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Abstract Assessing epistemic uncertainties is considered
as a milestone for improving numerical predictions of a
dynamical system. In hydrodynamics, uncertainties in input
parameters translate into uncertainties in simulated water
levels through the shallow water equations. We investigate
the ability of generalized polynomial chaos (gPC) surrogate
to evaluate the probabilistic features of water level simu-
lated by a 1-D hydraulic model (MASCARET) with the
same accuracy as a classical Monte Carlo method but at
a reduced computational cost. This study highlights that
the water level probability density function and covariance
matrix are better estimated with the polynomial surrogate
model than with a Monte Carlo approach on the forward
model given a limited budget of MASCARET evaluations.
The gPC-surrogate performance is first assessed on an ide-
alized channel with uniform geometry and then applied on
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the more realistic case of the Garonne River (France) for
which a global sensitivity analysis using sparse least-angle
regression was performed to reduce the size of the stochastic
problem. For both cases, Galerkin projection approxima-
tion coupled to Gaussian quadrature that involves a limited
number of forward model evaluations is compared with
least-square regression for computing the coefficients when
the surrogate is parameterized with respect to the local fric-
tion coefficient and the upstream discharge. The results
showed that a gPC-surrogate with total polynomial degree
equal to 6 requiring 49 forward model evaluations is suffi-
cient to represent the water level distribution (in the sense of
the �2 norm), the probability density function and the water
level covariance matrix for further use in the framework
of data assimilation. In locations where the flow dynamics
is more complex due to bathymetry, a higher polynomial
degree is needed to retrieve the water level distribution.
The use of a surrogate is thus a promising strategy for
uncertainty quantification studies in open-channel flows and
should be extended to unsteady flows. It also paves the way
toward cost-effective ensemble-based data assimilation for
flood forecasting and water resource management.

Keywords Uncertainty quantification · Hydraulic
modeling · Surrogate model · Polynomial chaos
expansion · Sensitivity analysis · Covariance matrix

1 Introduction

Water resource management and flood forecasting require a
solid capacity of anticipating systems changes and thus rely
on predictive skills of hydraulic models. These skills have
greatly improved thanks to the advances in numerical mod-
eling of free surface flow and the increase of computational
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resources. The Shallow Water Equations (SWE) derived
from the free surface Navier-Stokes equations are widely
used for complex flow simulation. These equations have
extensively proved that they are powerful tools to tackle
most of open-channel hydraulics problems such as flood
hazards [1] or dam breaking [57]. Nevertheless, the predic-
tion of free surface flow characteristics requires the descrip-
tion of initial conditions, river geometry, boundary condi-
tions, and hydraulic physical parameters such as friction
coefficients. These input data and parameters are affected
by uncertainties that are either due to a lack of knowledge
(“epistemic” uncertainties such as modeling assumptions or
numerical approximations) and/or by the intrinsic random-
ness of the natural phenomena (“random” or “aleatoric”
uncertainties, possibly induced by environmental and mete-
orological hazards). The main idea of uncertainty quantifi-
cation is to quantify how errors in input parameters for the
SWE translate into errors in the water level and discharge
output variables, thus certifying the predictive capacity of
hydraulic models and deterministic forecast abilities. Over
the recent years, there has been an increasing interest for
uncertainty quantification in hydraulics studies [8–10] to
identify, classify, and potentially reduce the main sources of
uncertainty in numerical models. Beyond these objectives,
there is a need for propagating uncertainty through dynam-
ical models based on partial derivative equations to better
understand the hydraulic model structure and response.

For this purpose, standard approaches are sample-based
methods, which are non-intrusive to the forward model and
derived from Monte Carlo (MC) techniques. Although MC
techniques are generic and robust, they are also computa-
tionally expensive due to their slow convergence rate as
1/

√
NMC where NMC is the size of the sample. Despite the

introduction of many-core hardware and parallel simulation
tools, they become quickly intractable.

The costs of sample-based methods are significantly
reduced when the forward model is replaced by a surro-
gate model, that can be constructed “off-line,” and evaluated
multiple times “on-line” at almost no cost. There are various
ways of formulating a deterministic or probabilistic surro-
gate such as proper orthogonal decomposition [58], Gaus-
sian processes or Kriging [32], Karhunen-Loève expansion
[41], polynomial chaos expansion [31]. Polynomial chaos
(PC) approach has received much attention lately, especially
non-intrusive formulations that do not require modifications
to the forward model as opposed to intrusive formulation
[28]. Based on homogeneous chaos theory [48], it was
first used by [41] to describe stochastic Gaussian variables
in finite elements. It was then extended to other distribu-
tions [53] using Askey’s scheme and called “generalized
polynomial chaos” (gPC) [28, 51] (for simplicity purpose,
the gPC-expansion approach is denoted by PC in the fol-
lowing). The PC-expansion method basically replaces the

forward model by a polynomial expansion; it is also powerful
to perform global sensitivity analysis as its coefficients relate
to the statistics of the target variable [42]. The merits of PC-
expansion were demonstrated in various fields, e.g., hydrology
[15], structural mechanics [2], computational fluid dynam-
ics [26, 54], hydraulics [31], wildfire propagation [39, 40].
Once identified and quantified, the uncertainty should be
reduced, for instance using a data assimilation approach.

The ensemble Kalman filter (EnKF) [21] is a common
ensemble-based data assimilation algorithm that provides a
correction to the model state and/or parameters; the correc-
tion can be regarded as a weight between observations and
model predictions calculated via the Kalman gain matrix
[35]. The Kalman gain matrix is computed from a stochas-
tic estimate of the background error covariance matrix over
an ensemble of input and output variables. A sample of
the input uncertain variables is used to achieve an ensem-
ble of forward model evaluations that provide a sample
of the output variables. The propagation of the uncertainty
is classically achieved with the forward model or, alter-
natively with a surrogate model. [29] showed that with a
crude MC technique for the ensemble generation, the con-
vergence of the EnKF is slow and thus often not compatible
with operational constraints or high-dimensional problems.
A complementary approach between uncertainty quantifica-
tion and ensemble-based data assimilation was presented in
[30], where a PC-surrogate was used in place of the forward
model to reduce the EnKF cost. Such method was imple-
mented in [40] for regional-scale wildfire spread modeling
and referred to as PC-EnKF; in the context of grassland
controlled burns, the PC-EnKF algorithm replaced the wild-
fire spread model by a PC surrogate, whose coefficients
were computed via Galerkin projection, and achieved con-
vergence in spite of the model nonlinearities with respect
to the controlled input parameters (i.e., biomass moisture
content, biomass fuel aspect ratio).

The objective of the present work is to validate the PC-
expansion strategy for hydraulic modeling of subcritical
steady flows assuming that the functional of interest is of
finite variance. We aim at demonstrating that the water
level probability density function (PDF) and covariance
matrix are better estimated with the PC-surrogate model
than with a Monte Carlo approach on the forward model
given a limited budget of forward model evaluations. The
PC-surrogate is here expanded with respect to the upstream
discharge and the spatially distributed friction coefficients.
The friction coefficients are supposed to be independent
random variables that are adjusted to account for various
modeling errors. In the present work, the formulation of
the PC-surrogate model relies first on the choice of the
polynomial basis for the input random variables. Then,
the maximum polynomial degree of the expansion that is
sufficient to mimic the forward model behavior is identified;
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the number of coefficients in the expansion relates to this
degree. Finally, the coefficients are computed by least-square
regression or pseudo-spectral projection. The performance
of these two approaches are compared in this study.

The results of a surrogate model built with a Galerkin
projection approach coupled with Gaussian quadrature are
shown on two test cases: an idealized channel test case
with uniform geometry and a real case on a 50-km reach
of the Garonne River (South-West France) with complex
bathymetry. The surrogate model for water level is validated
in the sense of the �2 norm in the model output space and
in the polynomial coefficients space with the appropriate
probabilistic measure. The surrogate model is formulated
at different locations of the Garonne hydraulic network
for uncertainty quantification and sensitivity analysis stud-
ies with a particular interest for the Marmande observing
station. The water level statistical moments, the PDF and
the covariance matrix are estimated with the PC-surrogate
at a lower computational cost than with a classical MC
approach. In the long run, this work paves the way toward
reduced-cost data assimilation in hydraulics for flood fore-
casting [24] or water resource management provided the
Kalman gain is stochastically estimated with the surrogate
model in place of the forward model. For model parameter
estimation with data assimilation, the Kalman gain matrix
represents the statistics between the errors in the parameters
and the errors in the simulated hydraulic state at the grid
points where the observations are assimilated. In this case,
the surrogate model is only necessary at the observing sta-
tions. For model state estimation, the Kalman gain matrix
represents the statistics between the errors in the hydraulic
state over the entire simulation domain. Thus, the surrogate
model is necessary at every point of the domain.

The structure of the paper is as follows: Section 2 intro-
duces the basic description of the hydraulic modeling. We
recall the SWE for steady flows and present both ideal-
ized and Garonne River test cases chosen for this study.
The theory and implementation of the PC expansion is pre-
sented in Section 3 along with the a posteriori error metrics
for evaluating the surrogate performance and its statistics.
In Section 4, results for the PC-expansion strategy are
presented. Conclusions and perspectives are given in Section 5.

2 Hydraulic Modeling

2.1 Shallow Water Equations

One-dimensional models for shallow water equations
(SWE) are widely used in hydraulic engineering, for
instance for flood forecasting [25]. The SWE form a hyper-
bolic system which may describe subcritical and supercrit-
ical flows with hydraulic jumps. In the present work, only

subcritical flows of rivers in plains are considered, consis-
tently with the hydraulic model used at operational level for
the Garonne River (see the application in Section 4.2).

2.1.1 One-Dimensional Flow Approximation

One-dimensional SWE are derived from two prime princi-
ples: mass conservation and momentum conservation. For
most applications in rivers by considering the same afore-
mentioned assumption, the equations are written in terms of
discharge (or flow rate) Q (m3 s−1) and hydraulic section A

(m2) that relates to water level (or water height) h (m) such
that A ≡ A(h). The curvilinear abscissa in the simulation
domain is denoted by s ranging from sin upstream of the
river to sout downstream. The non-conservative form of the
one-dimensional SWE reads [1, 22, 44]:{

∂tA(h) + ∂sQ = 0

∂tQ + ∂s(Q(h)2/A(h)) + gA(h)∂sh − gA(h)(S0 − Sf ) = 0
(1)

with g the gravity, S0 the channel slope and Sf the fric-
tion slope. These equations are usually combined with an
equation for the friction slope Sf , here described with the
Manning-Strickler formula [14]:

Sf = Q2

K2
s A(h)2 R(h)4/3

, (2)

where R(h) is the hydraulic radius (R(h) = A(h)/P (h))
written as a function of the wet perimeter P(h) and Ks is
the Strickler friction coefficient (m1/3 s−1).

In the present work, the MASCARET software is used to
simulate the one-dimensional SWE, i.e., the water level h

and discharge Q over the discrete hydraulic network for s ∈
[sin, sout ] (the pair (h, Q) is referred to as the hydraulic state
in the following). MASCARET is part of the TELEMAC-
MASCARET open-source modeling package developed by
EDF (Electricité de France R&D) in collaboration with the
CEREMA (Centre d’Etude et d’expertise sur les Risques,
l’Environnement, la Mobilité et l’Aménagement), and is
commonly used for dam-break wave simulation, reservoir
flushing and flooding. The SWE are solved here with
the steady kernel of MASCARET based on a finite dif-
ference scheme developed by [23]. The hydraulic model
requires the following input data: bathymetry, upstream and
downstream boundary conditions, lateral inflows, roughness
coefficients, and initial condition for the hydraulic state (if
the steady state is obtained by convergence of unsteady
state). The imperfect description of these data translates into
errors in the simulated water level and discharge. It is thus of
prime importance to understand the structure of these errors
through uncertainty propagation as well as the contribu-
tion of each input variable on the hydraulic state variability
through sensitivity analysis. This is one of the objectives of
the present work.
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2.1.2 Steady Flow Regime

For steady flow, Eq. 1 simplifies to:⎧⎪⎨
⎪⎩

∂sQ = 0

∂sh = (S0 − Sf )

1 − Fr2

(3)

where Fr is the dimensionless Froude number

Fr2 = Q

gA3

∂A

∂h
. (4)

The smooth solutions for Eq. 3 over s ∈ [sin, sout ] are
called “backwater curves” when the downstream boundary
condition is prescribed in a deterministic way. Assuming
the channel geometry is rectangular (A = h W with W

the channel width) and the slope S0 is constant implies for
steady flow that h no longer depends on s. If the boundary
conditions from the hydraulic domain are specified in coher-
ence with the balance between gravity and friction forces,
Eq. 3, is then recast as the following equation for the water
level h that governs the entire flow, known as the Manning
equation:

h =
(

Q

Ks W
√

S0

)−5/3

. (5)

2.2 Case Study Description

In the present work, two different case studies are consid-
ered: an idealized channel with uniform geometry on the
one hand, and a reach of the Garonne River (South-West
France) on the other hand.

2.2.1 Idealized Channel with Uniform Geometry

The first case study is a 40-km open channel with uni-
form friction coefficient Ks and uniform slope S0 = 2.5 ×
10−4 m km−1. Upstream and downstream steady bound-
ary conditions are defined by Q(sin) = Q and h(sout ) =
hout . The Manning equilibrium is preserved when hout is
computed with Eq. 5 for each pair (Q, Ks). For gradually-
varying flow, hout is set to hout = 10 m. In the following,
Q and Ks are supposed to be independent physical random
variables respectively described by a truncated Gaussian
PDF N (4031,400)—to insure the positivity of Q—and a
uniform PDF U(15, 60). It should be noted that the mean
values for Q and Ks correspond to the Manning equilibrium
associated to hout = 10 m. The PDF for the Froude number
Fr was estimated over the sampling, it has a Gaussian-
like shape and its probability to exceed 1 is about 10−6.
Thus, it is legitimate to assume that all members in the sam-
pling represent a subcritical flow. The water level describes
a backwater curve of type M1 or M2 [44, 47].

Figure 1 displays the water level h along the 40-km chan-
nel for different values of Q and Ks . The bathymetry (with
constant slope S0) is represented with a solid black line.
The simulated water levels for Ks = 15 m1/3 s−1 and
Ks = 60 m1/3 s−1 are represented in blue and cyan, respec-
tively. Solid lines are associated with Q = 4000 m3 s−1;
dashed lines are associated with Q = 2000 m3 s−1. In addi-
tion, the simulated water level for Q = 8000 m3 s−1 and
Ks = 15 m1/3 s−1 is represented in blue dashed-dotted
line. The flow is found to be uniform over the upstream
part of the channel; the water level follows then a back-
water curve to meet the downstream boundary condition.
As expected, both friction and discharge have a significant
impact on water level; the water level increases when the
friction increases (i.e., when Ks decreases) and also when
the discharge increases. When the water level prescribed
by the downstream water level condition (hout = 10 m) is
larger than the normal depth given by the Manning equilib-
rium (Eq. 5), the free surface describes a backwater curve
of type M1 (cyan/blue dashed and solid lines). On the oppo-
site, when the water level is smaller than the normal depth,
the water level describes a backwater curve of type M2 (blue
dashed-dotted line).

2.2.2 Garonne River Test Case

The second case study is a real hydraulic network over the
Garonne River in France. The Garonne River flows from
the Pyrenees to the Atlantic Ocean in the area of Bor-
deaux. It is approximately 647-km long and drains an area

0 5 10 15 20 25 30 35 40
0

Curvilinear abscissa (km)

W
at

er
 h

ei
gh

t (
m

)

10

5

15

20

25

30

35

Fig. 1 Water level (or water height) along the 40-km idealized chan-
nel with uniform geometry and the downstream boundary condition
hout = 10 m. Solid black line corresponds to bathymetry. Blue lines
correspond to simulated water levels for Ks = 15 m1/3 s−1; cyan
lines correspond to Ks = 60 m1/3 s−1. Solid lines correspond to
Q = 4000 m3 s−1; dashed lines correspond to Q = 2000 m3 s−1; and
dashed-dotted line corresponds to Q = 8000 m3 s−1
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of 55,000 km2. The present study focuses on a 50-km reach
from Tonneins (curvilinear abscissa s = 13 km) to La Réole
(curvilinear abscissa s = 62 km) with an observing sta-
tion at Marmande as illustrated in Fig. 2a. The mean slope
over the reach is S0 = 3.3 m km−1 and the mean width
of the river is W = 250 m. The bank-full discharge is
approximately equal to the mean annual discharge (Q =
1000 m3 s−1). Despite the existence of active floodplains,
this reach can be modeled accurately by a 1-D hydraulic
model.

The hydraulic model for the the Garonne River is built
from 83 on-site bathymetry cross sections from which the
full 1-D bathymetry is interpolated. Friction is prescribed
over three portions separated by dashed lines in Fig. 2b for
the river channel and the floodplain; it is represented by
the Strickler coefficients Ks1, Ks2, and Ks3. Marmande is
located at the beginning of the Ks3 portion (s = 36 km). The
upstream boundary condition is prescribed with a steady
flow Q(sin) = Q; the downstream boundary condition is
prescribed with a local rating curve RC established at La
Réole that sets h(sout ) = RC(Qout ) = hout . The hydraulic

model has been calibrated using channel and floodplain
roughness coefficients as free parameters [4]. For this test
case, a single MASCARET integration for a typical flood
event over 2 to 3 days takes about 30 s CPU time. The
main sources of uncertainty considered in the present work
are (Q, Ks1, Ks2, Ks3); in the following, they are consid-
ered as physical random independent variables defined by
their PDFs N (4031,400) for discharge and U(15, 60) for
the three friction coefficients. With this choice of PDFs,
the flow is subcritical because we consider only high flow
conditions.

3 Polynomial Chaos (PC) Surrogate

The formulation of the PC surrogate [28, 41, 51] is pre-
sented for n random variables included in the random vector
x. The Strickler coefficient Ks and the constant river dis-
charge Q (permanent flow) are known to be the most
relevant sources of uncertainty in water level predictions
[8] and are thus included in x. If the Strickler coefficient

Fig. 2 Garonne River test case.
a Garonne reach between
Tonneins (upstream) and La
Réole (downstream). Marmande
is located at the curvilinear
abscissa s = 36 km. b
Bathymetry profile along the
curvilinear abscissa (km)
between Tonneins and La Réole.
The three portions of Ks are
separated by vertical dashed
lines
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is uniform over space, the stochastic dimension is n = 2.
For the Garonne hydraulic model, there are three different
unknown values for Ks , so that the stochastic dimension is
n = 4. For simplicity, we will denote the n-variate ran-
dom vector x with n ∈ {2, 4}. In the following, details
are provided on some of the methods used to compute the
PC coefficients, including: choice of polynomial approxi-
mation basis, truncation strategy, projection techniques, PC
surrogate accuracy.

3.1 Polynomial Chaos Expansion for Hydraulic
Modeling

The input random variables are supposed to be independent
with finite variance and defined in a proper probabilis-
tic space (�,A,P) where � is the event space, A is the
σ -algebra, and P is the probability measure. The random
variables are cast in the random vector x ≡ x(ω) =
[x1, ..., xn]T with ω ∈ � a random event, which evolves in
a subset of the Euclidean space Z ⊆ R

n. In the following
x = [Q, Ks]T for n = 2 and x = [Q, Ks1, Ks2, Ks3]T for
n = 4. The physical model M (MASCARET in the present
case) maps x onto the output space to formulate the spatially
distributed water level h along the channel:

h(s) = M(x). (6)

The spatialized water level h is a measurable random func-
tion of ζ . We standardly assume that it belongs to the
completion of sums of tensor-products of functions in the
curvilinear abscissa s and orthogonal polynomial functions
in ζi , so that the random scalar function h has a well-defined
PC expansion at a particular abscissa from PC theory [41].
Also, the projections onto any finite-dimensional stochas-
tic subspace spanned by finitely-many (tensor-products of)
orthogonal polynomial functions are well-defined as trun-
cations of the following convergent series. Thus h can be
projected onto a stochastic space spanned by orthogonal
polynomial functions. The random variables in x defined
in the input physical space are rescaled in the standard
probabilistic space to which the PC framework applies.
This standard probabilistic space is noted ζ ≡ ζ (ω) =
[ζ1, . . . , ζn]T , with ζi = (xi − μi)/σi ∼ N (0, 1), μi being
the mean and σi the Standard Deviation (STD) associated
with the ith random variable xi . The marginal PDF asso-
ciated with each random variable ζi for i = 1, · · · , n is
denoted by ρi . Random variables ζi are assumed indepen-
dent, the joint PDF of the random vector ζ can be written as

ρ(ζ ) =
n∏

i=1

ρi(ζi). (7)

The PC expansion is computed for the water level h at a
given curvilinear abscissa s, thus h is a scalar at a particular

abscissa. h is approximated in the same probabilistic space
as the input random vector x:

h = M (x(ζ )) =
∞∑
i=0

γi 
i (ζ ) , (8)

where {
i}i≥0 designate the multi-variate polynomial func-
tions that are defined as orthonormal1 with respect to the
joint density ρ (Eq. 7), where i = (i1, · · · , in) ∈ N

n is the
multi-index identifying the polynomial components in the
multi-variate space of dimension n. More information are
provided for those polynomials further down. The γi terms
are the corresponding deterministic coefficients (or modes).

The coefficients γi do not change in space for the uniform
steady case on which the Manning equation applies. How-
ever, they become spatially varying along the river network
when considering the idealized channel case with backwa-
ter curves and when considering the Garonne River case that
features a non-uniform bathymetry. When the water level
varies over space, the PC expansion is achieved at each grid
point of curvilinear abscissa s using the same set of for-
ward model evaluations, thus providing spatially dependent
expansion coefficients γi(s) and water level representation,
with a common discretization for γ and h:

h(s) =
∞∑
i=0

γi(s)
i (ζ ) . (9)

3.2 Truncation Strategy

In practice, the sum in Eq. 8 needs to be truncated to a finite
number of terms (noted NPC) as follows:

h ∼= MPC(x(ζ )) =
(NPC−1)∑

i=0

γi 
i (ζ ) , (10)

where the coefficients γi are the unknowns to be determined
to build the PC surrogate (or metamodel) MPC associated
with a given total polynomial degree P .

There are several ways of constructing the polynomial
approximation space. The most common choice is to con-
strain the number of terms NPC in the PC expansion by the
number of random variables n and by the total degree P .
Considering hierarchical polynomials, the number of terms
NPC to reach the user-defined polynomial degree P is given
by the following algebraic formula:

NPC = (n + P)!
(n!P !) (11)

meaning that all polynomials involving the n random vari-
ables of total degree less or equal to P are considered in the
PC expansion.

1Rather than polynomial orthogonality, we rely in this paper on
“orthonormal” polynomial basis for convenience.
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The multi-index i = (i1, · · · , in) of absolute value |i| =
i1 + · · ·+ in ∈ N identifies the components among the mul-
tivariate polynomials {
i}i≥0 that shall be of total degree
less or equal to P (i.e. |i| ≤ P ). Thus, the set of selected
multi-indices corresponding to the number of terms NPC is
defined as

IP = {i ∈ N
n : |i| ≤ P }. (12)

Equation 10 is thus equivalent to

MPC(x(ζ )) =
∑
i∈IP

γi 
i (ζ ) . (13)

Following this standard truncation strategy, building the
approximation space may be too costly for high dimen-
sional problems. New truncation strategies are reported in
the literature to reduce the number of terms in the PC expan-
sion (thereby to decrease the computational cost of the PC
method) as well as conditioning issues when n increases.
These strategies explore alternative ways of selecting the
NPC polynomials by limiting high-order interaction terms
(e.g., hyperbolic truncation scheme [7]) or through the con-
struction of sparse bases [6, 34]. In any case, analyzing how
the truncation error evolves with respect to P and for which
value of P the convergence of the PC expansion is achieved
is required. For this purpose, a sensitivity analysis of the
PC expansion accuracy is carried out with respect to the
total degree P in the following, for both the idealized chan-
nel case and the Garonne River application (Section 4). The
metrics used to evaluate the truncation error are presented
in Section 3.7.

3.3 Choice of a Polynomial Basis

The knowledge of the coefficients {γi}i∈IP fully charac-
terizes the process h. Optimal efficiency is obtained when
the chosen polynomial approximation forms an orthonormal
basis with respect to the distribution of the random vari-
able h. Unfortunately, this underlying probability measure
is unknown and therefore it is common practice to choose a
polynomial basis, orthonormal with respect to the joint PDF
ρ(ζ ), i.e. with regard to the following inner product 〈·, ·〉:
〈
i(ζ ), 
j (ζ )〉 =

∫
Z


i(ζ )
j (ζ ) ρ(ζ ) dζ = δij , (14)

with δij the Kronecker delta-function extended to the n-
variate case. The choice for the basis functions is thus
an essential step in the PC method and depends on the
probability measure of the random variables. For instance,
according to the Askey’s scheme [54], the Hermite polyno-
mials make the optimal basis for random variables following
Gaussian distribution, and the Legendre polynomials are the
counterpart for uniform distribution [53].

In practice, the orthonormal basis is built using the tensor
product of one-dimensional polynomial functions such that

the ith two-dimensional basis function 
i can be expressed
as follows [51]:


i ≡ 
i(ζ ) = ⊗n
l=1 �

(l)
il

(ζl), (15)

with �
(l)
il

the one-dimensional polynomial basis associated
with the lth random variable and il the corresponding one-
dimensional index varying between 0 and P . There are
alternative approaches to lower the basis cardinality, e.g.,
[7].

There is an intrinsic correspondence between the multi-
index i and the one-dimensional index il to properly identify
the polynomials involving the lth random variable. For
instance, if n = 2 with x = [Q, Ks]T , Eq. 15 is recast as the
following form:


i ≡ 
i(ζ ) = �
(1)
i1

(ζ1) ⊗ �
(2)
i2

(ζ2) , (16)

with �
(1)
i1

= Pi1 corresponding to the 1-D basis functions

for Ks (i.e., Legendre polynomials) and �
(2)
i2

= Hi2 cor-
responding to the 1-D basis functions for Q (i.e., Hermite
polynomials). There are several ways of defining the index-
ation reported in the literature [6, 7]. In the following, for
n = 2, the rescaled random vector is ζ = (ζ1, ζ2) and the
following notation will be preferred:

h ∼= MPC(x(ζ )) =
P∑

i1,i2=0

γi1i2 Pi1(ζ1) ⊗ Hi2(ζ2). (17)

3.4 Computation of the Expansion Coefficients

For a given polynomial basis (Eq. 10), there exists several
possible strategies to construct the multivariate polynomial
approximation, and compute the coefficients {γi}i∈IP . The
present work focuses on non-intrusive approaches, meaning
that no modification of the legacy solver is required and that
the coefficients are computed from an ensemble of model
evaluations h(k) = M(x(k)) (referred to as the “training
sample”), with the index k = 1, · · · , Ne referring to the kth
realization of the random vector x.

In the literature, two main families of non-intrusive
approaches are reported: interpolant collocation methods
[37, 43, 52] and �2-minimization methods. The latter
include both regression and pseudo-spectral projection. In
the following, we briefly recall ordinary and regularized
least-square approximations and the Galerkin projection
approximation coupled to Gaussian quadrature techniques
that folds into the regression and the projection category,
respectively.

Least-Square Minimization With this approach, the esti-
mation of the coefficients γi is achieved at once solving a
least-square (LS) minimization problem in some �2 norm [3,
13]. In this case, the “approximation” error (or residual) εPC
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is defined as the distance between the (exact) model eval-
uations and the PC surrogate estimations for a finite set of
randomly sampled input random variables of size Ne = Nls

(where the subscript ls stands for least square) such that:

εPC = M (X ) − MPC (X ) = H −
(NPC−1)∑

i=0

γi 
i (ζ ) ≡ H − γ T 
,

(18)

where X = [x(1), · · · , x(Nls )]T is the matrix of input sam-
ples of the random vector x and H = [h(1), · · · , h(Nls )]T
is the vector of associated water level outputs. γ =
[γ0, · · · , γNPC−1]T is the vector of the NPC unknown coef-
ficients and 
 is the matrix of size NPC × Nls assembling
the values of all the orthonormal polynomials at the design
nodes 
ik = 
i(ζ

(k)), with i = 0, · · · , (NPC − 1) and
k = 1, · · · , Nls .

Determining γ as the ordinary least-square solution of
Eq. 18 is a standard problem in linear algebra: one has to
minimize

LS(γ ) = εT
PC εPC =

(
H − γ T 


)T (
H − γ T 


)
(19)

such that:
∂LS

∂γ
= −2 
T H + 2 
T 
γ = 0, (20)

leading to the following solution:

γ = (
T 
)−1 
T H. (21)

One should ensure that the matrix (
T 
) is invertible; the
solution depends on the pre-conditioning of the matrix 


and thereby on the number/choice of the realizations x(k)

(k = 1, · · · , Nls). The input space sampling is achieved
in the present work, the input space exploration is fulfilled
thanks to a MC sampling-based approach; the converged
estimation of the PC coefficients requires a large size
sample, which we can afford in our case due to low com-
putational cost of our deterministic model MASCARET.
When the forward model is more expensive, other sampling
methods are available: e.g., Quasi MC, Latin Hypercube
Sampling. An iterative MC approach is performed here in
order to monitor the convergence of the coefficients which
are re-computed as the size of the sample Els increases from
10 to Nls .
The least-square algorithm proceeds as follows:

• Choose the total polynomial degree P

• Choose the sample Els of size Nls corresponding to
realizations of the random vector x and formulate the
input vector X .

• Integrate the forward model for each member in Els and
formulate the output vector H

• Construct the information matrix 
 by evaluating the
polynomial basis at the normalized nodes correspond-
ing to the members X in the physical space

• Compute the coefficient vector γ l of length NPC using
Eq. 21 and formulate MPC

On a final note, the aforementioned approach deals with
“noiseless” evaluations of the target function; few papers
consider noisy data samples [33].

Least-Angle Regression One way to alleviate the curse
of dimensionality induced by the parametric uncertainty
is to take advantage of the potential sparsity of the solu-
tion structure. Indeed, when the stochastic dimension n of
the problem is high, the solution is sometimes “sparse”
(or near-sparse) at the stochastic level. This means that it
may be accurately represented with only few terms when
linearly expanded into a stochastic approximation space,
such as the one encompassed by a gPC basis. Promising
approaches for solving this kind of problems involve com-
pressed sensing techniques, also known under the names
of �1-minimization, convex relaxation, and �1-regularized
least-squares minimization. Relatively recent results in
compressed sensing have also made it clear that sparse func-
tions requiring reasonable number of approximation basis,
may be accurately recovered from much fewer model simu-
lations Ne than necessary for classical solution methods [11,
12, 16]. Several research groups have recently been using
compressed sensing in a gPC framework [17, 55, 56]. The
efficiency of this approximation depends on the type and
cardinality of the gPC approximation basis selected [7, 27]
and the choice of the samples to be used.

The least absolute shrinkage and selection operator
(LASSO) algorithm [45] is in this case an attractive mod-
ification of the ordinary least-square formulation that con-
strains the sum of the absolute regression coefficients.
Weighted versions exist that make the approximation even
more robust [46]. Another related model selection algo-
rithm, the least-angle regression (LAR), is also very effi-
cient in our framework. Here, the idea is to use the LAR
formulation to identify, in an iterative manner, an optimal
sparse basis and then to compute a limited number of coeffi-
cients using a standard regression method. For this purpose,
an active set of coefficients should be first selected.

The NPC polynomial functions in the standard PC expan-
sion (i.e., when the basis is full) form the candidate set.
At each iteration of the LAR algorithm, a polynomial is
selected among these NPC terms, based on its correlation
with the current residual εPC, and is then added to the
active set of polynomials (also referred to as “regressors”).
The corresponding coefficients are computed so that every
active polynomial is equicorrelated with the current resid-
ual. Thus, LAR builds a collection of surrogates that are less
and less sparse along the iterations. Iterations stop either
when the full basis has been looked through. The final step
is to choose the best surrogate according to an error crite-
rion (see Section 3.7). The corresponding coefficients are
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computed so that every active polynomial is equicorrelated
with the current residual. Thus, LAR builds a collection of
surrogates that are less and less sparse along the iterations.
Iterations stop either when the full basis has been looked
through or when the maximum size of the experimental
design Elar has been reached. The final step is to choose the
best surrogate according to an error criterion (Section 3.7).
An hybrid LAR (hybrid–LAR) procedure, proposed in [7],
is retained for this work: the LAR is only used to select a
sparse set of predictors, but not to estimate the coefficients,
which are obtained from least-square estimates on this set of
predictors. Moreover, the detection/selection of the optimal
LAR surrogate is obtained from a modified cross-validation
criterion that avoids multiple calls to the hybrid–LAR proce-
dure. As suggested in [7], the corrected leave-one-out error
(LOO) is used as the cross-validation criterion to select the
optimal LAR surrogate (Section 3.7).

The plain LAR algorithm without cross-validation selec-
tion proceeds as follows:

• Choose the total polynomial degree P

• Build the fixed experimental design Elar

– Build the LAR input vector X of size Nlar

– Integrate the forward model for each member
of X and form the output vector H

– Evaluate all components of the polynomial
basis over the sample X to form the matrix
of elements 
ik = 
i(ζ

(k)), with i = 0, · · · ,

(NPC − 1) and k = 1, · · · , Nlar .

• Initialize the algorithm

– Set the coefficient vector γ to 0
– Set the residual vector εPC (of size Nlar ) to the

forward model output vector H (εPC = H −
MPC (X ) = H since γ = 0)

– Set the active set (or regressors) 
lar = ∅

• Iterate: For l = 1, min(NPC, Nlar −1), do the following
steps:

– For all polynomial candidates i = 0, (NPC −
1), compute the correlation between the cur-
rent residual εPC and the ith column of 
 (
ki

for k = 1, · · · , Nlar ) evaluated on Elar

– Add to the active set 
lar , the vector 
j (the
j th column of 
) that is the most correlated
with the current residual εPC

– Compute the vector of partial coefficients γ l

(or descent direction) associated with 
lar by
minimizing LS(γ ) = (H − γ T 
lar )

T (H −
γ T 
lar ): this consists in taking the largest
possible step in the direction of 
lar until
the correlation between εPC and 
lar becomes
smaller than the correlation between some

other vector 
k in the candidate set and 
lar .
This provides the vector of partial coefficients

γ l =
(

T

lar 
lar

)−1

T

lar εPC

– Update the residual εPC = εPC − (γ l)T 
lar

and store it for the current iteration
– Update the coefficient vector γ with the con-

tribution γ l : γ = γ + δlγ l with δl the descent
step defined such that every active polynomial
is equicorrelated with the current residual

It is worth noting that for a given total polynomial degree
P , the LAR algorithm is valuable if the effective number of
terms in the PC expansion (noted Nreg) is significantly less
than the NPC terms of the standard truncation scheme (Eq. 11).
It is also worth mentioning that if Nreg > NPC, then the
last iteration of the LAR algorithm computes a PC surrogate
on the full basis corresponding to the ordinary least-square
solution. In general when using LAR, NPC > Nreg , imply-
ing that Nreg surrogate candidates are formulated when
iterations stop. More details and options about the LAR and
hybrid–LAR techniques may be found in [7, 20].

Galerkin Pseudo-Spectral Projection This Galerkin-type
projection relies on the orthonormality property of the poly-
nomial basis. In this framework, the coefficients are com-
puted one at a time. The ith PC coefficient γi is computed
as follows:

γi = 〈h, 
i(ζ )〉, (22)

using the inner product definition given in Eq. 14 and using
the basis orthonormality property. The term < h, 
i(ζ ) >

involves multi-dimensional integrals. There exists many dif-
ferent numerical methods to evaluate those integrals. A
straightforward choice is the one of numerical quadratures,
and in particular tensor-based Gauss-quadratures that are
powerful at integrating exactly multi-dimensional polyno-
mial forms; the inner product is approximated as:

〈h, 
i(ζ )〉 ∼=
Ne∑
k=1

M(x(k)) 
i(ζ
(k)) w(k), (23)

where h(k) = M(x(k)) corresponds to the forward model
integration evaluated at the kth quadrature root x(k) with its
associated weight w(k). Here, k varies between 1 and Ne,
with Ne = (Nquad)n ≡ Equad when Nquad quadrature
points are selected for each input random variable. In order
to guarantee that a polynomial function can properly be rep-
resented by the PC expansion, Nquad should be constrained
by the total polynomial degree P such that:

Nquad ≥ (P + 1). (24)

In this work, a standard quadrature is used since only a few
quadrature points are sufficient to obtain a highly accurate
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result as shown for instance in the following [2, 6, 50]. This
method will only be applied for the case n = 2. For higher
dimensions, full tensorization methods suffer from the curse
of dimensionality. Alternatives exist that rely on the use of
sparse tensorization and/or nested grids [38, 49] and could
be applied to alleviate this issue.

The spectral projection strategy proceeds as follows:

• Choose the total polynomial degree P

• Choose the number of quadrature roots Nquad (accord-
ing to Eq. 24) per stochastic dimension and identify the
roots in the normalized space ζ

• Map the normalized roots onto the physical space
to formulate the quadrature root vector X =
[x(1), · · · , x(Nn

quad )]T , thus defining the input training
sample set Equad

• Integrate the forward model for the quadrature
roots X and formulate the output vector H =
[h(1), · · · , x(Nn

quad )]T
• Compute the PC coefficient γi (i = 0, · · · , NPC − 1)

using Eqs. 22–23, and formulate MPC.

3.5 Surrogate Model Notations

In the following, the PC surrogate model is denoted with
a superscript that specifies the total polynomial degree, the
method for estimating the coefficients and the size of the
sample used for this computation. Moreover, for simplic-
ity purposes, sample size is given in logarithmic form for
the least-square method, e.g., Mls3,P 6

PC denotes a PC expan-
sion of total polynomial degree P = 6 with coefficients
computed from a least-square regression method over a
sample Els of size Nls = 103. In the same line of thought,
Mquad7,P 6

PC denotes a PC expansion of total polynomial
degree P = 6 with coefficients computed from a pseudo-
spectral projection/quadrature method over a sample Equad

of size Nquad = 7 for each input variable following Eq. 24.

3.6 Statistical Moments

Once the PC surrogate is built, the water level statistical
moments are estimated statistically or using the orthonor-
mality properties of the PC expansion.

Stochastic Estimation The water level statistical moments
can be stochastically estimated using a validation sample
EMC of size NMC (here NMC = 105). The validation sam-
ple is generated through a standard MC approach based on
the random parameters Ks and Q. The water level h can be
computed either integrating the forward model M or the PC
surrogate MPC (computed from Eq. 10) for the validation
sample EMC such that h(k) = M(x(k)) or h

(k)
PC = MMC(x(k))

for the kth member of EMC.
We can stochastically evaluate the first moments

of the water level PDF, i.e., the mean value, the
STD, the skewness, and the kurtosis for the forward
model (μh, σh, skewh, kurth) or the PC surrogate model
(μhPC , σhPC , skewhPC , kurthPC) as formulated here:

μhPC = 1

NMC

NMC∑
k=1

h
(k)
PC, (25)

σhPC =
√√√√ 1

NMC−1

NMC∑
k=1

(
h(k) − μhPC

)2
, (26)

skewhPC = 1

NMC (σhPC)3

NMC∑
k=1

(
h

(k)
PC − μhPC

)3
, (27)

kurthMC = 1

NMC (σhPC)4

NMC∑
k=1

(
h

(k)
PC − μhPC

)4
. (28)

Analytic Derivation – Thanks to the polynomial approxi-
mation basis orthonormality, we can compute the statistical
moments of the water level h from the coefficients:

μhPC = γ0, (29)

σhPC =
√√√√ ∑

i∈IP

i =0

γ 2
i , (30)

skewhPC = 1

σ 3
hPC

∑
i∈IP

i =0

∑
j∈IP

j =0

∑
k∈IP

k =0

γi γj γk E
[

i(ζ ) 
j (ζ ) 
k(ζ )

]
,

(31)

kurthPC = 1

σ 4
hPC

∑
i∈IP

i =0

∑
j∈IP

j =0

∑
k∈IP

k =0

∑
l∈IP

l =0

γi γj γk γl E
[

i(ζ )
j (ζ )
k(ζ )
l(ζ )

]
, (32)

where the set of multi-indices IP to which belong i, j , k

and l is defined in Eq. 12.
To measure the extent of variability in a given sample,

one may be interested in computing the coefficient of variation
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(CV ), also known as relative STD and defined as the ratio
of the STD σhPC to the mean μhPC .

When the water level is varying in the space, the covari-
ance matrix for water level along the curvilinear abscissa
can be estimated from the PC coefficients. [51] provides an
analytical estimation of the covariance between the water
level at two different grid points m and n:

Cov(h(sm), h(sn)) =
∑
i∈IP

i =0

γi(sm) γi(sn), (33)

To evaluate the contribution of each random variable to
the water level variance (σhPC)2 and carry out a global sensi-
tivity analysis, we use Sobol’ indices directly derived from
PC coefficients [42]. For any given random variable xis in
x, Sobol’ index reads:

Sxis
= 1

σ 2
hPC

∑
i∈Iis

(γi)
2 , (34)

where IP
is

is the set of multi-indices such that i ∈ IP and
only the index is is nonzero (corresponding to the polyno-
mials 
i(ζ ) that only depend on the input random variable
xis ). For instance, in the present case n = 2, Sobol’ indices
SQ and SKs for Q and Ks (associated with index i1 and
index i2, respectively) are defined as follows:

SQ = 1

σ 2
hPC

∑
i1≥1,i2=0

(
γi10

)2 ; SKs = 1

σ 2
hPC

∑
i2≥1,i1=0

(
γ0i2

)2
.

(35)

SKs (or SQ) corresponds to a first-order sensitivity index by
evaluating the stand alone effect of Ks (or Q) on the water
level variance measured by (σhPC)2.

3.7 Error Metrics

PC theory guarantees the convergence of the infinite expan-
sion with respect to the standard �2 error norm (mean square
convergence) [51]. In practice, due to the truncation, the
accuracy of the PC surrogate MPC must be assessed over
an independent sample EMC and is evaluated in �2. Differ-
ent error metrics are presented hereinafter; their definition is
based on the orthonormality property of the basis functions
when building the PC-expansion.

The criterion (LC) is computed on the PC coefficient
space of γi1i2 for a PC expansion of truncation P with
respect to a reference PC surrogate of equal truncation but
different sampling (in terms of size and type of sampling
MC random sampling for least-square regression approach,
Gaussian quadrature for pseudo-spectral projection). The
criterion (LH ) is computed on the water level variable
space. The leave-one-out error norm (LOO) is also intro-
duced when applying the LAR method. Errors LH and

LOO estimate both truncation and sampling (or coefficient)
errors, while LC estimate sampling errors that are due to
aliasing higher-order modes and/or insufficient quadratures
or regression points. It should be noted that when the com-
putation of the PC-expansion coefficients is achieved over
a large sample, it is fair to use LH to estimate truncation
error only (Figs. 3, 4, 5, and 6). On the contrary, when
the total polynomial degree P has been set and the num-
ber of quadrature or regression points varies, LH is used to
estimate the standalone sampling error (Fig. 7).

Water Level Metrics (LH ) Assuming the forward model
and the surrogate model are integrated over the validation
sample EMC of size NMC to represent the water level h and
hPC respectively, the standard �2 error norm is defined as
follows:

LH = 1

NMC

NMC∑
k=1

(
h(k) − h

(k)
PC

)2
. (36)

In order to avoid integrating the forward model over the
validation sample EMC, the LOO error is introduced. This
solution is of particular interest when one cannot afford,
due to computational cost limitations, to re-sample the for-
ward model apart from the simulations dedicated to the PC
formulation using sample Els or Equad . For the purpose of
this academic study, the validation sampling and associated
model integrations were carried out for n = 2 and n = 4.
The LOO and the LH metrics are compared to assess the

Fig. 3 Truncation error measured by the water level error LH (Eq. 36)
in logarithmic scale with respect to the total polynomial degree P -
Idealized channel case with uniform steady flow (Manning equation).
LH is computed over the validation sample NMC = 105 for the
least-square surrogate Mls5,P

PC formulated over the training sample
Nls,ref = 105 for P varying between 4 and 10. The vertical dashed
line corresponds to the selected P for further results



N. E. Moçayd et al.

Monomials corresponding to Q
0 1 2 3 4 5 6 7 8 9 10

M
on

om
ia

ls 
co

rr
ep

on
di

ng
 to

 K
s

0

1

2

3

4

5

6

7

8

9

10

-8

-7

-6

-5

-4

-3

-2

-1

0

1

Fig. 4 Spectrum of coefficients for the least-square surrogate—idealized
channel case with uniform steady flow (Manning equation). The sur-
rogate is formulated over the training sample Nls,ref = 105 and a total
polynomial degree P = 10. The colorbar describes the amplitude of
the coefficients in logarithmic scale. The Hermite monomials (corre-
sponding to Q) are displayed on the x-axis; the Legendre monomials
(corresponding to Ks ) are displayed on the y-axis. The bivariate coef-
ficients {γi1,i2 }0<i1,i2<P are displayed in the lower triangular matrix
along x-/y-axis. The oblique solid black line represents P = 6

validity of using LOO as a reliable metric when integrat-
ing a validation sample is not possible, i.e., in the case of
n = 4. When the dimension of the input space increases

Spectrum
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Fig. 5 Comparison of LCi elements in logarithmic scale between the
LS surrogate Mls2,P 10

PC (thin dashed line), Mls3,P 10
PC (thick dashed

line), and the quadrature surrogate Mquad11,P 10
PC (thick solid line)—

idealized channel case with uniform steady flow (Manning equation).
The reference coefficients are computed with Mls5,P 10

PC . The x-axis is
the coefficient index within the expansion spectrum (66 coefficients
for P = 10)

Steady flow Gradually-varied steady flow

P=6

Curvilinear abscissa (km)

LH

Fig. 6 Truncation error along the 40-km channel illustrated by the
water level error LH (Eq. 36) in logarithmic scale for varying total
polynomial degree P -idealized channel case with gradually-varied
steady flow. LH is computed every 4 km over the validation sample
NMC = 105 for the least-square surrogate Mls5,P

PC formulated over the
training sample Nls,ref = 105 for P = 4, · · · , 10 (top curve in blue
for P = 4 to bottom curve in black for P = 10)

from n = 2 to n = 4, the number of coefficients rapidly
grows, thus increasing the cost of both least-square regres-
sion and quadrature-based Galerkin projection methods. As
a consequence, the LAR method is preferred; the decompo-
sition on a sparse basis relying on a limited number of PC
coefficients.

The LOO technique [7, 18] requires the formulation
of several surrogates. Each surrogate is built excluding
one point out of the training sample Elar ; the accuracy

Fig. 7 Counterpart of Fig. 6 for the quadrature surrogate Mquad,P 6
PC

for Nquad = 4, . . . , 10 (top curve in blue for Nquad = 4 to bottom
curve in black for Nquad = 10) for P = 6. LH is computed every 4
km along the channel
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of the surrogate is then calculated at this particular point.
Following this theory, LOO is defined as follows:

LOO =

Nlar∑
k=1

(
h(k) − h

(−k)
PC

)2

Nlar∑
k=1

(h(k) − h)2

, (37)

where h denotes the sample-average water level and h
(−k)
PC

stands for the evaluation of the PC surrogate water level at
x(k) when the surrogate has been built using an experimental
design in which x(k) was excluded.

When applying the LAR strategy, Nlar surrogates should
be formulated. In practice, [7] propose a formulation of the
LOO metric based on a single formulation of the LAR
model using the whole training sample Nlar at once:

LOO ≡
Nlar∑
k=1

(
h(k) − h

(k)
PC

1 − Dk

)2

(38)

where Dk is the kth diagonal term of the matrix

(
T 
)−1 
T .

LOO is formulated here as a normalized error, while
LH (Eq. 36) is an absolute error. LH is used to assess the
results of PC-expansion for varying total maximum polyno-
mial degree and varying number of quadrature or regression
points. In further results, when compared to LOO (Fig. 9),
LH is normalized by the water level variance (at each
curvilinear abscissa) over EMC .

Coefficient Metrics (LC) The sampling error produced by
the PC expansion can also be assessed through the compar-
ison of the PC-coefficients. For this purpose, for a given
total polynomial degree, a reference surrogate model is built
using a least-square regression method that involves a suffi-
cient number of forward model simulations (Nls,ref = 105)
to guarantee the convergence of Eq. 21. The vector of coef-
ficients for this reference model is further denoted by γ ref .
In the following, the coefficients {γ ref

i }i∈IP are compared
to those of surrogate models {γi}i∈IP based on least-square
or quadrature methods involving a smaller number of mem-
bers (Nls or Nn

quad ) than Nls,ref . The LC metric is defined
in the sense of the �2 norm as follows:

LC =
∑
i∈IP

LCi =
NPC−1∑

i=0

LCi =
NPC−1∑

i=0

(
γ

ref
i − γi

)2
.

(39)

3.8 Numerical Implementation

Due to the increasing interest in uncertainty quantifica-
tion over the last decade, a significant number of dedicated

tools/libraries are now available for the scientific com-
munity. Such toolkits provide an interface between sim-
ulation codes and systems analysis methods to address
engineering questions in sensitivity analysis, uncertainty
quantification, reliability analysis, parameter estimation,
surrogate model design, and optimization. Among the
most commonly used platforms are the Dakota Software
toolkit (www.dakota.sandia.gov), UQTk (www.sandia.gov/
UQToolkit), the UQLab (ww.uqlab.com) and OpenTURNS
(www.openturns.org); the latter was used in the present
study. OpenTURNS is an open-source (LGPL) scientific
library usable as a Python module dedicated to the treatment
of uncertainties in an industrial context. EDF, Airbus, and
Phimeca have been working together since 2005 to build
OpenTURNS designed to perform uncertainty treatment
and reliability analyses. OpenTURNS offers a wide cata-
log of features for uncertainty quantification (among them
PC strategies [19] such as least-square, Gaussian quadrature
and hybrid-LAR) and benefits from a well-organized devel-
opers and users community (forum, training, user guides). It
can either be used as a python module when the numerical
model is implemented in python, or used as a component
with a coupling platform. In the present work, the quadra-
ture, least-square, and hybrid-LAR strategies implemented
in OpenTURNS for PC expansion were used. The MAS-
CARET and OpenTURNS are both integrated components
of the SALOME platform developed at EDF (www.salome-
platform.org). This integrated framework allows for an
efficient use of MASCARET as a python function driven
by the flowchart of the PC algorithms implemented in
OpenTURNS. For further information on the OpenTURNS
library, the reader is referred to the online reference and use
case guides.

4 Results

This section aims at studying the convergence of the PC-
expansion with respect to the choice of the truncation
strategy, the projection strategy and the total polynomial
degree.

4.1 Idealized Channel

The PC-expansion approach presented in Section 3 is
applied for the idealized channel test case with respect to the
friction coefficient Ks and the discharge Q in steady flow
(x = [Q, Ks]T with n = 2). For uniform steady flow, the
water level at the downstream boundary condition is set so
that the flow is governed by Manning equation (Eq. 5). This
strategy is then applied for gradually-varied steady flow on
the channel test case with a deterministic description of the
downstream condition so that backwater curve appears.

www.dakota.sandia.gov
www.sandia.gov/UQToolkit
www.sandia.gov/UQToolkit
ww.uqlab.com
www.openturns.org
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4.1.1 Uniform Steady Flow

Truncation Error In the first place, the truncation error is
investigated in order to identify the appropriate total polyno-
mial degree P and thus the total number of coefficients NPC

to estimate in the PC-expansion. In this perspective, a least-
square surrogate is built here with a large enough number of
forward model simulations (Nls = 105) to distinguish the
truncation error from the coefficient estimation error. The
least-square surrogate Mls5,P

PC is formulated over the train-
ing sample Nls,ref for varying P , then used to predict the
water level hPC over the validation sample EMC of size NMC.
These water levels are validated against those obtained with
a MC forward model sampling to compute LH as described
in Section 3.7.

Figure 3 displays LH (Eq. 36) in logarithmic scale when
P increases from 4 to 10; for instance, for P = 6, LH is
approximately equal to 10−6. The error log(LH) linearly
decreases by one order of magnitude as the total polynomial
degree is incremented by 1 up to P = 10. The PC expansion
is built here on a hybrid polynomial basis made of Hermite
polynomials for Q and Legendre polynomials for Ks . The
present convergence attests that the hybrid polynomial basis
is adapted to properly describe the statistics of both input
random variables and output variables.

The spectrum of coefficients γi1,i2 is then analyzed to
check which terms in the PC expansion are contributing the
most to the water level h. For this purpose, Fig. 4 shows
the spectrum of coefficients associated with the surrogate
Mls5,P 10

PC (P = 10 consistently with Fig. 3). The color-
bar represents the amplitude of γi1,i2 in logarithmic scale;
the first coefficient γ00 (the mean water level) features the
highest magnitude.

The magnitude of the monovariate coefficients (γi10

associated with Q on the x-axis and γ0i2 associated with Ks

on the y-axis) is compared. The Ks-monomials are found to
be larger than the Q-monomials: given the PDFs for both
random variables, the sensitivity to Ks is therefore larger
than that to Q for uniform steady flow. This is confirmed
by Sobol’ indices: SQ = 0.06 and SKs = 0.94 for variation
coefficients equal to CVQ = 10% and CVKs = 35%. These
results depend on the properties of the input random vari-
ables and especially on the choice of their distributions; for
instance, if CVQ were larger, then the Q-monomials would
be larger than the present ones.

The bivariate coefficients γi1,i2 correspond to the ele-
ments in the lower triangular matrix along x- and y-axes
in Fig. 4. For instance, the element at x = 4 and y = 2
represents the coefficient related to the polynomial function
Q4 K2

s of amplitude 10−6. The amplitude of the monomi-
als is larger than that of the bivariate coefficients, meaning
that the univariate coefficients are more significant than the
bivariate ones.

The value of the coefficients is also found to decrease
as the polynomial degree increases. For instance, when the
polynomial degree is beyond P = 6 (oblique solid black
line in Fig. 4), all coefficients are smaller than 10−3. Given
the LH metric for the water level estimation in Fig. 3 and
the coefficient spectrum in Fig. 4, it seems sufficient to
truncate the PC expansion to P = 6, thus implying the com-
putation of 28 coefficients for n = 2 according to Eq. 11
(when P = 10, 66 coefficients should be computed).

Sampling Error We investigate the size of the training
sample that is necessary to properly estimate the coefficients
for P = 10 for both least-square and quadrature strategies;
the objective is now to focus on the projection error. In order
to limit the computational cost induced by forward model
simulations, the size of the training sample for the least-
square surrogate is reduced (previously set to Nls,ref =
105); the surrogate models Mls2,P 10

PC and Mls3,P 10
PC are for-

mulated with respectively Nls = 102 and Nls = 103. The
quadrature surrogate Mquad11,P 10

PC is formulated with the
number of quadrature roots set to Nquad = 11 for each input
random variable consistently with P = 10 (according to
Eq. 24).

Figure 5 displays the elements LCi of the error LC

(Section 3.7) in logarithmic scale for each coefficient within
the expansion spectrum (66 coefficients) and compares
Mls2,P 10

PC (thin dashed line), Mls3,P 10
PC (thick black line),

and Mquad11,P 10
PC (thick solid line) with respect to the refer-

ence coefficients computed with Mls5,P 10
PC . LCi decreases

from 10−6 to 10−10 as the size of the training sample for
the least-square surrogate increases from Nls = 102 to 103.
Mquad11,P 10

PC leads to a LCi error value that is smaller to

that of Mls3,P 10
PC for a significantly reduced computational

cost (only 121 forward mode evaluations). The projection
strategy is thus able to provide a reliable surrogate model
at lower computational cost than the least-square strategy
for Eq. 3. In spite of these results that are in favor of
the quadrature-based strategy, they are limitations to this
approach, for instance when the input space dimension
increases and when not using nested quadrature.

4.1.2 Gradually-Varied Steady Flow

A similar analysis is carried out for gradually-varied steady
flow to check the impact of more complex flow features
(backwater curves) on the behavior and accuracy of the
PC-expansion. When the downstream boundary condition
is prescribed to hout = 10 m, as Q and Ks are sam-
pled within their respective PDF given in Section 2.2.1, the
Manning equilibrium is no longer preserved over the entire
channel. The upstream flow is still under steady flow condi-
tions, while the flow is governed by the backwater equations



Polynomial Surrogates for Open-Channel Flows in Random Steady State

(Eq. 3) in the downstream part of the river. It should be noted
that within the sampling of the physical random variables,
the flow remains subcritical and the water level describes
a backwater curve of type M1 or M2. The surrogate is
here formulated following the same strategy as for uniform
steady flow: first, setting the total polynomial degree P ;
then, setting the number of forward model evaluations for
computing the coefficients. Since the flow is now spatially
distributed, we compute a surrogate at each simulation grid
point along the curvilinear abscissa using the same set of
forward model evaluations, thus providing spatially varying
coefficients (Section 3.1).

Truncation Error Figure 6 shows the spatially-varying
water level error LH (Eq. 36) in logarithmic scale for the
least-square surrogate Mls5,P

PC (built with a training sam-
ple Nls,ref = 105) for varying total polynomial degree P

(4 ≤ P ≤ 10). LH is computed over the validation sam-
ple EMC with NMC=105 . As highlighted in Fig. 3 for uniform
flow, LH is small and in the present case remains below
10−6 when P ≥ 6. LH decreases by one order of magnitude
when P increases by 1 for 4 ≤ P ≤ 7 over the entire com-
putational domain. Beyond this threshold value, increasing
P results in a smaller decrease of LH , especially where the
flow passes from uniform flow to backwater curve. Refining
the mesh resolution by a factor of two (from 100 to 50-m
discretization) was found (not shown here) to further reduce
LH when P increases, even where the flow dynamics gets
more complex. When refining the mesh, numerical errors
in the simulation decrease and are better resolved with the
PC-expansion.

Sampling Error In the following, P = 6 is set (LH =
10−6 in coherence with Fig. 3 for uniform flow, here in the
upstream part of the channel). We now investigate the size of
the training sample that is necessary to properly estimate the
coefficients with the quadrature method. The performance
of the surrogate is investigated when the number of quadra-
ture roots Nquad varies from 4 to 10. Figure 7 displays the
water level error LH (Eq. 36) in logarithmic scale along the
curvilinear abscissa computed for the surrogate Mquad,P 6

PC
(top curve in blue for Nquad = 4 to bottom in black for
Nquad = 10). Again, LH is computed over the validation
sample EMC (with NMC = 105). As expected from theory
(Eq. 24), LH decreases as Nquad increases up to Nquad =
7 beyond which the error remains constant to 10−6. For
P � 7, the error sums up to the truncation error also rep-
resented in Fig. 6 for Mls5,P 6

PC (red curve). In both Figs. 6
and 7, the LH error is smaller at the downstream boundary
condition specified in a deterministic way. The transition
between the uniform regime and the backwater curve (M1

or M2) occurs between 25 and 30 km; the dynamics of this
particular point is complex to represent with the surrogate,

thus the error LH tends to have larger values there than
at other locations over the reach, yet it remains extremely
small (10−8).

Statistical Moments The next step consists in validating
the statistical moments as defined in Section 3.6 for the
retained quadrature surrogate Mquad7,P 6

PC ; the validation is
carried out with respect to the classical MC random sam-
pling over the validation sample NMC = 105 (all backwater
curves within the sample describe M1 backwater curves).
The stochastically estimated mean and variance (lines) are
shown in Fig. 8 along the 40-km channel and compared to
the mean and variance computed with the PC-coefficients
for Mquad7,P 6

PC (symbols). They feature very good ade-

quacy. The surrogate Mquad7,P 6
PC thus offers a satisfying

approximation of direct model water level over the whole
computational domain, in terms of first and second order
moments, for the present idealized channel case study.

4.2 Application to the Garonne River

The PC-expansion approach was validated for the ideal-
ized channel test case and is now applied to a real case
of the Garonne River presented in Section 2.2.2, still in
steady flow. The flow dynamics is governed by the SWE
(Eq. 1) solved by MASCARET; the water level is non uni-
form as the river width, bathymetry and friction coefficients
are spatially distributed over the Tonneins-La Réole reach.
While the PC-expansion is formulated for the entire domain,
a particular attention is paid to the water level at Marmande,
where in-situ observations are available and where data assim-
ilation is applied in flood forecasting operational context.

Fig. 8 Water level mean (m) in solid line (left y-axis) and vari-
ance (m2) in dashed line (right y-axis) along the curvilinear abscissa
(km)—idealized channel case with gradually-varied steady flow. Com-
parison between the MC stochastic estimates (lines) and the quadrature
surrogate Mquad7,P 6

PC (P = 6 and Nquad = 7) estimates (symbols)
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Sensitivity Analysis Based on LAR Surrogate for Model
Reduction The cost of the PC-expansion is here poten-
tially higher than for the idealized channel case study as
there are four main sources of uncertainty (Q, Ks1 , Ks2 ,
Ks3 ) in the Garonne hydraulic model. A sensitivity anal-
ysis is carried out to investigate whether the dimension
of the uncertain input space could be reduced so that the
formulation of the PC-surrogate would be reduced. The PC-
expansion will then be formulated with respect to the most
significant variables only. The sources of uncertainty are
classified using Sobol’ indices (Section 3.6). The Sobol’
indices are computed by means of a LAR surrogate as
defined in Section 3.4. The accuracy of the LAR surrogate is
tested by comparing Mlar2,P

PC and Mlar3,P
PC formulated over

a training sample Elar of size Nlar = 102 and Nlar = 103,
respectively.

Figure 9 displays the water level error at Marmande for
Mlar3,P

PC measured with both the LH metric (Eq. 36) in
solid line and the LOO metric (Eq. 38) in thick dashed line
for the total polynomial degree P varying between 1 and 10.
The LOO error for Mlar2,P

PC is also plotted in thin dashed
line to check the sensitivity of the LAR result to the size of
the training sample Elar . LH is computed over a validation
sample EMC of size NMC = 105 that samples the four ran-
dom variables. For this comparison, LH is normalized by
the water level variance and multiplied by Nlar to be con-
sistent with the LOO formulation. Figure 9 shows that for
P = 4, the LOO converges to 10−6 for Nlar = 100 and
to 10−7 for Nlar = 1000, similarly to LH for NMC = 105.
This highlights the merits of the LAR method to reduce the

Fig. 9 Comparison of error metrics at Marmande observing station
(36 km on the Garonne reach) for varying total degree P (P =
1, · · · , 10)—Garonne River case in steady flow: LOO in dashed lines
(Mlar2,P

PC in thin dashed line; Mlar3,P
PC in thick dashed line); normal-

ized LH in solid line computed over a validation sample EMC of size
NMC = 105

computational cost, while providing an accurate water level
representation.

The LAR method is thus used for sensitivity analysis
with respect to (Q, Ks1 , Ks2 , Ks3 ) to compute the Sobol’
indices shown in Fig. 10. The impact of Q is homogeneous
over the 60 km Garonne River reach. As the downstream
boundary condition is prescribed by the local rating curve at
Tonneins, the uncertainty in water level is totally explained
by the uncertainty in discharge, thus SQ is equal to 1 at the
exit of the hydraulic network. The water level is also sen-
sitive to the local Ks of the section as well as to the Ks of
the section located downstream. In the upstream section (0–
20 km), the water level is mostly sensitive to Ks1 and Ks2 ,
while the impact of Ks3 is smaller. In the second section
(20–36 km), the water level is mostly sensitive to Ks2 and
Ks3 . In the third section (36–60 km) that includes Mar-
mande, the water level is only sensitive to Ks3 and Q. At
Marmande, the sensitivity to Ks1 and Ks2 is zero, the Sobol’
index for Ks3 is equal to 0.88 and that for Q is equal to 0.12.
These values are strongly related to the prescribed PDFs on
Ks3 and Q; in the present case, the variation coefficient for
Q is CVQ = 10%, while the variation coefficient for Ks3 is
CVKs3 = 40%.

The sensitivity analysis highlights that Ks1 and Ks2 have
barely no impact on the water level at Marmande, where
observations are available. The improvement of the water
level at Marmande and downstream of Marmande relies on
the improvement of Q and Ks3 . Consequently, the uncertain
space dimensionality is reduced to x = [Q, Ks3 ]T . The PC-
surrogate that is constructed with respect to x = [Q, Ks3 ]T

Fig. 10 Garonne River case in steady flow—first-order Sobol’ indices
computed with the LAR surrogate Mlar2,P 4

PC formulated over a train-
ing sample Elar of size Nlar = 102 for a total polynomial degree
P = 4 with respect to Ks1 (blue line), Ks2 (green line), Ks3 (red line)
and Q (black line). Vertical dashed lines indicate the limits between
the different sections of Ks . The curvilinear abscissa at Marmande is
s = 36 km



Polynomial Surrogates for Open-Channel Flows in Random Steady State

is legitimate from Marmande to La Réole. Still, the PC-
surrogate is built every 4 km along the entire computational
domain for informative purpose and because it is needed to
formulate the error covariance matrix in a data assimilation
framework. The illustrations are presented with a shaded
area upstream Marmande.

UncertaintyQuantificationwithLeast-Square andQuadra-
ture Strategies Figure 11 displays the water level error LH

(Eq. 36) in logarithmic scale along the 60-km hydraulic net-
work for the least-square surrogates Mls5,P

PC built with a
training sample Els of size Nls,ref = 105. Different total
polynomial degrees are considered (P = 1, 6, 11, 15). The
error is found to decrease as P increases and is of the order
of 10−4 for P = 6. This error can be compared to that of
the Manning equation displayed in Fig. 3 (LH = 10−6).
Figure 11 also displays LH for a surrogate computed with
the quadrature method Mquad,P 6

PC setting P = 6 and vary-

ing Nquad = 6, 7, 8. The error LH associated to Mquad7,P 6
PC

is similar to that of Mls5,P 6
PC , while it only involves 49

MASCARET evaluations instead of 105. A PC-expansion
Mquad7,P 6

PC with P = 6 and Nquad = 7 provides a satis-
fying description of the water level over the Garonne River
reach with respect to Q and Ks3 in the sense of the LH

metric.
Figures 12 and 13 present the statistical moments along

the 60-km reach, which are defined in Section 3.6 and
computed here for varying total polynomial degree P , i.e.,
for the quadrature surrogates Mquad16,P 15

PC and Mquad7,P 6
PC .

Fig. 11 Spatially varying truncation and quadrature errors measured
by the water level error LH (Eq. 36) in logarithmic scale—Garonne
River case in steady flow. LH is computed over the validation sam-
ple EMC with NMC = 105 for the following surrogates: least-square
surrogates Mls,P

PC P = 1, 6, 11, 15 (solid blue, purple, green and

black line); and quadrature surrogates Mquad,P 6
PC with P = 6 and

Nquad = 6, 7, 8 (purple dashed, dashed-dotted, and dotted lines)

Fig. 12 Garonne River case in steady flow. a Comparison of mean
(left y-axis, solid line) and variance (right y-axis, dashed line) sta-
tistical moments between quadrature surrogates Mquad16,P 15

PC and

Mquad7,P 6
PC (results overlap). b Error with respect to MC stochas-

tic estimation over NMC = 105 members in the mean (left y-axis)
and variance (right y-axis) estimates for quadrature surrogates
Mquad16,P 15

PC (red) and Mquad7,P 6
PC (blue)

The mean (solid line, left y-axis, in (m)) and the variance
(dashed line, right y-axis, in (m2)) are shown in Fig. 12a;
the skewness (solid line, left y-axis, dimensionless) and
the kurtosis (dashed line, right y-axis, dimensionless) are
shown in Fig. 13a (the curves associated with both sur-
rogates Mquad16,P 15

PC and Mquad7,P 6
PC overlap). In comple-

ment, Figs. 12b and 13b present the errors in the statistical
moments computed with respect to their stochastic estima-
tion obtained from a MC random sampling EMC. Results
show that the estimation of the four statistical moments is
satisfying with P = 6. The mean is estimated with an error
of about 10−6 for P = 6 (blue solid line) that decreases by
one order of magnitude for P = 15 (red solid line). The
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Fig. 13 Garonne River case in steady flow—same caption as Fig. 12
but for the skewness and kurtosis statistical moments

variance is estimated with an error of 10−4 for P = 6 (blue
dashed line) that decreases by three orders of magnitude for
P = 15 (red dashed line). The skewness and the kurtosis
are respectively estimated with an error of 10−4 and 10−3

for P = 6 (solid blue and red lines) that decreases by one
order of magnitude for P = 15 (dashed blue and red lines).
The mean water level varies from 27 m upstream to 14 m
downstream. The water level variance is about 0.5 m2 in the
first part of the reach and increases up to 2.5 m2 in the area
of Marmande, where the bathymetry strongly varies and the
flow dynamics gets more complex with local changes of
backwater curves. The skewness varies from −0.1 to 0.4
with a steep change in the Marmande area, suggesting that
the water level PDF at Marmande is non-symmetric (non-
Gaussian) with a slight shift on the left for smaller water
levels than the mean upstream as well as a significant shift
on the right for larger water levels than the mean over most
of the Garonne reach, especially near Marmande. In this

area, the water level PDF has a positive skew; large or
extreme water levels values are more likely to occur. On the
contrary, the kurtosis has negative values upstream and neg-
ative values near Marmande, meaning that the PDF tends
to be sharper than a Gaussian PDF upstream, and smoother
than a Gaussian PDF downstream. The observed skewness
and kurtosis are probably due to the presence of multiple
peaks in the PDF for this area of the Garonne reach. This is
confirmed in Fig. 14.

Figure 14a compares the PDF at Marmande obtained
with a MC approach over EMC (blue line) as well as quadra-
ture surrogates Mquad16,P 15

PC (green line) and Mquad7,P 6
PC

(red line) also sampled over EMC. The PDFs are obtained
with a kernel smoothing method using Gaussian ker-
nels, available in OpenTURNS. Figure 14b presents the
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Fig. 14 Garonne River case in steady flow—water level PDF esti-
mated with MC sampling EMC over NMC = 105 members, either using
the forward model (blue line) or the quadrature surrogates Mquad7,P 6

PC

(red line) and Mquad7,P 15
PC (green line) at s = 36 km at Marmande (a)

and s = 40 km (b)
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counterpart of Fig. 14a at s = 40 km. At Marmande, the
flow dynamics is mostly driven by Ks3 (Q has a smaller
impact as shown in Fig. 15). The flow dynamics is com-
plex since the bathymetry and the river width strongly vary
locally, the nonlinearities are strong and the estimation of
the PDF requires a high total polynomial degree P for the
PC-expansion as shown in Fig. 14a. When the bathymetry
is smooth, the relation between water level and the input
parameters is fairly linear so that the water level PDF is
smooth. In this case, a PC-expansion of total polynomial
degree P = 6 provides a satisfying description of the PDF
(the PDF estimated with Mquad7,P 6

PC is close to that com-
puted with a MC approach—similar results are obtained up
to Marmande).

These results demonstrate that the PC-expansion strategy
can be used to formulate a surrogate for the SWE solved by
the forward model over the Garonne River reach between
Tonneins and La Réole. The surrogate is built with respect to
the most significant sources of uncertainty using the quadra-
ture method to compute the coefficients. The required total
polynomial degree is higher when the flow becomes more
complex.

Figure 15 displays Sobol’ indices for Q (SQ, black curve)
and Ks3 (SKs3

), red curve). Upstream of Marmande, the
flow is dominated by the discharge, while it is dominated by
the friction downstream of Marmande. At the downstream
boundary condition where the rating curve is imposed, the
water level variability is totally explained by the discharge.
The water level variance shown in Fig. 12 (dashed line) is
about 0.5 m2 in the upstream part of the river, it increases
to 2.5 m2 at Marmande and then decreases to 0.5 m2 at the

Fig. 15 Garonne River case in steady flow—first-order Sobol’ indices
computed with the quadrature surrogate Mquad7,P 6

PC parameterized
with respect to Q (black solid line) and Ks3 (red solid line) over the
Garonne reach. The vertical dashed lines represent the 3 limits of the
friction coefficient zones (Marmande is located at s = 36 km)

downstream boundary condition, which is non negligible
when the water level it self is about 10 m. This means that
the discharge and the friction coefficient are truly signifi-
cant sources of uncertainties and their errors translate into a
significant water level error.

Covariance Estimation for Data Assimilation The esti-
mation of covariance matrices is a major research topic in
the field of data assimilation research. The stochastic esti-
mation of these statistics for water level is a limiting point
for the efficient use of data assimilation in a real time con-
text. The formulation of the Kalman gain matrix relies on
the estimation of the water level error covariance matrix that
describes the spatial correlation between the errors along the
river. The use of the PC-surrogate in place of the forward
model allows for a significant cost reduction for stochas-
tic estimate of these statistics, which are here formulated
using the PC coefficients directly (Eqs. 33–30) and thus
avoid re-sampling errors. Figure 16a displays the water level
correlation matrix along the 60-km Garonne River reach
that is estimated using the retained quadrature surrogate
Mquad7,P 6

PC and parameterized with respect to Q and Ks3

only. These correlations are estimated with an error on the
order of 10−7 with respect to those estimated with a classi-
cal MC approach based on NMC = 105 evaluations of the
forward model as displayed in Fig. 16b. Each column of
the matrix describes the water level error correlation func-
tions for a given curvilinear abscissa. We recall here that
the surrogate model is formulated with respect to the pre-
dominant uncertain variables for water level at Marmande
and downstream. The covariance matrix analysis is thus
fully legitimate in this area and only partially informative
upstream of Marmande. By definition, the correlation is
equal to 1 at the location points where the correlations are
expressed and decreases when moving away to the other
grid points along the channel.

We first analyze the correlation function for the upstream
location (for instance s = 15 km) where the error in water
level is dominated by the error in Q as shown in Fig. 15
with SQ = 0.9 and SKs3

= 0.1. The surrogate is formu-
lated only with respect to Q and Ks3 . As a consequence,
the downstream boundary condition prescribed with a rating
curve that relates Q to h has a strong influence on the cor-
relation function so that the correlation increases with the
curvilinear abscissa close to the downstream boundary.

On the contrary, at Marmande (s = 36 km) and its neigh-
boring, the error in water level is dominated by the error
in Ks3 with SQ = 0.85 and SKs3

= 0.15. As a conse-
quence, the downstream boundary condition has a lesser
impact on the water level error correlation function in the
downstream part of the river (Fig. 15 shows that the Sobol’
index SKs3

drops in the end of the reach to be zero at the
downstream boundary condition). The correlation remains
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Fig. 16 Garonne River case in steady flow. a Water level correlation
matrix over the 60-km Garonne reach estimated with the retained sur-
rogate Mquad7,P 6

PC (P = 6, n = 2 with x = [Q, Ks3 ]T ). The colorbar
represents the correlation in the water level error for each pair of grid
points along the reach. b Error on the water level correlation matrix
estimated Mquad7,P 6

PC with respect to the correlation computed with a
MC sampling EMC over NMC = 105

close to 1 over a large section (approximately 20 km around
Marmande) as the influence of Ks3 is homogeneous over the
section (Ks3 remains around 0.8). Same analysis holds for
s = 40 km.

In the EnKF, the correlation matrix evolves over time
to represent the spatially-distributed and temporally-dependent
flow patterns. Estimating this correlation matrix through the
use of a PC-surrogate (using only 49 MASCARET evaluations

of the water level) is thus a promising approach to reduce the
cost of the EnKF, while representing the correlations with
accuracy.

5 Conclusions and Perspectives

We investigated the use of a gPC-expansion strategy for
hydraulic modeling of subcritical steady flows, both on an
idealized channel test case and on a reach of the Garonne
River. In this study, the surrogate is used for uncertainty
propagation and sensitivity analysis in place of the MAS-
CARET forward model solving the SWE. A major con-
clusion of this work is that the model output covariance
matrix estimated with the reduced model build from a lim-
ited number of MASCARET evaluations is more reliable
than that estimated with a classical MC approach with the
same training budget.

The gPC-expansion was formulated with respect to two
random variables, the friction coefficient of the river bed
(Ks) and the upstream discharge (Q), on a hybrid basis com-
bining Legendre and Hermite polynomials. The polynomial
coefficients were computed with a quadrature method based
on MASCARET evaluation at the roots of the basis poly-
nomials. The validation of the surrogate is carried out using
�2 error metrics defined in the space of the simulated water
level as well as in the space of the polynomial coefficients.
These metrics are computed either over an independent
sample, thus requiring additional MASCARET evaluations
than those necessary to the construction of the surrogate, or
within the training set via the LOO error metric.

On the idealized rectangular channel with uniform
slope (backwater curves), it was shown that the statistical
moments for the water level are efficiently estimated with a
reduced model built from a small number of MASCARET
evaluations. On the Garonne River case, where the (steady)
flow is governed by the SWE that represent a system of
hyperbolic partial differential equations, the dimension of
the stochastic space was reduced with a LAR method con-
sisting on a sparse evaluation of the coefficients. The Sobol’
indices indicate that, at Marmande, the water level statistics
are driven by the upstream discharge and the friction coef-
ficient of the section where Marmande is located (Ks3 ). A
surrogate model of total polynomial degree equal to 6 and
parameterized with respect to Q and Ks3 only was there-
fore formulated using the quadrature method based on 49
MASCARET evaluations. While a gPC-expansion of total
polynomial degree 6 suffices to properly estimate the first
statistical moments (especially the mean, the variance, and
the covariance matrix that are mandatory in the context
of data assimilation), the estimation of the PDF requires a
higher polynomial degree in areas where the flow dynamics
is complex.
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The limitations of this work should be investigated
in future work with respect to the applicability of the
gPC-expansion, for instance when non linearities become
stronger or when the flow becomes critical and presents dis-
continuities [5, 36]. Adapted strategies such as Kriging or
radial basis functions should be proposed.

The main perspective for this work is to extend the gPC-
strategy to unsteady flows and identify how often the PC-
surrogate should be re-computed according to the time scales
of the flow dynamics. This is a crucial step for the complemen-
tary use of surrogate model within data assimilation algo-
rithms as the main objective is real-time flood forecasting.
To begin with, the classification between the uncertainty
sources (provided by sensitivity analysis for instance) can
change in time and the surrogate model should eventually be
formulated with respect to different variables over time. When
the uncertain input variables include a time-varying variable
(for instance the upstream discharge), its representation as
a random variable may lead to high-dimensional problems
and should thus be reduced for instance with a Karhunen-
Loève approach that consists in separating the random pro-
cess from the time (or space) dimension. When the obser-
vation contains significant information, the PDF established
from the previous assimilation cycle is no longer representa-
tive of the current PDF due to the error temporal variability.
The surrogate should be improved (in this case, the total
polynomial degree of the gPC-expansion is increased). In
the framework of EnKF, the errors are supposed to follow
Gaussian PDFs, and only the first and second moments of
the PDF should be updated along the assimilation cycles.
The validity of the previously-established surrogate is then
linked to the flow dynamics and the temporal evolution of
the model errors. To some extent, it may be necessary to
adapt the polynomial basis along the assimilation cycles.

An additional perspective lies in the assimilation of spa-
tially distributed observations such as remote sensing data,
for instance from the upcoming SWOT mission that will
provide a high resolution and global coverage of water ele-
vation adapted to the observation of rivers wider than 250 m.
Water elevation maps will be available every 4 to 5 days at
mid-latitude. The assimilation of these data in complement
with in situ data seems very promising for model calibra-
tion and improvement of prediction capability. Since data
will be spatially distributed and since the Kalman gain in
the EnKF relies on the estimation of the parameter/model
state error statistics, the surrogate should thus be formu-
lated at different locations of the hydraulic network, where
the nature of the uncertainties may differ. Hypothesis on
the error distributions should be made eventually dissoci-
ating the random process issued from the spatial issue as
previously mentioned regarding time dimension.

Future work also includes the investigation of advanced
strategy when the dimension of the uncertain space increases.

In hydraulics, the bathymetry is a major source of uncertainty
and the spatial field should be corrected. gPC-expansion
methods are limited by the quadrature rule that requires
too many forward model evaluations for its crude imple-
mentation. Several studies have investigated the use of gPC
for high-dimensional problem; the merits of such solutions
should be demonstrated in the field of open-channel flows.

Acknowledgements The financial support provided by CNES and
EDF R&D is greatly appreciated. The authors acknowledge Michael
Baudin, Anne Dutfoy, Anne-Laure Popelin, Géraud Blatman and
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écoulements à surface libre en rivière. Equations de Saint-Venant
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