rule by M-step

planning is calculated as

1
T

1()
t M

k t M

t k t t M t

k t

r     
 



 



   (27)

This is the final version published in Neural Computing and Applications, 2017

DOI10.1007/s00521-017-3066-9

12

T

1 1

1 T

1

()

1 ()

M

t t t t M t

t t M

t t M t t

P z P
P P

P z

  

  
  



 


 

 
 (28)

1

1 T

11 ()
.t

t t t tM

t t M t t

P
z

P z
  

  




 

 
 

 (29)

Derivation of RLS-TD() in M-step planning is located in Appendix. Finally, on-line adaptive traffic signal

control algorithm using ADP with RLS-TD(λ) learning is summarized in Algorithm 1.

Algorithm 1: Adaptive traffic signal control algorithm by ADP_RLS-TD(λ)

1. Choose an initial state 0 0 0() ((), ())s n k n x n , parameter
T

0 0 0() ((), ())g rn n n   for

each lane n; set time 0t  , planning step m M ;

2. Receive the traffic arrivals tw during M intervals from detected information;

3. Choose the action space APSA (or FPS VPS,A A);

4. while t T do

5. if 0m  then

6. Signal unchanged with
* 0ta  , and max(1,0)m m  ;

7. else

8. for each APS()t ta A s do

9. Pre-calculate and store the accumulated rewards and estimated values;

10. end for

11. Find the optimal decision
*

ta using Eq. (26);

12. if
* 1ta  then

13. Change signal to all-red, and set 1m M  ;

14. end if

15. end if

16. Update functional parameter vector t using Eqs. (27), (28), and (29);

17. Implement optimal decision
*

ta at time interval t;

18. Transfer system state ()ts n , including signal state ()tx n and vehicle state ()tk n

by Eqs. (18) and (19), respectively;

19. 1t t  ;

20. end while

5 Simulation and analysis

In this section, traffic signal control at isolated intersection depicted in Fig. 1 is simulated. Traffic scenarios

in different traffic arrival rates are tested, using the three different traffic control schemes, i.e., FPS, VPS,

and APS. To validate the proposed ADP_RLS-TD(λ) algorithm, its experimental results are compared with

other different methods.

This is the final version published in Neural Computing and Applications, 2017

DOI10.1007/s00521-017-3066-9

13

5.1 Data preparation

In practice, traffic data is detected from inductive loops embedded upstream of each lane or other detecting

techniques. In our experiments, random traffic arrival data is generated in each step by computer simulation.

A simple 0-1 Bernoulli distribution is adopted. By using inverse transformation method (ITM), random

data consist of binary values 1 and 0, where value 1 represents vehicle arrival during one interval, and 0

otherwise. The probability of number “1” in distribution means an expected traffic arrival rate. Because

vehicle arrivals generated by Monte Carlo simulation, traffic volumes referring to the sum of number “1”

are a little different given the same traffic arrival rates.

For a finer planning, the value of either 1 or 0 in each unit increment, by which one interval can

be divided integrally, is randomly chosen. The sum of values in all increments per interval is subject to the

value of being either 1 or 0. For example, if there are 4 increments per interval, the situation of vehicle

arrivals may be (0,0,1,0) or (0,0,0,0) , etc.

Simulator generates data according to the traffic arrival rate vector, which corresponds to the

combinations 1 2 3 4(, , ,)G G GG . Traffic Scenario A and B that have asymmetric and symmetric rates,

respectively, as well as the corresponding traffic volumes, are shown in Table 1. Traffic Scenario C gives

symmetric time-varying arrival rates, which are processed smoothly ranging from 0.10 veh/int to 0.20

veh/int, as shown in Fig. 3. Notice that the highest traffic arrival rate in Traffic Scenario B has the intensity

(calculated by the method in [43]) almost 0.9, which is already close to the road saturation.

Table 1 Traffic scenarios of asymmetric and symmetric average arrival rates.

 Arrival rate (veh/int) Traffic volume by ITM (veh/h)

Traffic Scenario A (0.10, 0.20, 0.10, 0.20) (350, 722, 365, 735)

Traffic Scenario B (0.20, 0.20, 0.20, 0.20) (742, 725, 740, 735)

Table 2 Details of system parameters.

Parameters Definitions Value setting

T simulation period 40000 intervals

N total lanes at intersection 8

ming minimum green time 3 intervals

gmax maximum green time 30 intervals

intg inter-green (all-red) time 1 interval

M mandatory multi-step 4 intervals

0 ()g n initial parameter to green signal 5 in Scenario A and B; 3 in Scenario C

0 ()r n initial parameter to red signal 5

 discount factor 0.90

 learning rate constant 0.001

 parameter in matrix 0P 0.01

as saturation (departure) flow 1 veh/int=1800 veh/h

This is the final version published in Neural Computing and Applications, 2017

DOI10.1007/s00521-017-3066-9

14

5.2 Performance measure

The main performance measure refers to the term of average traffic delay denoted by D, which is expressed

in seconds and calculated according to the following formulation in OPAC system [43].

D

A

2 ()

()

N T

t

n t

N T

t

n t

k n
T

D
T

w n

 



 (30)

where TD (veh·int) is to measure the total vehicle-intervals (in 2 s units) that is the sum of queue lengths of

all lanes N during the period T. TA(veh) is the total number of vehicle arrivals at intersection.

Moreover, average queue length of waiting vehicles at intersection is concerned, and computation

time is considered for the algorithm efficiency.

5.3 Implementation

For the simulation of traffic signal control system, system parameter setting is given in Table 2. Actually,

learning parameter  in the comparative TD(λ) is step-size scheduling in a time-varying form [11]. From

the experience of related study [7], we use a constant leaning rate at  =0.001. By numerical experiments,

the functional parameters 0 ()g n and 0 ()r n are initially set to guarantee the control performance at the

beginning of simulation. Regarding the performance of ADP with RLS-TD(λ) learning in FPS, VPS, and

APS schemes, we compare the proposed algorithm with a fixed-time control (FC) method and certain

adaptive control (AC) algorithms, i.e., Greedy algorithm, Heuristic algorithm, and Q-learning. They are

introduced as follows.

 FC. In this control method, we consider the algorithm in [8], called Haijema-MDP in this paper.

The optimal-fixed-cycle method starts with the minimum-cycle-length algorithm which increases

the cycle length by unit increment based on the evaluation of Markov chains, according to the

expected traffic arrival rates. Algorithm stops until no better cycle length can be found. In the

literature, authors mentioned that Haijema-MDP was better than Webster’s method, especially in

unbalanced arrival rates.

 Greedy algorithm. In this method, the M-step planning evaluation function in Eq.(24) lacks the

part of exact state values and only has M steps of immediate rewards for searching forward. The

decisions are greedily chosen by evaluating the immediate reward function.

 Heuristic algorithm. This is a forward search dynamic programming algorithm, shorten by FSDP

[44]. Because this method has a global optimization solution, computation complexity is very high

by increasing the planning forward steps. We make this algorithm for two tests with planning

horizon pT =16 intervals and pT =25 intervals, respectively.

 Q-learning. In this method, the normal rule for updating value function is used as follows,

This is the final version published in Neural Computing and Applications, 2017

DOI10.1007/s00521-017-3066-9

15

1(,) (,) ((,) min (,) (,))t t t t t t
a A

Q s a Q s a r s a Q s a Q s a 


     , (31)

where t is the learning rate, s is the transferred state from s taken action a . Entire traffic states

need to be looped because their values need to be updated overall. Here, states are reduced by

using three flow density levels, i.e., low, medium, and high. From numerical experiments, various

settings of thresholds between the levels are confirmed, concerning the different traffic arrival

rates.

All the experiments are implemented in computer simulation. The program is built by MATLAB

64 bits and executed by processor Intel Core i5, CPU 2.67GHz × 4. Assume that the detected traffic arrival

information in the future can be received in M intervals. The information data is processed in rolling horizon

approach, which can make the system decision per interval with the rolling M steps forward. In real-time

operation, the executive time of algorithm should be guaranteed. That is to say, the run time per step while

making a decision must be less than one interval in reality.

5.4 Results and analysis

To know the effectiveness of RLS-TD(λ) learning for the traffic control field, firstly, we analyse parameter

evolutions in the algorithm. By implementing RLS-TD(λ) learning, the parameter evolutions of selected

lanes are illustrated in Fig. 4. All of these parameters trend to relative steady levels after some steps.

Obvious differences appear in the parameters
g

t , which associate to the feature-extraction function

regarding vehicles receiving green signal. The values of steady levels related to (1)g

t in Fig. 4(a) and

(7)g

t in Fig. 4(d) are smaller than those related to (2)g

t in Fig. 4(b) and (6)g

t in Fig. 4(c). This could be

explained as follows. In Traffic Scenario A, the arrival rates of lane 1, 2, 6, and 7 are 0.1, 0.2, 0.2, and 0.1

veh/int, respectively. Lane 1 and 7 receive less green durations than lane 2 and 6, and go faster to reach the

lower values at steady level. While the parameters
r

t give almost the same values at steady levels. That

means a little difference of queue lengths on the lanes where vehicles are waiting for red signal.

Theoretically, RLS-TD(λ) is better than the conventional TD(λ) learning, according to studies in [15, 12].

We investigate their applications in the traffic control field and compare their experimental results, as

shown in Fig. 5. Obviously, the parameters ()g

t n and ()r

t n in RLS-TD(λ) achieve much less variances

than those in TD(λ). Moreover, RLS-TD(λ) makes earlier stable trends in their evolutions. From the

subfigures, different λ values in RLS-TD(λ) generate almost the same parameter evolutions. By contrary,

big differences appear among the performances of TD(λ). Especially, in Fig. 5(d), the parameter evolutions

of TD(1) have the largest fluctuations. Similar aforementioned results can be obtained by other parameter

settings of λ and n.

In Fig. 6, the results of average traffic delay are compared between RLS-TD(λ) and TD(λ) learning

with different settings of λ. Traffic Scenario A, B, and C are tested. The performance of RLS-TD(λ) learning

is better than TD(λ) learning, by reason of its advantages for updating parameters. In Traffic Scenario B

and C, TD(1) even gets unreasonable values, which are removed.

This is the final version published in Neural Computing and Applications, 2017

DOI10.1007/s00521-017-3066-9

16

Table 3 Results of average delay (s) in Traffic Scenario A, B, and C.

Traffic Scenario A B C

Haijema-MDP 23.68 49.02 30.69

Phase sequence FPS VPS APS FPS VPS APS FPS VPS APS

Greedy 23.21 21.88 12.37 59.90 55.85 24.52 30.08 28.56 18.87

FSDP (pT =16) 18.65 14.80 8.74 45.30 40.53 12.58 22.12 20.25 9.23

FSDP (pT =25) 17.13 13.76 8.25 39.76 38.68 11.80 20.74 18.82 9.01

Q-learning 20.03 18.23 12.02 49.32 48.90 22.10 28.14 26.88 15.42

ADP_RLS-TD(0) 20.06 17.44 10.57 42.24 41.91 19.43 25.67 23.94 12.33

ADP_RLS-TD(0)*1 14.78 11.16 9.34 20.09 18.36 13.41 14.38 12.27 9.72

Improvement (%) 0 15.43 45.96 0 5.04 57.34 0 8.11 46.95

Note 1: simulation step is 0.25 interval (0.5 s) in a fine solution.

Table 4 Comparisons of run time in Scenario A.

Methods FSDP (pT =16) FSDP (pT =25) ADP_RLS-TD(λ)

Phase sequence FPS VPS APS FPS VPS APS FPS VPS APS APS*1

Run time (min) 1.3 6.3 99.6 3.2 23.9 582.5 0.3 0.7 1.1 4.4

Note 1: the same in Table 3.

From the analysis of parameter evolutions and the performance of average delay, RLS-TD(λ) is

superior to TD(λ) learning in ADP approach for adaptive traffic signal control. By the following

experiments, ADP with RLS-TD(λ) learning comparing with other control methods are discussed.

Table 3 shows the results of average traffic delay after implementing different algorithms. The

performances of FPS, VPS, and APS schemes are also involved. As a whole, AC methods that are able to

adjust phase duration and phase sequence, are better than FC, except the results of Greedy algorithm for

the FPS and VPS schemes in Traffic Scenario B. Greedy algorithm with limited information to guide

decision making is not suitable for adaptive traffic signal control in these cases. With more model

information (more planning steps), FSDP (Tp=16) and FSDP (Tp=25) are much better than Greedy

algorithm. By comparing the learning methods, ADP_RLS-TD(λ) (λ=0) yields better results than Q-

learning. Especially under the severe traffic density situation - Traffic Scenario B, ADP_RLS-TD(0)

obtains delay reductions about 7 s in FPS and VPS, and 2.7 s in APS. On the other hand, FPS, VPS, and

APS schemes have significant impacts on the performance of AC algorithms. Comparing with FPS, APS

can obtain the 45.96%, 57.34%, and 46.95% improvements of average delay reduction in Traffic Scenario

A, B, and C, respectively. Followed by VPS, average delay reductions are 15.43% and 8.11% in Traffic

Scenario A and C, and 5.04% for Traffic Scenario B. The detailed improvements related to these control

schemes in AC methods are shown in Fig. 7. Integrated into appropriate algorithms, APS outperforms on

average traffic delay than FPS and VPS, which are related to cyclic and acyclic signal control, respectively.

APS can operate in a highly adaptive way. It means that not only the phase sequence is acyclic but also all

the possible phases are evaluated by utility function.

This is the final version published in Neural Computing and Applications, 2017

DOI10.1007/s00521-017-3066-9

17

As shown in Table 3 and Fig. 7, FSDP (Tp=25) method looks like the appropriate approach with

lower traffic delays and higher improvements. Actually, see Table 4, FSDP (Tp=25) costs much time during

the whole simulation, especially in APS, where run time is 582.5 min. In VPS, it costs about 23.9 min.

Because the action space of APS is much larger than VPS, FSDP must search optimal values in a huge

state-space when using APS scheme. Meanwhile, the computing time increases considerably as Tp increases.

By contrary, ADP_RLS-TD(λ) algorithm costs a little time in computation, even in APS where time

consumption is about 1.1 min for the whole simulation (about 0.002 s per simulation step). In this algorithm,

a forward process and an estimation by linear function approximation are the key points to reduce the

computation complexity. Based on the simulation results, we argue that the optimal DP algorithms such as

FSDP cannot conveniently apply to complex applications. For example, it is hard to work in the APS

scheme, finer planning solution, and traffic network control. While, a near-optimal DP algorithm integrated

with learning techniques, such as ADP_RLS-TD(λ) in this paper, indicates great potential to solve the high-

dimensional problem. The computational efficiency of ADP with RLS-TD(λ) learning is fully capable for

online control at isolated intersection.

Additionally, in [2], the authors presented the evidence that planning in very small steps may be

the most efficient approach even on pure planning problems if the problem is too large to be solved exactly.

In the work of [7], the fine solution was achieved from perturbation learning which was better than the

coarse solution. We investigate the finer step planning to know if this planning is suitable for ADP with

RLS-TD(λ) learning in its application. Let the small step be 0.25 interval (0.5 s) in the experiments.

Considering ADP with RLS-TD(0) algorithm, consequently, the results of traffic delay are better than those

by the original step of being one interval, as shown in Table 3. On the other hand, the performances of

average queue length are shown in Fig. 8, which indicates the relevant effectiveness by the different control

schemes as well. Obviously, APS works very well in less variance and lower queue length. Although these

fine solutions cost more computation time (see in Table 4), it is enough to guarantee the online operation

by using ADP with RLS-TD(λ) learning.

6 Conclusions

This study has investigated ADP with RLS-TD(λ) learning in an application to real-time adaptive traffic

signal control at intersection. Regarding the evolutions of linear functional parameters in the tested

scenarios, RLS-TD(λ) learning converged faster to the steady state, and the parameters fluctuated less than

TD(λ) learning. Meanwhile, less traffic delays were observed by RLS-TD(λ) learning with different settings

of λ. On the other hand, we compared ADP_RLS-TD(λ) algorithm with other control methods from

experimental results. Although the heuristic algorithm FSDP achieved low traffic delays, it consumed too

much time to operate in the fine scheduling case. While ADP with RLS-TD(λ) learning reduced largely the

run time and yielded acceptable traffic delays, especially in the fine solution. Moreover, from the

performances of the algorithms with FPS, VPS, and APS strategies, APS outperforms with 45%~58% delay

reduction than FPS, especially under the high traffic density situation. However, it is impractical to

implement the APS strategy in current real-world traffic operation due to the security factor when merging

flows from different directions. If protocols among vehicles are able to guarantee the path security, flexible

This is the final version published in Neural Computing and Applications, 2017

DOI10.1007/s00521-017-3066-9

18

flow organizations, such as APS, would likely come true.

In the near future, the proposed algorithm will be extended to two aspects. First, to make more

reasonable and realistic, the model side need enrich the definitions of traffic state and control reward. As

objective function with single control variable in learning methods often has limited performances, multi-

objective signal timing control is a potential solution of this problem. Encouraged work could be found in

references [45-46]. Second, the algorithm could also be promoted, aiming to find a solution of coordinated

network control. By the reason of effects of upstream traffic, it is very important to consider the

coordination among intersections so as to improve signal control efficiency in a global view.

Appendix: Derivation of RLS-TD(λ) in M-step planning

In M-step planning, the objective function Eq. (11) is modified as:

2
1

T

1

1
() ()

t i M
k i M

t k i M t

i k i

iO r
t

     
 





 

 
   

 
  . (32)

According to related theories [14, 47], we can rewrite Eq. (12) by using t as the instrumental variable in

LS-TD. That is,

1
1

T

1 1

1 1
()

t t i M
M k i

t i i M k

i i k i

i i r
t t

      


 





  

   
    
   
   . (33)

In LS-TD(λ), t can be estimated as

1
1

T

1 1

1
1

T

1 1

1 1
()

()

t t i M
M k i

t i i i M k

i i k i

t t i M
M k i

i i i M k

i k i

i

i

i

z z r
t t

z z r

    

   


 





  


 





  

   
    
   

   
    
   

  

  

 (34)

where using the eligibility vector tz in Eq. (10) substitutes the variable t . According to matrix inverse

lemma and RLS-TD(λ) [12], the parameter vector t updated by RLS-TD(λ) in M-step planning (in Eqs.

(27), (28), and (29)) can be guaranteed.

This is the final version published in Neural Computing and Applications, 2017

DOI10.1007/s00521-017-3066-9

19

Fig. 1 Illustration of a typical intersection with conflicts.

Fig. 2 Illustrations of traffic control scheme in (a) FPS, (b) VPS, and (c) APS.

This is the final version published in Neural Computing and Applications, 2017

DOI10.1007/s00521-017-3066-9

20

Fig. 3 Traffic Scenario C-flow profile on average arrival rates during the simulation.

Fig. 4 Evolutions of functional parameters by using RLS-TD(λ) learning (in Traffic Scenario A, APS

with λ=0, n=1, 2, 6, and 7).

(a) (b)

(c) (d)

This is the final version published in Neural Computing and Applications, 2017

DOI10.1007/s00521-017-3066-9

21

Fig. 5 Comparisons of functional parameters by using ADP approach between RLS-TD(λ) and TD(λ)

learning (in Traffic Scenario C, APS with n=1): (a) λ=0, (b) λ=0.2, (c) λ=0.5, and (d) λ=1.

Fig. 6 Comparisons of average delays by ADP between RLS-TD(λ) and TD(λ) learning in APS.

(a) (b)

(c) (d)

This is the final version published in Neural Computing and Applications, 2017

DOI10.1007/s00521-017-3066-9

22

Fig. 7 Improvements of average delays by different methods in FPS, VPS, and APS, comparing with

Haijema-MDP.

Fig. 8 Evolutions of average queue length by ADP with RLS-TD(λ) (in Traffic Scenario B, λ=0).

Conflict of Interest:

The authors declare that they have no conflict of interest.

(a) (b)

(c) (d)

This is the final version published in Neural Computing and Applications, 2017

DOI10.1007/s00521-017-3066-9

23

Reference

[1] Khan SG, Herrmann G, Lewis FL, Pipe T, Melhuish C (2012) Reinforcement learning and optimal

adaptive control: An overview and implementation examples. Annu Rev Control, 36(1), 42–59.

[2] Sutton RS, Barto AG (1998) Reinforcement Learning: An Introduction. Cambridge MA: MIT Press.

[3] Xu X, Zuo L, Huang Z (2014) Reinforcement learning algorithms with function approximation: recent

advances and applications. Inform Sciences, 261, 1–31.

[4] Powell WB (2007) Approximate Dynamic Programming: Solving the curses of dimensionality. John

Wiley & Sons,USA.

[5] Wang FY, Zhang H, Liu D (2009) Adaptive dynamic programming: an introduction. IEEE Comput

Intell M, 4(2), 39–47.

[6] Werbos PJ (1992) Approximate dynamic programming for real-time control and neural modeling.

Handbook of Intelligent Control: Neural, Fuzzy, and Adaptive Approaches, 15, 493–525.

[7] Cai C, Wong CK, Heydecker BG (2009) Adaptive traffic signal control using approximate dynamic

programming. Transport Res C: Emer, 17(5), 456–474.

[8] Haijema R, van der Wal J (2008) An MDP decomposition approach for traffic control at isolated

signalized intersections. Proba Eng Inform Sc, 22(4), 587–602.

[9] Yu XH, Recker WW (2006) Stochastic adaptive control model for traffic signal systems. Transport

Res C: Emer, 14(4), 263–282.

[10] Baird L, Moore AW (1999) Gradient descent for general reinforcement learning. Adv Neur In, 968–

974.

[11] Tsitsiklis JN, Van Roy B (1997) An analysis of temporal-difference learning with function

approximation. IEEE T Automat Contr, 42(5), 674–690.

[12] Xu X, He H, Hu D (2002) Efficient reinforcement learning using recursive least-squares methods. J

Artif Intell Res, 16(1), 259–292.

[13] Ormoneit D, Sen Ś (2002) Kernel-based reinforcement learning. Mach Learn, 49(2-3), 161–178.

[14] Bradtke SJ, Barto AG (1996) Linear least-squares algorithms for temporal difference learning. Mach

Learn, 22(1-3), 33–57.

[15] Boyan JA (2002) Technical update: Least-squares temporal difference learning. Mach Learn, 49(2-

3), 233–246.

[16] Hunt PB, Robertson DI, Bretherton RD, Winton RI (1981) SCOOT - a traffic responsive method of

coordinating signals. Transport and Road Research Laboratory, Crowthorne, U.K., Technique Report.

[17] Lowrie PR (1982) The Sydney coordinated adaptive traffic system-principles, methodology,

algorithms. In Proceddings of International Confonference on Road Traffic Signalling.

[18] Mladenovic MN, Stevanovic A, Kosonen I, Glavic D (2015) Adaptive Traffic Control Systems:

Guidelines for Development of Functional Requirements. mobil.TUM. Munich, Germany.

[19] Gartner NH, Pooran FJ, Andrews CM (2001) Implementation of the OPAC adaptive control strategy

in a traffic signal network. Proceedings of IEEE Conference Intelligent Transportation Systems, 195–

200.

This is the final version published in Neural Computing and Applications, 2017

DOI10.1007/s00521-017-3066-9

24

[20] Henry J, Farges J, Tuffal J (1984) The PRODYN real time traffic algorithm. IFACIFIP-IFORS

Conference on Control in Transportation System. http://trid.trb.org/view.aspx?id=339694

[21] Mirchandani P, Head L (2001) A real-time traffic signal control system: architecture, algorithms, and

analysis. Transport Res C: Emer, 9(6), 415–432.

[22] Heung TH, Ho TK, Fung YF (2005) Coordinated road-junction traffic control by dynamic

programming. IEEE T Intell Transp, 6(3), 341-350.

[23] Wu J, Abbas-Turki A, El Moudni A (2009) Discrete methods for urban intersection traffic

controlling. In Proceedings of IEEE Vehicular Technology Conference, 1-5.

[24] Park B, Chang M (2002) Realizing benefits of adaptive signal control at an isolated intersection.

Transport Res Rec, (1811), 115-121.

[25] Abdulhai B, Pringle R, Karakoulas GJ (2003) Reinforcement learning for true adaptive traffic signal

control. J Transp Eng-ASCE, 129(3), 278-285.

[26] Lee J, Abdulhai B, Shalaby A, Chung EH (2005) Real-time optimization for adaptive traffic signal

control using genetic algorithms. J Intell Transport S, 9(3), 111-122.

[27] Kergaye C, Stevanovic A, Martin PT (2010) Comparative evaluation of adaptive traffic control

system assessments through field and microsimulation. J Intell Transport S, 14(2), 109-124.

[28] Li L, Lv Y, Wang FY (2016) Traffic signal timing via deep reinforcement learning. IEEE/CAA

Journal of Automatica Sinica, 3(3), 247-254.

[29] Araghi S, Khosravi A, Creighton D (2015) A review on computational intelligence methods for

controlling traffic signal timing. Expert Syst Appl, 42(3), 1538–1550.

[30] García-Nieto J, Alba E, Carolina Olivera A (2012) Swarm intelligence for traffic light scheduling:

Application to real urban areas. Eng Appl Artif Intel, 25(2), 274–283.

[31] Srinivasan D, Choy MC, Cheu RL (2006) Neural networks for real-time traffic signal control. IEEE

T Intell Transp, 7(3), 261–272.

[32] Arel I, Liu C, Urbanik T, Kohls AG (2010) Reinforcement learning-based multi-agent system for

network traffic signal control. IET Intell Transp Sy, 4(2), 128–135.

[33] Bazzan ALC (2009) Opportunities for multiagent systems and multiagent reinforcement learning in

traffic control. Auton Agent Multi-Ag, 18(3), 342–375.

[34] Box S, Waterson B (2013) An automated signalized junction controller that learns strategies by

temporal difference reinforcement learning. Eng Appl Artif Intel, 26(1), 652–659.

[35] Prashanth LA, Bhatnagar S (2011) Reinforcement learning with function approximation for traffic

signal control. IEEE T Intell Transp, 12(2), 412–421.

[36] El-Tantawy S, Abdulhai B, Abdelgawad H (2013) Multiagent reinforcement learning for integrated

network of adaptive traffic signal controllers (MARLIN-ATSC): Methodology and large-scale

application on downtown Toronto. IEEE T Intell Transp, 14(3), 1140–1150.

[37] Li T, Zhao D, Yi J (2008) Adaptive dynamic programming for multi-intersections traffic signal

intelligent control. In Proceedings of IEEE Conference Intelligent Transportation Systems, 286–291.

[38] Zhao D, Hu Z, Xia Z, Alippi C, Zhu Y, Wang D (2014) Full-range adaptive cruise control based on

supervised adaptive dynamic programming. Neurocomputing, 125, 57-67.

This is the final version published in Neural Computing and Applications, 2017

DOI10.1007/s00521-017-3066-9

25

[39] Huang, YS, Weng YS, Zhou MC (2014). Modular design of urban traffic-light control systems based

on synchronized timed Petri nets. IEEE T Intell Transp, 15(2), 530-539.

[40] El-Tantawy S, Abdulhai B, Abdelgawad H (2014) Design of reinforcement learning parameters for

seamless application of adaptive traffic signal control. J Intell Transport S, 18(3), 227–245.

[41] Busoniu L, Babuska R, De Schutter B (2008) A comprehensive survey of multiagent reinforcement

learning. IEEE T Syst Man Cy C, 38(2), 156–172.

[42] Bertsekas DP (1995) Dynamic programming and optimal control (Vol. 1, No. 2). MA: Athena

Scientific.

[43] Gartner NH, Tarnoff PJ, Andrews CM (1991) Evaluation of optimized policies for adaptive control

strategy. Transport Res Rec, 105–114.

[44] Yin B, Dridi M, El Moudni A (2015) Forward search algorithm based on dynamic programming for

real-time adaptive traffic signal control. IET Intell Transp Sy, 9(7), 754-764.

[45] Khamis MA, Gomaa W (2012) Enhanced multiagent multi-objective reinforcement learning for

urban traffic light control. In Proceedings of IEEE Conference Machine Learning and Applications,

586-591.

[46] Khamis, MA, Gomaa W(2014) Adaptive multi-objective reinforcement learning with hybrid

exploration for traffic signal control based on cooperative multi-agent framework. Eng Appl Artif

Intel, 29, 134-151.

[47] Söderström T, Stoica P (2002) Instrumental variable methods for system identification. Circ Syst

Signal Pr, 21(1), 1–9.

