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Abstract

We propose an efficient dual augmented La-
grangian formulation to learn conditional ran-
dom fields (CRF). Our algorithm, which can
be interpreted as an inexact gradient descent
algorithm on the multiplier, does not require
to perform global inference iteratively, and
requires only a fixed number of stochastic
clique-wise updates at each epoch to obtain a
sufficiently good estimate of the gradient w.r.t.
the Lagrange multipliers. We prove that the
proposed algorithm enjoys global linear con-
vergence for both the primal and the dual
objectives. Our experiments show that the
proposed algorithm outperforms state-of-the-
art baselines in terms of speed of convergence.

1 Introduction

Learning in graphical models has historically relied
on the computation of the (sub)gradient of the log-
likelihood w.r.t. to the canonical parameters, which
requires to solve a MAP or probabilistic inference prob-
lem at each iteration. This approach is slow given
that the inference problem is itself computationally
expensive. The difficulty of inference and learning in
graphical models is related to the fact that the log-
partition function is in general intractable.

Recent progress on the optimization problems whose
objective is a large finite sum of convex terms has
shown that they could be optimized very efficiently by
stochastic algorithms that sample one term at a time
(Defazio et al., 2014; Roux et al., 2012; Shalev-Shwartz
and Zhang, 2016). It turns out that the dual objective
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of the maximum likelihood estimation of CRF (a.k.a.
the maximum entropy principle) decomposes additively
over all cliques if a decomposable entropy surrogate is
used. Even though this dual formulation has a potential
to take advantage of stochastic algorithms, and can be
optimized without resorting to solve a global inference
on the entire graph per iteration, all dual parameters
(i.e. mean parameters) are coupled by the marginal
polytope constraints, which are in general intractable.
Even its most commonly used relaxation, namely the
local consistency polytope, is itself in practice difficult
to optimize over. Recently, Meshi et al. (2015a,b)
proposed to replace the marginalization constraints,
which are part of the local consistency polytope, by
quadratic penalty terms. The relaxed problem has then
only separable constraints over the cliques that makes
it possible to use efficient block coordinate optimization
schemes.

Following these ideas, we consider a dual formulation
for CRF learning in which the marginalization con-
straints are replaced by an augmented Lagrangian term,
and the intractable Shannon entropy is replaced by
a quadratic surrogate so that stochastic dual coordi-
nate ascent (SDCA) can be used to optimize over the
mean parameters, with similar guarantees as in Shalev-
Shwartz and Zhang (2016). We finally show that by
periodically updating the Lagrangian multipliers as
we are optimizing the relaxed dual, we can gradually
enforce the marginalization constraints, while retaining
global linear convergence. In terms of the primal prob-
lem associated with the Lagrange multipliers, our algo-
rithm is an inexact gradient descent algorithm using
stochastic approximation of the multiplier gradients.

Our paper is organized as follows. We review CRF
learning in Section 3. A dual augmented Lagrangian
formulation is presented in Section 4. The proposed
algorithm is presented in Section 5, followed by its
convergence analysis in Section 6. Finally, we present
experiments on three applications in Section 7 (Most no-
tations used in the paper can be found in Appendix F).
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2 Related Work

Due to the independent interest of inference problem
in discrete graphical models, in particular in computer
vision, a significant amount of work has been devoted
to develop efficient approximate inference algorithms
(Komodakis et al., 2007; Martins et al., 2015; Savchyn-
skyy et al., 2011; Sontag et al., 2008). However, the
learning problem is not necessarily easier (can even fail
to converge) with an approximate inference approach
as the subroutine (Kulesza and Pereira, 2007).

There is a large body of research on efficient algorithms
for structured learning. For the max-margin formula-
tion, the fastest algorithms to date rely on block coordi-
nate Frank-Wolfe updates (Lacoste-Julien et al., 2013;
Meshi et al., 2015b; Tang et al., 2016). Using dual de-
composition in the inner inference problem, Hazan and
Urtasun (2010); Komodakis (2011); Meshi et al. (2010)
proposed to solve the classical saddle-point formula-
tion for structured learning problem with algorithms
that alternate between message passing and model pa-
rameter updates. Going further Meshi et al. (2015b);
Yen et al. (2016) work on a purely dual formulation to
enable clique-wise updates. For maximum likelihood
learning, exponentiated gradient and its block variants
can be applied (Collins et al., 2008). Other recent work
have relied on incremental algorithms (Schmidt et al.,
2015) and the fact that the Gauss-Southwell rule can
be applied efficiently for coordinate descent in some
forms of graphical models (Nutini et al., 2015).

The BCMM algorithm of Hong et al. (2014) which
uses stochastic block coordinate updates inside ADMM
inspired our approach. But our algorithm performs
multiple passes over all blocks before updating the
multiplier; and we prove stronger convergence rates.

We list related structured learning methods with their
main characteristics in Table 1 in Appendix B.5.

Yen et al. (2016) is the most similar work to ours: the
proposed algorithm constructs greedily an (initially
sparse) working set of cliques, which is incremented at
each epoch, while we perform stochastic updates on
all cliques and possibly several passes over the data
between each update of all Lagrange multipliers. Also,
our work is leveraging the connection with SDCA, and
we prove both linear convergence in the primal and
the dual whereas Yen et al. (2016) prove only linear
convergence in the dual. Finally, our algorithm is
outperforming other methods in experiments.

3 CRF Learning

A discrete conditional random field (CRF) is a family
of conditional distributions over a vector of discrete

random variables Y := (Y1, . . . , Ym) given the obser-
vation X. The form of the CRF is assumed to be a
product of local functions (a.k.a. factors or clique func-
tions) that each depends on only a small number of
random variables (i.e. a clique). If there exists multi-
ple cliques that share the same local function, then we
group cliques by clique types. Specifically, let wτ ∈ Rdτ
be the parameter vector associated with the clique type
τ ∈ T , where T is the set of clique types. Let C denote
the set of all cliques, and Cτ the set of cliques of type
τ ∈ T . Note that each clique c has a unique clique
type, which we denote by τc. With these notations the
density function of the CRF can be written as

p(y|x;w) :=
1

Z(x,w)

∏
τ∈T

∏
c∈Cτ

exp
(
〈wτ , φc(x, yc)〉

)
,

where w = (wτ )τ∈T ; we denoted Z(x,w) the partition
function and φc(x, yc) ∈ Rdτc the feature map for clique
c. Since all random variables are discrete, we use a
one-hot vector yi ∈ Yi := {u ∈ {0, 1}ki : ‖u‖1 = 1} to
represent the value of Ys. Here ki is the cardinality of Yi.
For a clique c, the value for the corresponding random
variables is yc = ⊗i∈c yi ∈ Yc :=

⊗
i∈c Yi, where ⊗

(resp.
⊗

) denotes the tensor product of vectors (resp.
of spaces). Similarly, y ∈ Y is of the form y = ⊗i∈V yi.
W.l.o.g., we consider in the paper only cliques of size at
most 2, that is C = V∪E , with V and E respectively the
set of nodes and of edges of the graph; the framework
generalizes easily to higher-order cliques. Notations
used in the paper are listed in Appendix F.

3.1 CRF as exponential family

Given a sample (x(n), y(n)), for each clique c, let
η
(n)
c (w) := [〈wτc , φc(x(n), yc)〉 : yc ∈ Yc]; then a nat-
ural parameter for the exponential family form of
the conditional distribution p(y | x(n)) is η(n)(w) :=

[η
(n)
c (w) : c ∈ C]. The associated sufficient statis-

tics is T (y) := [yc : c ∈ C], and 〈η(n)(w), T (y)〉 =∑
c〈η

(n)
c (w), yc〉. With these notations, p(y | x(n)) has

the exponential family form:

p
(
y | η(n)(w)

)
= exp

[
〈η(n)(w), T (y)〉 − F

(
η(n)(w)

)]
,

where F (η) := log
∑
y exp〈η, T (y)〉 = logZ(x(n), w) is

the log-partition function.

Given i.i.d. samples {(x(n), y(n))}1≤n≤N , the maximum
likelihood estimator for w is computed by the maxi-
mizing

∑
n log p(y(n) | x(n);w). Using the exponential

family representation, we can rewrite this problem in
two equivalent forms:

max
w

N∑
n=1

[
〈η(n)(w), T (y(n))〉 − F

(
η(n)(w)

)]
,
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and minw
∑N
n=1 F

(
θ(n)(w)

)
with θ(n)(w) another nat-

ural parameter obtained via the affine transforma-
tion θ(n)(w) = η(n)(w) − 〈η(n)(w), T (y(n))〉1. Alter-
natively, by defining Ψ(n) as a sparse block matrix with
|T | × |C| blocks, whose (τc, c)-th block is the matrix
Ψ

(n)
c ∈ Rdτc×kc with

Ψ(n)
c = [φc(x

(n), yc)− φc(x(n), y(n)c ) : yc ∈ Yc],

we have θ(n)c (w) = Ψ
(n)
c

ᵀ
wτc and θ(n)(w) = Ψ(n)ᵀw.

W.l.o.g., we assume N = 1 and drop the superscript
(n) from now on, since one may view N graphs as a
single large graph with several connected components.

Regularized maximum likelihood estimation with a
regularization constant λ > 0 is thus formulated as

min
w
F
(
θ(w)

)
+
λ

2
‖w‖22. (1)

In order to extend this formulation to cover as well
max-margin learning (i.e., structured SVMs), we con-
sider the loss-augmented CRF learning introduced by
Pletscher et al. (2010) and Hazan and Urtasun (2010),
which leads to a slightly generalized formulation:

min
w
γF
(
1
γ θ`(w)

)
+
λ

2
‖w‖22, (2)

where θ`(w) := θ(w) + ` is then the natural parameter,
with ` =

[
[`c(y

?
c , yc) : yc ∈ Yc] : c ∈ C

]
the user-defined

loss and γ ∈ (0,+∞) the temperature hyperparame-
ter. For a derivation for the loss-augmented CRF see
Appendix A.

It is well known that the cost of gradient descent to
optimize either (1) or (2) (for γ > 0) is prohibitive
since ∇wτF (θ(w)) =

∑
c∈Cτ Ψc Eθ[Yc] involves an ex-

pectation over the exponentially large space Y. To
exploit the underlying structure of the function F it is
useful to work on the dual problem. Indeed, since F
is convex, it has a variational representation based on
conjugate duality:

F (θ) = max
µ
〈µ, θ〉 − F ∗(µ),

where F ∗ is the Fenchel conjugate of F , and the dual
variable µ called the mean parameter is defined by
µ = (µc)c∈C with µc = Eθ[Yc]. The set of valid mean
parameters form the so called marginal polytope M,
which is defined as the convex hull of {T (y) : y ∈
Y}. Moreover, if let HShannon(µ) denote the Shannon
entropy of a CRF with mean parameter µ, it is a
classical result (Wainwright, 2008, Thm 3.4) that

F ∗(µ) = −HShannon(µ) + ιM(µ),

where ιM(µ) equal to 0 if µ ∈M and +∞ otherwise.

4 Relaxed Formulations

In this section, we derive general relaxed dual, primal
and corresponding saddle-point formulations for the
CRF learning problem: first, we use the classical local
polytope relaxation (Sec. 4.1). Second, we further relax
the marginalization constraints via an augmented La-
grangian (Sec. 4.2). Third, we propose a surrogate for
the entropy, which is decomposable, and retains good
properties even when the aforementioned constraints
are relaxed (Sec. 4.3). The resulting formulation is
convex and is amenable to fast optimization algorithm
that are presented in Section 5.

4.1 Classical local polytope relaxation

Both M and HShannon(µ) are in general intractable
due to the exponentially large structured-output space
Y and they are typically replaced by decomposable
surrogates.

It is common to relaxM to the local consistency poly-
tope (Wainwright, 2008)

L :=
{
µ ∈ I :

∑
yj∈Yj

µij(yi, yj) = µi(yi),∀{i, j}∈E ,∀yi
}
,

where I denotes the Cartesian product of simplex con-
straints on each clique. Note that L ⊇ M, since any
set of true marginals must satisfy the simplex con-
straints and the marginalization constraints, but not
vice versa. Equivalently, if we define Ai = Iki⊗1

ᵀ
ki
, the

equality constraints can be written in a matrix form
as µi − Aiµij = 0 for all {i, j} ∈ E . Combining all
equations, we have Aµ = 0, where A is a |E|× |C| block
matrix (see Appendix F). So, we have equivalently
L = I ∩ {µ : Aµ = 0}.

Since HShannon is also intractable for graphs with large
tree-width, we will use an approximationHApprox which
will be constructed so as to be defined and concave on
the whole set I. We propose several entropy approxi-
mations suited to our needs in Section 4.3.
Definition 1. Let FI and FL be the counterparts of F
obtained by relaxingM to I and L respectively, which,
in other words, are the Fenchel conjugates of F ∗I and
F ∗L when these are defined by HApprox:

FI(θ`) := max
µ
〈µ, θ`〉 − F ∗I (µ),

FL(θ`) := max
µ
〈µ, θ`〉 − F ∗L(µ),

where F ∗I (µ) := −HApprox(µ) + ιI(µ) andF ∗L(µ) :=
F ∗I (µ) + ι{Aµ=0}.

Replacing F with FL in (2) yields the relaxed primal

P (w) := γFL
(
1
γ θ`(w)

)
+
λ

2
‖w‖22. (3)
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The corresponding dual objective function is given by

D(µ) := 〈µ, `〉 − γF ∗L(µ)− 1

2λ
‖Ψµ‖22. (4)

See Appendix B.1 for a derivation.

4.2 A dual augmented Lagrangian

It is difficult to optimize D(µ), since the optimization
requires some form of projection onto L, which can be
shown to be equivalent to perform graph-wise marginal
inference (Collins et al., 2008). The difficulty is due to
the coupling equality constraint Aµ = 0. Meshi et al.
(2015b) proposed to relax ι{Aµ=0} by a quadratic term
1
2ρ‖Aµ‖

2
2, which corresponds to employ the penalty

method (Bertsekas, 1982). They argue that it is not
crucial to enforce exact Aµ = 0 in learning, since the
relaxed problem works well in practice and enables an
efficient optimization with only clique-wise updates.
However, the penalty method is known to have issues
associated with the choice of ρ: unless we use a care-
fully designed scheduling to update ρ, for a reasonably
small ρ, the algorithm will be slow; on the other hand,
using a large fixed value of ρ degrades the problem to
independent logistic regression problems, and, thereby,
leads to suboptimal solutions.

Instead, we propose to solve problem (4) as a saddle
problem of the form maxµ minξDρ(µ, ξ) where Dρ is
the augmented Lagrangian

Dρ(µ, ξ) :=
[
〈`, µ〉 − γF ∗I (µ) + 〈ξ, Aµ〉

]
−
[ 1

2ρ
‖Aµ‖22 +

1

2λ
‖Ψµ‖22

]
, (5)

with ξ is the Lagrangian multiplier and ρ > 0.

Using duality again, we can derive an associated relaxed
primal objective

P̃ρ(w, δ, ξ) := γFI

(θ`(w) +Aᵀδ

γ

)
+
λ

2
‖w‖22+

ρ

2
‖δ−ξ‖22,

so that min(w,δ) P̃ρ(w, δ, ξ) is a primal problem associ-
ated with the dual problem maxµDρ(µ, ξ).

Strong duality between these two problems yields a
representer theorem

w? = − 1

λ
Ψµ?, δ? = ξ? − 1

ρ
Aµ? (6)

which provides a duality gap

gap(w, δ, µ, ξ) := P̃ρ(w, δ, ξ)−Dρ(µ, ξ)

for the convergence of the maximization of Dρ(µ, ξ)
with respect to µ. Moreover, it is easy to check

that minξ,δ P̃ρ(w, δ, ξ) = P (w) because minδ FI(θ(w) +
Aᵀδ) = FL(θ(w)) for any w (see Appendix B.2). This
shows that w? defined in (6) is also an optimum of the
original primal problem minw P (w). As a consequence,
if a sequence µt converges to µ? then the corresponding
wt = − 1

λΨµt converges to a solution of (2). For more
details, see Appendix B.

4.3 Gini entropy surrogate

We seek a concave entropy surrogate HApprox that de-
composes additively on the cliques. Since the constraint
Aµ = 0 is relaxed, we need a surrogate well defined
on the whole set I. The Bethe entropy (Yedidia et al.,
2005) is generally non-concave. Its concave counter-
parts, such as the tree-reweighted entropy (Wainwright
et al., 2005) or the region-based entropy (London et al.,
2015; Yedidia et al., 2005), are only concave on the
local consistency polytope, but non-concave on I.

Moreover, a generic difficulty with these entropies is
that they do not have Lipschitz gradients, which pre-
vents the direct application of proximal methods with
usual quadratic proximity terms. We thus propose a
coarse but convenient entropy surrogate of the form:

HApprox(µ) =
∑
c∈C

hc(µc) with hc(µc) := (1−‖µc‖22).

Another surrogate with the same separable form is
the second-order Taylor expansion of the oriented tree-
reweighted entropy (OTRW, Globerson and Jaakkola,
2007) around the uniform distribution. This surrogate
is also concave on I (although not strongly concave)
and smooth. Preliminary experiments however did
not show that using this more sophisticated entropy
improved the results. See Appendix C for more details.

5 Algorithm

Given the form of the entropy surrogate proposed, Dρ

decomposes as a sum of convex separable terms over
the block associated to cliques plus a smooth term:

Dρ(µ, ξ) = −
∑
c∈C

f∗c (µc)− r(µ) with (7)

f∗c (µc) := −γhc(µc) + ι4c(µc)

r(µ) := −〈Aᵀξ + `, µ〉+
1

2λ
‖Ψµ‖2 +

1

2ρ
‖Aµ‖2,

where 4c := {µc ∈ Rdc+ | µᵀ
c1 = 1} is the canonical

simplex. It can thus be maximized efficiently by a
block-coordinate proximal scheme, such as the proxi-
mal stochastic dual coordinate descent (SDCA, Shalev-
Shwartz and Zhang, 2016), which has linear conver-
gence guarantees both in the primal and the dual.
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Algorithm 1 IDAL scheme
1: Input: Tin, Tex, ε
2: Initialize: µ̂0

c = 1
kc
1 for all c ∈ C and ξ1 = 0

3: for t = 1, . . . , Tex do
4: µ̂t = A(µ̂t−1, Tin, t)
5: Stop if Gt ≤ ε and ‖Aµ̂t‖2 ≤ ε
6: ξt+1 = ξt − 1

Ld
Aµ̂t

7: end for
8: Output: µ̂Tex , ξTex

Algorithm 2 SDCA version of A(µ, Tin, t)

1: µt,0 = µ
2: for s = 1, . . . , Tin do
3: Draw a clique c uniformly at random
4: µt,sc = Prox 1

Lc
f∗
c

(
µt,s−1c − 1

Lc
∇µcr(µt,s−1)

)
5: µt,s−c = µt,s−1−c
6: end for
7: Output: µt,Tin

To solve minξ maxµDρ(µ, ξ) we thus propose an algo-
rithm similar to the block coordinate method of mul-
tipliers (BCMM) of Hong et al. (2014): perform dual
stochastic block coordinate ascent (SDCA) on the vari-
ables µc to partially maximize Dρ(µ, ξ) in µ and regu-
larly take a gradient descent step in ξ. Our algorithm, is
an inexact dual augmented Lagrangian (IDAL) method,
in the sense that it is an inexact gradient descent algo-
rithm on the function ξ 7→ d(ξ) := maxµDρ(µ, ξ). To
be precise, if at epoch t, ξ takes the value ξt and µ̂t−1
is the value of µ from the previous epoch, Algorithm 2
takes Tin stochastic block-coordinate proximal gradient
steps on µ to obtain µ̂t. Denoting Lc the Lispchitz
constant of r w.r.t. µc, µc is then updated by a partial
gradient step, and an application of the proximal op-
erator of 1

Lc
f∗c . Then, by Danskin’s theorem1, applied

to equation (5), we have that Aµ̂t is an approximate
gradient of d(ξt), and so, Algorithm 1 updates ξ with
ξt+1 = ξt − 1

Ld
Aµ̂t, where Ld is the Lispchitz con-

stant of d(ξ). As for the stopping criteria, we use
Gt := gap(w(µ̂t), δ(µ̂t, ξt), µ̂t, ξt) ≤ ε and ‖Aµ̂t‖2 ≤ ε,
where w(µ̂t), δ(µ̂t, ξt) are defined via the representer
theorem (6) (see Appendix B.4).

6 Convergence Analysis

In this section, we study the convergence rate of our
algorithm. First, we show that if we use an iterative
and linearly convergent algorithm A to approximately
solve minµDρ(µ, ξ), and if we use warm starts, that is,
following the notations of the previous section, we use
µ̂t−1 as the initial value to solve minµDρ(µ, ξ

t), then

1(see e.g. Bertsekas, 1999, Prop. B.25)

running A for a fixed number of iterations is sufficient
to guarantee global linear convergence in the primal
and in the dual. We show that SDCA or simple block-
coordinate proximal gradient descent are applicable as
the algorithm A.

6.1 Conditions for global linear convergence

To study the convergence, we consider:

• µ̄t := µ?(ξt) = argmaxµDρ(µ, ξ
t).

• µt,s, the value of µ after s inner steps at epoch t.

• µ̂t := µt,Tin the value of µ at the end of epoch t.

• Dρ-suboptimality: ∆s
t := Dρ(µ̄

t, ξt)−Dρ(µ
t,s, ξt),

with at the end of each epoch ∆̂t := ∆Tin
t = ∆0

t+1.

• d-suboptimality: Γt := d(ξt)− d(ξ?).

Lemma 1 (Linear convergence of the outer itera-
tion). Let A be an algorithm that approximately solves
maxµDρ(µ, ξ

t) in the sense that

∃β ∈ (0, 1), E[∆̂t] ≤ β E[∆0
t ].

Then, ∃κ ∈ (0, 1) characterizing d(ξ) and C > 0, such
that, if λmax(β) is the largest eigenvalue of the matrix

M(β) =

[
6β 3β
1 1− κ

]
,

then after Tex iterations of Algorithm 1 we have∥∥∥∥E[∆̂Tex ]
E[ΓTex ]

∥∥∥∥ ≤ C λmax(β)Tex

∥∥∥∥E[∆̂0]
E[Γ0]

∥∥∥∥ .
The constant κ in the theorem is of the form κ = τ

Ld
with Ld the Lipschitz constant of d(ξ) and τ a restricted
strong convexity constant for d(ξ) obtained by Hong
and Luo (2017) (see Lemma D.3 in Appendix D.2).
Corollary 1. If A is a linearly convergent algorithm
with rate π and if it is run for Tin iterations, such that,
for some β : λmax(β) < 1, we have (1−π)Tin ≤ β, then
E[∆̂t] and E[Γt] converge linearly to 0.

Note that linear convergence of the expectations implies
that ∆t and Γt converge linearly to 0 almost surely, as
a classical consequence of Markov’s inequality and the
Borel-Cantelli lemma. We will show in the next section
that when A is SDCA it is linearly convergent.

Note that the convergence of the gaps ∆t and Γt imply
the linear convergence for the augmented Lagrangian
formulation, in the following sense:
Corollary 2. Let D∞(µ) :=〈`, µ〉−γF ∗I (µ)− 1

2λ‖Ψµ‖
2
2,

so that we have D(µ) = D∞(µ)− ι{Aµ=0}. If ∆t and
Γt converge linearly to 0, then |D∞(µ̂t)−D∞(µ?)| and
‖Aµ̂t‖22 both converge to 0 linearly.
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Furthermore, if A is linearly convergent as in Corol-
lary 2, the algorithm is linearly convergent in terms of
the total number of inner steps (for SDCA this is the to-
tal number of clique updates) performed by algorithms
A throughout:

Corollary 3. With the notations of the previous corol-
lary, for any β ∈ (0, 1) such that λmax(β) < 1, it is
possible to obtain E[∆̂t] ≤ ε and E[Γt] ≤ ε with a total
number of inner iterations Ttot := TinTex such that

Ttot ≥
log(β)

log λmax(β) log(1− π)
log(ε).

We show in Appendix D.4 that to have λmax(β) < 1
we should have β = ακ with α < 1

3(1+2κ) .

To reason in terms of rate, if the rate of convergence is
r then we should have Ttot ≥ log(ε)

log(1−r) . So identifying
the rate of convergence of the algorithm yields r =

1 − exp
( log(1−π) log(λmax(β))

log(β)

)
. If α and κ are not too

large, we can get a simplified expression for the rate,
characterized as follows.

Corollary 4. Let ∆?
t Tin+s

:= ∆s
t + Γt. If κ < 1

2 and
α = 1

12 , if Tin ≥
log(ακ)
log(1−π) , then, there exist a constant

C ′ > 0 such that after a total of s inner updates, we
have

E[∆?
s] ≤ C ′

(
1− κπ

2 log(12/κ)

)s
.

6.2 Convergence results with SDCA

Given the structure of Dρ, if the functions f∗c in (7) are
strongly convex, a good candidate for A is stochastic
dual coordinate ascent (SDCA). Indeed, the results of
Shalev-Shwartz and Zhang (2016) show that

Proposition 1. If A is SDCA, let |C| be the total
number of cliques, σc the strong convexity constant of
f∗c , and Lc the Lipschitz constant of µc 7→ r(µ), then A
is linearly convergent with rate π = minc∈C

σc
|C|(σc+Lc) .

Moreover SDCA allows us to bound the duality gap by
the increase of Dρ, which yields linear convergence in
the primal.

Proposition 2. Let ŵt = w(µ̂t). If A is SDCA, then

E[P (ŵt)− P (w?)] ≤ 1

π
E[∆̂t] + E[Γt].

For the sake of the natural surrogates for the entropy
(like the Gini-OTRW entropy proposed in Appendix C),
individual functions f∗c are not strongly convex, al-
though −Dρ is strongly convex, because the entropy
surrogate is strongly concave on L and the term ‖Aµ‖2
is strongly convex on Ker(A)⊥. In that case another
decomposition is relevant: if σ is the strong convexity

constant of −Dρ, then let f̃∗c (µc) = ι4c(µc) + σ‖µc‖22
and r̃(µ) = −HApprox(µ) + r(µ) − σ‖µc‖22. We again
have Dρ(µ) = −

∑
c∈C f̃

∗
c (µc)− r̃(µ), with f̃∗c strongly

convex and r̃ convex and smooth. SDCA and its theory
are here applicable again and guarantees that Proposi-
tion 1 and following hold. However, for the convergence
in the primal a slightly different argument is needed.

Proposition 3. Let wt,s = w(µt,s). If A is a linearly
convergent algorithm and the function µ 7→ −Happrox +
1
2ρ‖Aµ‖

2
2 is strongly convex, then P (wt,s)−P (w?) con-

verges to 0 linearly.

6.3 Discussion

Optimization with inexact gradients (Devolder et al.,
2014) and inexact proximal operators (Schmidt et al.,
2011) have been shown to yield the same convergence
rate as their exact counterparts, provided that errors
decrease at a certain rate. Linear convergence of an
inexact augmented Lagrangian method in which both
inner and outer optimizations use Nesterov’s acceler-
ated gradient descent is shown in Lan and Monteiro
(2016). We use the same ideas, except that we leverage
the large finite sum structure of the dual problem to
use randomized algorithms. The use of warm-start is
also similar to its use in the meta-algorithm proposed
by Lin et al. (2017), who use inexact gradient descent
on the Moreau-Yosida regularization of a non-smooth
objective. In our context, this approach would actually
be applicable by working on Pρ(w, ξ) instead of work-
ing in the dual. An investigation in this direction is of
interest but beyond the scope of this paper.

7 Experiments

We evaluate our algorithm IDAL on three different CRF
models including 1) a simulated Gaussian mixture Potts
model with grid graph and two clique types (nodes and
edges); 2) a semantic segmentation model with planar
graph and two clique types (nodes and edges); 3) a
multi-label classification model with fully-connected
graph and unique clique type for all cliques.

We compare with algorithms using only clique-wise
oracles for solving minξ maxµDρ(µ, ξ), namely, the soft-
constrained block-coordinate Frank-Wolfe algorithm
(SoftBCFW) by Meshi et al. (2015b) and the greedy
direction method of multipliers (GDMM) algorithm by
Yen et al. (2016). Note that SoftBCFW in fact solves
only the special case maxµDρ(µ, ξ ≡ 0), thus it will
converge to a different point than IDAL. In addition,
we include a third baseline for the special case using
SDCA (referred as SoftSDCA). Since SoftBCFW and
GDMM have been shown outperforming other baselines
such as Lacoste-Julien et al. (2013), Meshi et al. (2010)
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Figure 1: The comparison between IDAL and other baselines. For the choices of hyperparameters in terms of
accuracy and speed, we set (λ = 10, ρ = 1, γ = 1) for Gaussian mixture Potts, (λ = 10, ρ = 1, γ = 10) for semantic
segmentation and (λ = 1, ρ = 0.1, γ = 1) for multi-label classification. The x-axis is running time in seconds.

and Hazan and Urtasun (2010), we will not make an
extensive comparison for all these algorithms.

7.1 Setup

Gaussian mixture Potts models This is an ex-
tension of the Potts model given observations, whose
conditional density function is defined via Bayes’ rule
p(y|x) ∝ p(x|y)p(y), with p(y) a Potts distribution

associated with a grid graph and parameterized by
wbinary ∈ Rk2 , and with p(x|y) =

∏
i p(xi|yi) assumed

to factorize into independent conditional Gaussian dis-
tributions with canonical parameters wunary ∈ R2k,
i.e., p(xi|yi) ∝ exp(〈wunary(yi), [xi, x

2
i ]〉). We consider

a 10× 10 grid graph with node cardinality k = 5. To
generate the data, we first draw the label y from p(y),
and then the observation xi is generated from the condi-
tional Gaussian p(xi|yi) for each node. The simulated



SDCA-Powered Inexact Dual Augmented Lagrangian Method for Fast CRF Learning

dataset contains 100 samples and is equally divided for
training and testing.

Semantic image segmentation We consider a typ-
ical CRF model used in computer vision for label-
ing image pixels with semantic classes. The graph
is built upon clustering pixels into superpixels. Each
superpixel defines a node. Two superpixels with a
shared boundary define an edge. The CRF model
takes the form p(y|x) ∝ exp

(∑
i w

ᵀ
unaryψi(x, yi) +∑

i,j w
ᵀ
binaryψij(x, yi, yj)

)
, where ψi(x, yi) measure the

intra-cluster compatibility within the superpixel i, and
ψij(x, yi, yj) measure the inter-cluster compatibility be-
tween superpixels i and j. We conduct the experiment
on the MSRC-21 dataset introduced by Shotton et al.
(2006), which has 21 classes, 335 training images and
256 testing images.

Multi-label classification The task for this prob-
lem is assigning each input vector a set of binary target
labels. It is natural to model the inter-label depen-
dencies by CRFs that treat each label as a node in
a fully connected label graph. Following Finley and
Joachims (2008), we define the CRF density function
as p(y|x) ∝ exp(

∑
i w

ᵀ
i φi(x, yi) +

∑
i,j w

ᵀ
ijφij(yi, yj)),

where the feature maps are specified as φi(x, yi) = yi⊗x
for each node and φij(yi, yj) = yi ⊗ yj for each edge.
We conduct the experiments on the Yeast dataset2,
which contains 1500 training samples and 917 testing
samples. Each sample has 14 labels and 103 attributes.

Hyperparameters In theory, Tin could be very large
depending on the choice of α and the condition number
π. We find that in practice only a relatively small
Tin is needed. We empirically choose Tin = 1

2 |C|. We
set the number of outer iterations Tex = 3000 and
the stopping threshold ε = 10−3. The ranges of λ is
pre-defined as {10, 1.0, 0.01, 0.001} and the range of
γ is {100.0, 10.0, 1.0, 0.001}. For each experiment, we
choose the best λ and γ in terms of the validation
accuracy and a reasonable running time (not all ex-
periments finished in 3000 outer iterations). We set
ρ = 1.0 or ρ = 0.1 as in Meshi et al. (2015b).

7.2 Results

To compare IDAL with GDMM, we use the cri-
terion Pρ(ŵ

t, δ̂t, ξt) − Dρ(µ̂
t, ξt) + Pρ(ŵ

t, δ̂t, ξt) −
Dρ(µ̄

Tex , ξTex), which is an upper bound of the theoret-
ical quantity ∆̂t + Γt that we analyzed. To compare
IDAL with SoftBCFW, since ξ = 0 for SoftBCFW, we
use the criterion Dρ(µ̂

t, ξ?), in which ξ? is obtained
from running IDAL to convergence. Besides, we also

2http://sourceforge.net/projects/mulan/files/
datasets/yeast.rar

use the criteria ‖Aµ̂t‖2 (it measures the convergence
of d(ξ), since ∇d(ξt) ' Aµ̂t) and the testing accuracy,
which are applicable for all three algorithms. The
results are shown in Figure 1.

There are several interesting points that we can say
based on the results: 1) by tightening the marginaliza-
tion constraints Aµ = 0, it does help to gain a better
testing accuracy (e.g., IDAL gains small improvements
over SoftBCFW); 2) based on the curves of Dρ(µ, ξ

?),
we can see that it is key to approach µ? by first obtain-
ing ξ?, which again shows the importance of enforcing
exactness of the local consistency polytope; 3) IDAL
is shown to be a faster algorithm than GDMM. One
possible reason is that GDMM is in fact an active-set
algorithm, which means the number of updated cliques
at very beginning is insufficient comparing to IDAL.
Based on our analysis, we have shown that the qual-
ity of the approximate gradient Aµ̂t depends on Tin.
Therefore, it is very likely that GDMM suffers from a
slow convergence because of the poor gradients.

8 Conclusion

We proposed a relaxed dual augmented Lagrangian
formulation for CRF learning, in which, thanks to dual
decomposition, SDCA can be used to partially optimize
over mean parameters in order to yield a sufficiently
good approximation of the multiplier gradient. Our
theoretical analysis shows that if warm-starts are lever-
aged and multiplier gradients are approximated with a
linearly convergent algorithm, global linear convergence
can be obtained. If SDCA is used, linear convergence
is obtained both in the primal and for the convergence
of the dual Lagrangian method.

Comparing to other baselines such as GDMM and
SoftBCFW, our algorithm is faster in terms of the
distance to the optimal objective function value (i.e.
∆̂t + Γt) and the feasibility of the constraints ‖Aµ‖22.

It would be of interest to investigate the use of the
same dual augmented Lagrangian formulation for both
inference and learning, since according to Wainwright
(2006), this should improve the performance.

In future work, we intend to investigate applications to
other problems in machine learning, the use of Nesterov
acceleration or quasi-Newton methods for multiplier
updates, or the connection to other approaches based
on Moreau-Yosida regularization.
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Supplementary Material for
SDCA-Powered Inexact Dual Augmented Lagrangian Method

for Fast CRF Learning

A Loss-Augmented CRF
In order to extend our learning formulation so as to encompass as well max-margin structured learning (i.e.,
structured SVM) in additional to maximum likelihood learning, we show in this section that our formulation
can be generalized to cover the loss-augmented CRF learning introduced by Pletscher et al. (2010) and Hazan
and Urtasun (2010).

The loss-augmented CRF pγ(y | y?, x) is an extension of the standard CRF with additional user-
defined loss functions `c(y?c , yc) for all cliques and an extra temperature hyperparameter γ ∈ (0,+∞). We
introduce a modified natural parameter η`(w) := η(w) + ` (similarly we have θ`) that includes the loss term
` =

[
[`c(y

?
c , yc) : yc ∈ Yc] : c ∈ C

]
. The density function of the loss-augmented CRF then takes the form

pγ(y | y?, x;w) = exp
(
〈η`(w)/γ, T (y)〉 − F (η`(w)/γ)

)
. (1)

A justification for the form of the loss-augmented CRF is based on a rationale that distinguishes the label
to predict y (which is essentially true unknown label) from the label provided by the annotation y?. The
assumption made is then that, given yc, the annotation y?c is independent of x and yc′ for c′ 6= c. This entails
that p(y, y?|x) = pγ(y | y?, x) ∝ p(y | y?)pγ(y | x), which yields the above form for pγ(y | y?, x;w) by Bayes’
rule for p(y | y?) ∝ exp(

∑
c∈C `c(y

?
c , yc)).

For learning, we use a rescaled maximum likelihood objective (i.e., multiplied by γ) of the form

min
w
γF
(

1
γ θ`(w)

)
+
λ

2
‖w‖22, (2)

with which we can see γ only affects the entropy term in the variational representation of F , thus it plays a
role to determine the learning regime. When γ → 0, we retrieve a max-margin formulation for structured
output learning, since the corresponding variational problem based on Fenchel duality is

min
w

max
µ∈M
〈µ, θ`〉+

λ

2
‖w‖22. (3)

Note that this is identical to the linear programming relaxation of the structured SVM formulation studied
by Meshi et al. (2010).

It is also possible to retrieve the maximum likelihood regime by making a change of variable: w′ = w/γ.
Then, (2) becomes

min
w′

F
(
θ(w′) +

1

γ
`
)

+
λγ

2
‖w′‖22. (4)

Increasing γ decreases the effect of the loss term and simultaneously increases the effect of the regularization.
The maximum likelihood regime is thus retrieved by letting γ → +∞ and λ→ 0.

1



B Derivations of dual, and relaxed primal and dual objectives
In this section, we derive the dual objective D(µ) of P (w). Given the augmented Lagrangian Dρ(µ, ξ), we first
introduce a relaxed primal P̃ρ(w, δ, ξ) involving a new primal variable δ whose components can be interpreted
as messages exchanged between cliques in the context of marginal inference via message-passing algorithms.
The partial minimization with respect to δ then yields the corresponding primal of Dρ(µ, ξ) with respect to µ
for a fixed ξ: Pρ(w, ξ) := minδ P̃ρ(w, δ, ξ), which can be interpreted as a Moreau-Yoshida smoothing of the
original objective Pρ(w).

B.1 Derivation of the dual objective D(µ)

Given that θ`(w) = Ψᵀw + ` and introducing the Fenchel conjugate of FL, we have

P (w) = γFL

( 1

γ
θ`(w)

)
+
λ

2
‖w‖22

= max
µ∈L

[
〈Ψᵀw + `, µ〉 − γF ∗L(µ)

]
+
λ

2
‖w‖22.

Given that the local polytope constraints are defined by linear inequalities, weak Slater constraint qualification
are satisfied, so that strong duality holds and an equivalent dual problem in µ is obtained by switching the
order of minw and maxµ:

D(µ) = 〈`, µ〉 − γF ∗L(µ) + min
w

[
〈Ψᵀw, µ〉+

λ

2
‖w‖22

]
= 〈`, µ〉 − γF ∗L(µ)− λmax

w

[
− 1

λ
〈Ψµ,w〉 − 1

2
‖w‖22

]
= 〈`, µ〉 − γF ∗L(µ)− 1

2λ
‖Ψµ‖22.

B.2 Derivation of an extended primal P̃ρ(w, δ, ξ)

Proposition 4. For a fixed ξ, the primal objective function of Dρ(µ, ξ) takes the form

Pρ(w, ξ) := min
δ

[
P̃ρ(w, δ, ξ) := γFI

(θ(w) +Aᵀδ

γ

)
+
λ

2
‖w‖22 +

ρ

2
‖δ − ξ‖2

]
.

Proof. Clearly, we have D(µ) = minξDρ(µ, ξ). For a fixed value of ξ, consider the Lagrangian

Lρ,ξ(µ, ν, ν
′, w, δ) = 〈`, µ〉 − γF ∗I (µ)− 1

2λ
‖ν‖2 − 1

2ρ
‖ν′‖2 + 〈ξ, ν′〉+ 〈w,Ψµ− ν〉+ 〈δ, Aµ− ν′〉;

Then clearly minw,δ Lρ,ξ(µ, ν, ν
′;w, δ) = Dρ(µ, ξ). We compute the associated primal as

P̃ρ(w, δ, ξ) = max
µ,ν,ν′

Lρ,ξ(µ, ν, ν
′, w, δ)

= max
u

[
〈µ, `+ Ψᵀw +Aᵀδ〉 − γF ∗I (µ)

]
+ max

ν

[
〈ν,−w〉 − 1

2λ
‖ν‖2

]
+ max

ν′

[
〈ν′, ξ − δ〉 − 1

2ρ
‖ν′‖2

]
,

which yields the desired form of Pρ(w, ξ) = minδ P̃ρ(w, δ, ξ) upon expliciting Fenchel conjugates.

Proposition 5.

min
δ
FI
(
1
γ (θ(w) +Aᵀδ)

)
= FL

(
1
γ θ(w)

)
and min

ξ,δ
P̃ρ(w, δ, ξ) = P (w).
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Proof. We have

min
δ
FI
(
1
γ (θ(w) +Aᵀδ)

)
= min

δ
max
µ

( 1

γ
〈θ(w) +Aᵀδ, µ〉+HApprox(µ)− ιI(µ)

)
= max

µ

( 1

γ
〈θ(w), µ〉+HApprox(µ)− ιI(µ)− ι{Aµ=0}

)
= FL

(
1
γ θ(w)

)
,

where the second equality follows by exchanging minimization and maximization (strong duality holds by
Slater’s conditions) and minimizing with respect to δ.

To show that minξ,δ P̃ρ(w, δ, ξ) = P (w), it is easy to minimize over ξ first, which cancels out the term
ρ
2‖δ − ξ‖

2 by setting ξ = δ. Then, δ only appears in FI and the result follows from the first result.

B.3 Interpretation as Moreau-Yosida smoothing
To understand the structure of Pρ(w, ξ), we shall look at P̃ρ(w, δ, ξ). One may be interested in where does δ
comes from? In fact, forming the Lagrangian of minw P (w) with Lagrangian multiplier δ corresponding to
the marginalization constraint Aµ = 0, we see that

L(w, δ, µ) :=〈θ`(w), µ〉 − γF ∗I (µ) +
λ

2
‖w‖22 + 〈δ, Aµ〉.

Recall that the Moreau-Yosida regularization of a function f is defined as the infimal convolution

Mρf (x) = min
z

[
f(z) +

ρ

2
‖z − x‖2

]
.

Both Pρ(w, ξ) and Dρ(µ, ξ) have a nice interpretation in terms of the Lagrangian L and Moreau-Yosida
regularization. Note that the Moreau-Yosida regularization admits the same optimum as the original function,
and that it is smooth even when the original function is not. It is furthermore γρ

γ+ρ -strongly convex if the
original function is γ-strongly convex.

Proposition 6. Pρ(w, ξ) and Dρ(µ, ξ) are respectively the Moreau-Yosida regularizations of Lµ? : w, δ 7→
maxµ L(w, δ, µ) and Lw? : µ, δ 7→ minw L(w, δ, µ) about δ. that is

Pρ(w, ξ) = MρLµ? (w, ξ) = min
δ

[
max
µ

L(w, δ, µ) +
ρ

2
‖δ − ξ‖22

]
Dρ(µ, ξ) = MρLw? (µ, ξ) = min

δ

[
min
w
L(w, δ, µ) +

ρ

2
‖δ − ξ‖22

]
.

Proof. For Pρ(w, ξ), note that maxµ L(w, δ, µ) ≡ γFI
(
θ(w)+Aᵀδ

γ

)
+λ

2 ‖w‖
2
2. The equivalent form is immediately

derived from Proposition 4.
For Dρ(µ, ξ), note that minw L(w, δ, µ) ≡ 〈θ, µ〉 − γF ∗I (µ)− 1

2λ‖Ψµ‖
2 + 〈δ, Aµ〉, and minδ〈δ, Aµ〉+ ρ

2‖δ −
ξ‖2 ≡ 〈ξ, Aµ〉 − 1

2ρ‖Aµ‖
2
2. Thus, the equivalence holds.

Note that the penalty formulation corresponds to a special case of P̃ρ(w, δ, ξ) and Dρ(µ, ξ) with ξ = 0. It
introduces an additional term ρ

2‖δ‖
2, thus making the primal strongly convex with respect to δ and the dual

smoother in µ. This effect is similar to that of using Moreau-Yosida smoothing. However, the additional
term ρ

2‖δ‖
2 will never vanish, so Aµ = 0 will never be satisfied. The more Aµ = 0 is violated, the less the

structure of CRF will be perserved.
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B.4 Duality gaps and representer theorem
Besides, if we define gap(w, δ, µ, ξ) := P̃ρ(w, δ, ξ)−Dρ(µ, ξ) as an upper-bound estimate of the duality gap
Pρ(w, ξ)−Dρ(µ, ξ), specifically

gap(w, δ, µ, ξ) =
[
γFI

(
1
γ θ`(w) +Aᵀδ

)
+ γF ∗I (µ)− 〈θ`(w) +Aᵀδ, µ〉

]
+
[λ

2
‖w‖2 +

1

2λ
‖Ψµ‖2 − 〈−w,Ψµ〉

]
+
[ρ

2
‖ξ − δ‖2 +

1

2ρ
‖Aµ‖2 − 〈ξ − δ, Aµ〉

]
,

we can see that the recovered w and δ by the optimality condition make the 2nd and 3rd term of gap(w, δ, µ, ξ)
disappear. We will see later this is important in designing the algorithm to solve maxµDρ(µ, ξ).

Finally, we give a rough picture of all the quantities that we introduced in this section, which can be
easily derived from Proposition 6.

Corollary 5. The relations between D, Dρ, P and Pρ could be summarized as

D(µ) ≤ Dρ(µ, ξ) ≤ Pρ(w, ξ);
Dρ(µ) ≤ P (w) ≤ Pρ(w, ξ) ≤ P̃ρ(w, δ, ξ);
max
µ

min
ξ
Dρ(µ, ξ) ≤ min

w
P (w),

with equalities hold for the saddle point (µ?, w?, ξ?). Moreover, the first-order optimality conditions are given
as

w? = − 1

λ
Ψµ?, δ? = ξ? − 1

ρ
Aµ? (5)

Proof. By constructions, D(µ) = minξDρ(µ, ξ) ≤ Dρ(µ, ξ) and Pρ(w, ξ) = minδ P̃ρ(w, δ, ξ) ≤ P̃ρ(w, δ, ξ).
Other inequalities are the consequences of Proposition 6 and the min-max inequality. Since the strong duality
holds (Slater conditions satisfied and the problem is convex), we know that the equalities will hold at the
saddle point.

Given the saddle point (µ?, w?, ξ?), to derive w?, δ? from µ?, we know that w?, δ? = arg minw,δ P̃ρ(w, δ, ξ
?).

The result follows after computing ∇wP̃ρ(w, δ, ξ?) = 0 and ∇δP̃ρ(w, δ, ξ?) = 0.

So our strategy for CRF learning is minξ maxµDρ(µ, ξ), since we know that

Dρ(µ
?, ξ?) ≡ L(w?, δ?, µ?) ≡ P (w?).

Since we work on the space of µ and ξ, to compute the primal objectives or the duality gap, we can use
the mapping specified by the optimality condition (5). More precisely, we define

w(µt,s) = − 1

λ
Ψµt,s, δ(µt,s, ξt) = ξt − 1

ρ
Aµt,s,

which is equivalent to the representer theorem. The above condition is also useful to recover intermediate
wt,s from µt,s, which allows us to test on the validation set or decide if we should stop the learning earlier.

B.5 Comparison with State-of-the-Art Structured Learning Methods
A number of recent works for CRF learning can be viewed as optimizing formulations which are exactly or
fairly close to one of P (w), D(µ), Pρ(w, δ), P̃ρ(w, δ, ξ) or Dρ(µ, ξ). In the following table, we compare these
approaches, in terms of the optimization formulation, the convergence rate (respectively in the primal or in
the dual), and the inference oracle used for computing the gradients (or blockwise gradients).
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Table 1: The Comparison of Structured Learning Methods
Method Learning Regime Primal/Dual Convergence Inference Oracle
Meshi et al. (2010) SSVM Primal (w, δ) Sublinear graphwise MAP (inexact)
Hazan and Urtasun (2010) LossAugCRF Primal (w, δ) Sublinear graphwise marginal (inexact)
Lacoste-Julien et al. (2013) SSVM Dual (µ) Sublinear graphwise MAP
Schmidt et al. (2015) CRF Primal (w) Linear graphwise marginal
Tang et al. (2016) CRF Dual (µ) Sublinear graphwise MAP
Meshi et al. (2015) SSVM (soft) Dual (µ, ξ = 0) Sublinear cliquewise MAP
Yen et al. (2016) SSVM Dual (µ, ξ) Linear cliquewise MAP
IDAL LossAugCRF Dual (µ, ξ) Linear cliquewise marginal

C Gini Oriented Tree-Reweighted Entropy
The Bethe entropy (Yedidia et al., 2005) is generally non-concave. Its concave counterparts, such as the tree-
reweighted entropy (Wainwright et al., 2005) or the region-based entropy (London et al., 2015; Yedidia et al.,
2005), are only concave on the local consistency polytope, but non-concave on I\L (i.e., when Aµ 6= 0). Indeed,
the Bethe entropy and its concave variants are of the form HBethe(µ) =

∑
i∈V ciHi(µi) +

∑
{i,j}∈E cijHij(µij),

where ci and cij are counting numbers. Even when HBethe is concave on L, some of the ci or cij can be
negative.

The construction of the oriented tree-reweighted entropy stems from the expression of the entropy of a
directed tree as the sum of of the entropy of the root and the conditional entropies of the variable at each
node given their parent variable. Precisely, for an oriented tree T with the root i0, the joint entropy can be
computed as

HT (Y ) := H(Yi0) +
∑

j→i∈T
H(Yi | Yj). (6)

On a general graph, if T is a (directed) spanning tree of the graph, then

HT (Y ) := H(Yi0) +
∑
t→i∈T

H(Yi | Yj) ≥ H(Yi0) +

m∑
k=1

H(Yik | Yik−1
, . . . , Yi0) =: HShannon(Y ). (7)

Thus, for any probability distribution over the set of valid directed spanning trees, in which tree T has
probability ρT , the inequality above entails that HShannon(Y ) ≤

∑
T ρTHT (Y ) =: HOTRW(Y ), where ρT ≥ 0

and
∑
T ρT = 1.

HT (Y ) is concave since it is a sum of concave functions, and so is HOTRW(Y ) (who is a convex combination
of HT (Y )). To see that, we need to prove the following fact.

Fact 1 (Concavity of the conditional entropy). The conditional entropy H(Yj | Yi) is in fact a function of
µij, namely H(Yj | Yi) = H(µij)−H(Aiµij). Moreover, H(Yj | Yi) is a concave function of µij.

Proof. By definition,

H(Yj | Yi) =
∑
yj ,yi

µij(yj , yi) log

∑
yj
µij(yj , yi)

µij(yj , yi)
= H(µij)−H(Aiµij).

To show H(Yj | Yi) is concave, we compute its Hessian:

∂2H(Yj | Yi)
∂µ2

ij

= −diag
(
1� µij

)
+Aᵀdiag

(
1�Aµ

)
A

= −diag
(
1� µij

)
+ diag

(
{ 1

µ̃i(yi)
11ᵀ}kiyi=1

)
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where µ̃i = Aiµij , and � denotes entrywise division. Let’s focus on the i-th block of the negative Hessian.
To show that the i-th block is positive semidefinite, that is, that

diag
({ 1

µij(yi, yj)

}
1≤yj≤kj

)
− 1

µ̃i(yi)
11ᵀ � 0, (8)

we can use the Schur complement condition for positive semidefiniteness. Let U = µ̃i(yi). Since µ̃i(yi) � 0,

L−BᵀU−1B � 0 iff

[
U B
Bᵀ L

]
=

[
µ̃i(yi) 1ᵀ

1 diag
(
{ 1
µij(yi,yj)

}1≤yj≤kj
)] � 0.

We also have L = diag
({

1
µij(yi,yj)

}kj
yj=1

)
� 0, then[

U B
Bᵀ L

]
� 0 iff U −BL−1Bᵀ = µ̃i(yi)− 1ᵀdiag

(
{µij(yi, yj)}

kj
yj=1

)
1 = µ̃i(yi)− µ̃i(yi) � 0.

Because the last inequality holds, we know (8) must be true, which implies that the Hessian of H(Yj | Yi) is
negative semidefinite, thus H(Yj | Yi) is concave.

Note that HOTRW(µ) is concave on the entire set I, unlike many Bethe entropy variants who are only
concave in the local consistency polytope.

We define
−→
E the directed edge set by expanding each edge from E with two directed edges, ρi and ρi|j

respectively as the probabilities of i (as the root) and i→ t appearing in an oriented spanning tree when the
latter is drawn with probability ρT . Then the oriented tree-reweighted entropy takes the form

HOTRW(µ) :=
∑
{i,j}∈E

ρj|i
[
He(µij)−Hi(Aiµij)

]
+ ρi|j

[
He(µij)−Hj(Ajµij)

]
+
∑
i∈V

ρiHi(µi), (9)

whereHi(µi) = −
∑
yi
µi(yi) logµi(yi),He(µij) = −

∑
yi,yj

µi(yi, yj) logµi(yi, yj) and ρi, ρi|j , ρj|i are node/edge
appearance probabilities in [0, 1]. HOTRW is concave, since Hi is concave and it can be checked that so
is µij 7→ He(µij) − Hi(Aiµij) (although not strongly concave). It is easy to precompute the appearance
probabilities ρi and ρi|j via a variant of the directed matrix-tree theorem. See Koo et al. (2007) for more
details.

A generic difficulty with entropies, is that Hi and He do not have Lipschitz gradients, which prevents the
direct application of proximal methods with usual quadratic proximity terms. We thus propose to replace Hi

and He by their second-order Taylor approximation around the uniform distribution. This yields a surrogate
of the form

HGTRW(µ) :=
∑
{i,j}∈E

ε
[
kiρj|i‖Aiµij‖2 + kjρi|j‖Ajµij‖2

]
− kikj(ρi|j + ρj|i)‖µij‖2 +

∑
i∈V

kiρi(1− ‖µi‖2), (10)

where ε = 1. Since this function is not strongly convex w.r.t. µij because kjIki − A
ᵀ
iAi has a non-trivial

kernel, so we also consider variants with ε < 1 and denote them HGTRW,ε. We call this approximation the
Gini OTRW entropy, since it is consistent with the definition of Gini conditional entropy of Furuichi (2006).

D Proof of Lemma 1 and associated lemma
To prove Lemma 1, we first need to show d(ξ) is a smooth function, and then we build up the associated
lemmas which will be used in the proof of Lemma 1. Finally, in the end of this section, we prove Corollary 2
as a result to show the linear convergence in the primal.
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D.1 Smoothness of d(ξ)
Lemma D.1. (Hong and Luo, 2017, Lemma 2.3) d(ξ) is convex and Ld-smooth, where Ld ≤ ρ.

Proof. By definition we have

Dρ(µ, 0) = −〈µ, `〉+ γF ∗I (µ) +
1

2λ
‖Ψµ‖2 +

1

2ρ
‖Aµ‖2.

We then have d(ξ) = maxµDρ(µ, ξ) = maxµ〈µ,Aᵀξ〉 − Dρ(µ, 0) so that if J(µ) := Dρ(µ, 0), then d(ξ) =
J∗(Aᵀξ) and d is a convex function by Fenchel conjugacy.

For any ξ1 and ξ2, denote by µ1 and µ2 the minimizers of Dρ(·, ξ1) and Dρ(·, ξ2) respectively. By convexity
of d(ξ) and the definition of subgradient, there exists s1 ∈ ∂F ∗I (µ1) and s2 ∈ ∂F ∗I (µ2) such that

Aᵀξ1 + `− γs1 −
1

λ
ΨᵀΨµ1 −

1

ρ
AᵀAµ1 = 0

Aᵀξ2 + `− γs2 −
1

λ
ΨᵀΨµ2 −

1

ρ
AᵀAµ2 = 0

By convexity of F ∗I (µ), we have
〈s1 − s2, µ1 − µ2〉 ≥ 0,

which together with the equations above yields

〈Aᵀ(ξ1 − ξ2)− 1

λ
ΨᵀΨ(µ1 − µ2)− 1

ρ
AᵀA(µ1 − µ2), µ1 − µ2〉 ≥ 0.

Hence,

〈ξ1 − ξ2, A(µ1 − µ2)〉 ≥ 1

λ
‖Ψ(µ1 − µ2)‖2 +

1

ρ
‖A(µ1 − µ2)‖2 ≥ 1

ρ
‖A(µ1 − µ2)‖2.

Now substituting ∇d(ξ1)−∇d(ξ2) = A(µ1 − µ2) into the above inequality and using the Cauchy-Schwarz
inequality yields

‖∇d(ξ1)−∇d(ξ2)‖ ≤ ρ‖ξ1 − ξ2‖.

That completes the proof.

D.2 Associated lemmas for Lemma 1
We first quantify in the next two lemmas how much D(µ, ξt) should be minimized in µ to provide a sufficiently
accurate approximate gradient that it guarantees descent on d.

Lemma D.2 (Error on the gradient). Denote µ̄t := µ?(ξt) = argminµD(µ, ξt); gt := ∇d(ξt) = Aµ?(ξt) and
ĝt := Aµ̂t. Let ∆̂t := Dρ(µ̄

t, ξt) − Dρ(µ̂
t, ξt). We have 1

2Ld
‖ĝt − gt‖2 ≤ ∆̂t, where Ld is the smoothness

constant of d.

Proof. Let d∗(y) = maxξ〈ξ, y〉 − d(ξ). Then, it can easily be checked by using the definition of d and
exchanging the order of maximization and minimization that d∗(y) = minµDρ(µ, 0) + ι{Aµ=y},

Since d is convex, we have d(ξ) = maxy〈ξ, y〉 − d∗(y), so that if y?(ξ) is a maximizer for fixed ξ we have

0 ∈ ξ − ∂d∗(y?(ξ))⇒ ξ ∈ ∂d∗(y?(ξ)).

The strong convexity of d∗(y) implies that, for all y,

d∗(y)− d∗(y?(ξ))− 〈ξ, y − y?(ξ)〉 ≥ 1

2Ld
‖y − y?(ξ)‖2.
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But for any µ, we have Dρ(µ, ξ) = 〈Aµ, ξ〉 −Dρ(µ, 0) ≤ 〈Aµ, ξ〉 − d∗(Aµ), and, for µ?(ξ), this inequality is an
equality, since we have Dρ(µ

?(ξ), ξ) = 〈y?(ξ), ξ〉 − d∗(y?(ξ)) and y?(ξ) = Aµ?(ξ). As a consequence, setting
y = Aµ, we have

Dρ(µ
?(ξ), ξ)−Dρ(µ, ξ) ≥

1

2Ld
‖Aµ−Aµ?(ξ)‖2

by definition of Dρ(µ, ξ). We conclude the proof by substituting µ with µ̂t and ξ with ξt.

Lemma D.3 (Guaranteed decrease on d). If we take inexact gradient on ξ with a fixed step size 1
Ld

, namely
ξt+1 = ξt − 1

Ld
ĝt, then

d(ξt)− d(ξt+1) ≥ τ

Ld
Γt − ∆̂t, (11)

where τ ∈ (0, Ld) satisfying 1
2τ ‖gt‖

2 ≥ Γt.

Proof. Since d(ξ) is Ld-smooth, we have

d(ξt+1)− d(ξt) ≤ 〈∇d(ξt), ξt+1 − ξt〉+
Ld
2
‖ξt+1 − ξt‖2

Using the gradient step and ∇d(ξt) = gt, the above inequality can be simplified as

d(ξt+1)− d(ξt) ≤ 〈gt,−1/Ldĝt〉+
Ld
2
‖1/Ldĝt‖2

=
1

2Ld

(
‖ĝt − gt‖2 − ‖gt‖2

)
. (12)

We notice that the error bound given by the Lemma 2.3 of Hong and Luo (2017) holds for d(ξ). Specifically,

∃τ ′ > 0, such that ‖∇d(ξ)‖ ≥ τ ′‖ξ − ξ?‖.

Since d(ξ) is Ld-smooth and ∇d(ξ?) = 0, we have

d(ξ)− d(ξ?) ≤ Ld
2
‖ξ − ξ?‖2 ≤ Ld

2τ ′
‖∇d(ξ)‖2,

which implies
1

2τ
‖gt‖2 ≥ Γt,

where τ = τ ′

Ld
. By using (12) and the above inequality on ‖gt‖2, we obtain

d(ξt)− d(ξt+1) ≥ 1

2Ld

(
‖gt‖2 − ‖ĝt − gt‖2

)
≥ τ

Ld
Γt − ∆̂t.

Since for each value of ξt the value and gradient of d(ξt) need to be computed approximately by
minimizing the augmented Lagrangian Dρ(·, ξt), and since the difference between two consecutive strongly
convex objectives is Dρ(µ, ξ

t) −Dρ(µ, ξ
t−1) = 〈ξt−1 − ξt, Aµ〉, which is a function that converges to zero

when if the sequence {ξt}t converges, a warm-restart strategy using µ̂t as the initial point to the subproblem
maxµDρ(µ, ξ

t+1) is beneficial, as characterized by the following lemma.

Lemma D.4 (Dual gap at warm start). Denote ∆0
t+1 := Dρ(µ̄

t+1, ξt+1) − Dρ(µ
t+1,0, ξt+1). If we let

µt+1,0 = µ̂t, then

∆0
t+1 ≤ (4 +

2

ω
)∆̂t + (1 + 2ω)Γt, ∀ω > 0. (13)
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Proof. By definition, we have Dρ(µ̄
t+1, ξt+1) = Dρ(µ

t+1,∗, ξt+1) = d(ξt+1). The initial gap of µ at iteration t
can then be decomposed as

∆0
t+1 = Dρ(µ̄

t+1, ξt+1)−Dρ(µ
t+1,0, ξt+1) + d(ξt)− d(ξt)−Dρ(µ̂

t, ξt) +Dρ(µ̂
t, ξt)

=
[
d(ξt)−Dρ(µ̂

t, ξt)
]

+
[
Dρ(µ̂

t, ξt)−Dρ(µ
t+1,0, ξt+1)

]
+Dρ(µ̄

t+1, ξt+1)− d(ξt)

=
[
Dρ(µ̄

t, ξt)−Dρ(µ̂
t, ξt)

]
+
[
Dρ(µ̂

t, ξt)−Dρ(µ̂
t, ξt+1)

]
+ d(ξt+1)− d(ξt)

= ∆̂t +
1

Ld
‖ĝt‖2 + d(ξt+1)− d(ξt)

Again, we used the gradient step ξt+1 = ξt − 1
Ld
ĝt, and recall that Aµ̂t = ĝt.

Now, we can bound the term ‖ĝt‖2 from above using the fact that

1

Ld
‖ĝt‖2 =

1

Ld

[
‖gt‖2 + 2〈gt, ĝt − gt〉+ ‖ĝt − gt‖2

]
≤ 1

Ld

[
(1 + ω)‖gt‖2 + (1 + 1/ω)‖ĝt − gt‖2

]
,

where the last inequality stems from the Cauchy-Schwarz inequality 〈gt, ĝt − gt〉 ≤ ‖gt‖ ‖ĝt − gt‖ and the fact
that for any any a, b ∈ R and ω > 0, we have 2ab ≤ ωa2 + b2/ω.

Combining the upper bound of d(ξt+1)− d(ξt) from (12), we get

∆0
t+1 ≤ ∆̂t +

3ω + 2

2ωLd
‖ĝt − gt‖2 +

2ω + 1

2Ld
‖gt‖2. (14)

Here, we can use again Lemma D.2 and the fact that 1
2Ld
‖gt‖2 ≤ Γt, which is due to the smoothness of d(ξ).

It follows that

∆0
t+1 ≤

(
4 + 2

ω

)
∆̂t +

(
1 + 2ω

)
Γt, ∀ω > 0.

D.3 Proof of Lemma 1
Combining Lemma D.3 and D.4, we now show that IDAL enjoys a linear convergence rate if we take a fixed
number of inner iterations to estimate the gradient.

Lemma 1 (Linear convergence of the outer iteration). Suppose we have an algorithm A to approximately
solve maxµDρ(µ, ξ

t) in the sense that

∃β ∈ (0, 1), E[∆̂t] ≤ β E[∆0
t ].

Then ∃κ ∈ (0, 1) characterizing d and C > 0 such that, for any ω > 0, after Tex gradient steps on ξ, the
suboptimalities ∆Tex

and ΓTex
are bounded from above:∥∥∥∥E[∆̂Tex ]

E[ΓTex ]

∥∥∥∥ ≤ C λmax(β)Tex

∥∥∥∥E[∆̂0]
E[Γ0]

∥∥∥∥ , where M(β) =

[
β(4 + 2

ω ) β(1 + 2ω)
1 1− κ

]
, (15)

and λmax(β) is the largest eigenvalue of M(β). Thereby, if β is chosen so that λmax(β) < 1, Algorithm 1 is
linearly convergent with a rate λmax(β).

Proof. Note that Γt+1 − Γt = d(ξt+1) − d(ξt). By using Lemma D.3, we have an upper bound on Γt+1 in
terms of Γt and ∆̂t, namely

Γt+1 ≤ ∆̂t + (1− κ) Γt with κ =
τ

Ld
. (16)
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On the other hand, we can also derive an upper bound on ∆̂t+1 in terms of Γt and ∆̂t. To achieve that, we
relate the inner problem with Γt by running the steps on µ until E[∆̂t+1] ≤ (1− π)TinE[∆0

t+1] ≤ β E[∆0
t+1],

which means Tin ≥ log β
log(1−π) . By Lemma D.4, we have

E[∆̂t+1] ≤ β E[∆0
t+1] ≤ β

(
4 + 2

ω

)
E[∆̂t] + β(1 + 2ω)E[Γt]. (17)

Combining (17) and (16), and taking expectations on both sides, we get[
E[∆̂t+1]
E[Γt+1]

]
≤M

[
E[∆̂t]
E[Γt]

]
(18)

Since by definition, all the elements of M are positive, we can telescope a sequence of matrix multiplications
to get [

E[∆̂Tex ]
E[ΓTex ]

]
≤M

[
E[∆̂Tex−1]
E[ΓTex−1]

]
≤ · · · ≤MTex

[
E[∆̂0]
E[Γ0]

]
(19)

Assuming the eigen decomposition of M takes the form M = PDP−1, then M t = PDtP−1. Applying norms
on both sides of the vector inequality, we have∥∥∥∥E[∆̂Tex

]
E[ΓTex

]

∥∥∥∥ ≤ ‖P‖op λmax(β)Tex‖P−1‖op
∥∥∥∥E[∆̂0]
E[Γ0]

∥∥∥∥ . (20)

Note that C = ‖P‖op‖P−1‖op is a constant.

Corollary 2. Let σ denote the strong convexity constant of µ 7→ Dρ(µ, ξ) and Ld the smoothness constant
of d. Assume that (‖ξt‖2)t∈N is almost surely bounded by a constant B. Then the squared residuals to the
constraint Aµ = 0 satisfy

1

2
‖Aµ̂t‖22 ≤ 2LdΓt +

2

σ
‖A‖2op∆̂t.

Furthermore, if we let D∞(µ) := 〈`, µ〉 − γF ∗I (µ)− 1
2λ‖Ψµ‖

2
2, so that we have D(µ) = D∞(µ)− ι{Aµ=0}, then

(given that µt ∈ I throughout the algorithm) the gap between the smooth part of the objective in µ̂t and at the
optimum can be bounded as follows

|D∞(µ̂t)−D∞(µ?)| ≤ B
√

2Ld Γt +B
‖A‖op√

σ

√
2∆̂t +

(
1 + 2

Ld
ρ

)
Γt +

(
1 + 2

‖A‖2op
ρσ

)
∆̂t.

Finally, if Γt and ∆̂t converge to 0 linearly then both the residuals ‖Aµ̂t‖22 and the gap in objective value
|D∞(µ̂t)−D∞(µ?)| converge to 0 linearly.

Proof. For the first inequality, by Fact D.1 we know that d is an Ld-smooth function. It is then a standard
result (see e.g. Nesterov, 2013, Thm 2.1.5) that we therefore have ‖∇d(ξt)‖22 ≤ 2Ld(d(ξt)− d(ξ?)) = 2LdΓt.
But since ∇d(ξt) = Aµ̄t, and using the strong convexity of µ 7→ Dρ(µ, ξ), we have

1

2
‖Aµ̂t‖22 ≤ ‖Aµ̄t‖22 + ‖A‖2op‖µ̄t − µ̂t‖22 ≤ 2LdΓt + 2

‖A‖2op
σ

∆̂t.

For the second inequality, by definition of D∞, we have Dρ(µ, ξ) := D∞(µ) + 〈ξ, Aµ〉 − 1
2ρ‖Aµ‖

2
2, and

D∞(µ?) = D(µ?).
But then

|D∞(µ̂t)−D∞(µ?)| = |D∞(µ̂t)−Dρ(µ̂
t, ξt)|+ |Dρ(µ̂

t, ξt)−Dρ(µ̄
t, ξt)|+ |Dρ(µ̄

t, ξt)−D∞(µ?)|

≤ |〈ξt, Aµ̂t〉|+ 1

2ρ
‖Aµ̂t‖22 + ∆̂t + Γt.
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but we then have |〈ξt, Aµ̂t〉| + 1
2ρ‖Aµ̂

t‖22 ≤ B‖Aµ̄t‖ + B‖A‖op‖µ̂t − µ̄t‖2 + 1
ρ (‖Aµ̂t‖22 + ‖A‖2op‖µ̂t − µ̄t‖22),

which yields the result using the same inequalities as before.
Finally, to show the implications of linear convergence, by Lemma 2.3 of Hong and Luo (2017), there

exists τ ′ > 0 such that ‖∇d(ξ)‖ ≥ τ ′‖ξ− ξ?‖. So that, since ‖∇d(ξt)‖22 ≤ 2LdΓt, we have that if the sequence
(Γt)t∈N is bounded then so is (ξt)t∈N. Letting B be a bound on ‖ξt‖ the previous statements shows the results.

D.4 Proofs of Corollaries 3 and 4 (Total number of iterations)

Corollary 3. To ensure that E∆̂t ≤ ε and EΓ̂t ≤ ε it is enough to run the algorithm for a total number of
inner iteration Ttot := TinTex such that

Ttot ≥
log(β)

log λmax(β) log(1− π)
log(ε)

Proof. To guarantee that (1− π)Tin < β requires that Tin ≥ log(1−π)
log(β) and to guaranteed that λmax(β)Tex < ε

requires similarly that Tex ≥ log(ε)
log(λ(β)) . Taking the product of these inequalities yields the result.

Corollary 4. Let ∆?
t Tin+s

:= ∆s
t + Γt. If κ < 1

2 and α = 1
12 , if Tin ≥

log(ακ)
log(1−π) , then, there exist a constant

C ′ > 0 such that after a total of i clique updates, we have

E[∆?
s] ≤ C ′

(
1− κπ

2 log(12/κ)

)s
.

Proof. Using solving the quadratic formula for the largest eigenvalue of a two-by-two matrix yields

λmax(β) = (1− κ+ 6β) +
√

(1− κ− 6β)2 + 12β.

It is immediate to verify that λmax(β) < 1 if and only if β < 1
3

κ
1+2κ . This shows that we need to choose

β = ακ with α < 1
3(1+2κ) . So in particular, if α < 1

9 , then the previous inequality is satisfied for any 0 < κ < 1.

Moreover, if κ ≤ 1
2 and α < 1

6 , we have λmax(β) = λmax(ακ) < 1 − κ(1 − 6α). Indeed, letting x = 3β,
and α′ = 3α, we have

2λmax(β) = (1− κ+ 2x) +
√

(1− κ− 2x)2 + 4x

= 1− κ+ 2x+
√

(1− κ)2 + 4xκ+ 4x2

= 1− κ+ 2α′κ+

√
(1− κ)2 + 4α′κ2 + 4α′2κ2

≤ 1− κ+ 2α′κ+

√
(1− κ)2 + 4α′κ(1− κ) + 4α′2κ2

≤ 2 (1− κ+ 6ακ).

Setting α = 1
12 , given that the rate r is r = 1− exp

( log(1−π) log(λmax(β))
log(β)

)
, we have

r ≥ 1− (1− π)
log(1−κ2 )
log( κ12 ) ≥

log(1− κ
2 )

log( κ12 )
π ≥ κ

−2 log( κ12 )
π,

where, for the second and the third inequality, we used the fact that log(1− z) ≥ z respectively for z = π and
for z = −κ2 .
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E Details of Algorithm A and convergence proofs for SDCA
In this section, we specify the detailed form of Dρ(µ, ξ), and show how to apply the proof scheme of Shalev-
Shwartz and Zhang (2016) to SDCA for the maximization of Dρ(µ, ξ) w.r.t. µ in order to prove Proposition
1. We first write a fully decomposed expression of Dρ(µ, ξ). We have:

Dρ(µ, ξ) =
∑
c∈C
〈`c, µc〉 − f∗c (µc)−

1

2λ

∑
τ∈T

∥∥∥ ∑
c∈Cτ

Ψcµc

∥∥∥2 − 1

2ρ

∑
e∈E
i∈e

‖µi −Aiµe‖2 +
∑
e∈E
i∈e

〈ξei, µi −Aiµe〉, (21)

where −f∗c (µc) = γhc(µc)− ι4c(µc).
We assume here that the entropy surrogate used is such that hc is σc-strongly concave w.r.t. µc.
In particular this corresponds to two possible choices:

• The naive Gini entropy, for which hc(µc) = (1− ‖µc‖22).

• The Gini-OTRW entropy (see Appendix C) for which, given positive numbers ρi, ρi|j and ρj|i for all
nodes and edges, we have

– hi(µi) = ρiki(1− ‖µi‖22) for i ∈ V
– hij(µij) = hi|j(µij) + hj|i(µij) for {i, j} ∈ E with hi|j(µij) = kiρi|j(ε‖Ajµij‖22 − kj‖µij‖22)

for ε < 1 which is σc-strongly concave in µc with σi = 2kiρi if i ∈ V else σ{i,j} = 2(1−ε)kikj(ρi|j +ρj|i).
(For ε = 1, the surrogate is not strongly concave, and a modification of the decomposition into a
separable terms and a smooth term must be used to leverage strong convexity: see the discussion in
Section 6.2 after Proposition 2).

The proof of convergence for SDCA is based on showing that the expected increase in dual objective
provides an upper bound on a measure of duality gap. For the problem, we are considering the gap of interest
is gap(w, δ, µ, ξ) := P̃ρ(w, δ, ξ)−Dρ(µ, ξ), which is an upper bound on the duality gap Pρ(w, ξ)−Dρ(µ, ξ). It
can be decomposed as follows:

gap(w, δ, µ, ξ) =
[
γFI(`+ Ψᵀw +Aᵀδ) + γF ∗I (µ)− 〈`+ Ψᵀw +Aᵀδ, µ〉

]
+
[λ

2
‖w‖2 +

1

2λ
‖Ψµ‖2 − 〈−w,Ψµ〉

]
+
[ρ

2
‖ξ − δ‖2 +

1

2ρ
‖Aµ‖2 − 〈ξ − δ, Aµ〉

]
(22)

=
[∑
c∈C

f∗c
(
1
γ θ̃c(w, δ)

)
+ f∗c (µc)− 〈θ̃c(w, δ), µc〉

]
+
[∑
τ∈T

λ

2
‖wτ‖2 +

1

2λ
‖
∑
c∈Cτ

Ψcµc‖2 − 〈−wτ ,
∑
c∈Cτ

Ψcµc〉
]

+
[∑
e∈E

∑
i∈e

ρ

2
‖ξei − δei‖2 +

1

2ρ
‖µi −Aiµi‖2 − 〈ξei − δei, µi −Aiµi〉

]
, (23)

where θ̃c is defined by

θ̃c(w, δ) :=


`i + Ψᵀ

i wτi +
∑
e3s

δei for c = i ∈ V,

`e + Ψᵀ
ewτe −

∑
i∈e

Aᵀ
i δei for c = e ∈ E .

(24)

We now proceed to characterize the progress of the algorithm at each iteration, and to that end, we
introduce appropriate notations. In particular, since ξ is fixed during the algorithm, we drop the dependance
on ξ in different functions: Denote the objective of the subproblem w.r.t. clique c as

Dρ,c(µc, µ
s
−c) := −f∗c (µc)− r(µc, µs−c), (25)
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with r defined by

r(µc, µ
s
−c) :=

1

2λ

∥∥∥ ∑
b∈Cτc\{c}

Ψbµ
s
b + Ψcµc

∥∥∥2 +


∑
e3c

1

2ρ
‖µi −Aiµse‖2 − 〈µi,

∑
e3i

ξei + `i〉, c = i ∈ V,

∑
i∈e

1

2ρ
‖µsi −Aiµe‖2 − 〈µe,−

∑
i∈e

Aᵀ
i ξei + `e〉, c = e ∈ E .

It is straightforward to show that r is convex and smooth with cliquewise smoothness constants

Li =
1

λ
eigmax(Ψᵀ

i Ψi) +
|{e : e 3 i}|

ρ
, i ∈ V and Le =

1

λ
eigmax(Ψᵀ

eΨe) +
1

ρ

∑
i∈e

eigmax(Aᵀ
iAi), e ∈ E .

The proof of convergence hinges on the following key lemma.

Lemma E.1. Taking one of the following updates on µc with µ−c fixed:

• µs+1
c = arg maxµc Dρ,c(µc, µ

s
−c).

• or, if u ∈ ∂fc(θ̃c(ws, δs)), where fc is the conjugate function of f∗c .

solve α̂ = arg max
α∈[0,1]

Dρ,c(µ
s
c + α(u− µsc);µs), and set µs+1

c = µsc + α̂(u− µsc).

Then, with π = minc∈C
σc

|C|(σc+Lc) , the following inequality holds

Ec[Dρ(µ
s+1, ξ)−Dρ(µ

s, ξ)] ≥ π Ec[P̃ρ(ws, δs, ξ)−Dρ(µ
s, ξ)], ∀ξ,

where ws, δs are updated to maintain the optimality conditions:

ws = − 1

λ
Ψµs, δs = ξ − 1

ρ
Aµs.

Proof. Letting D̆ρ,c be defined as,

D̆ρ,c(µc;µ
s) := −f∗c (µc)− r(µs)− 〈∇µcr(µs), µc − µsc〉 −

Lc
2
‖µc − µsc‖2,

we have D̆ρ,c(µc;µ
s) ≤ Dρ,c(µc), since µc 7→ r(µc, µ

s
−c) is Lc-smooth.

First, for the update µs+1
c = arg maxµc Dρ,c(µc, µ

s
−c), we have that, for any direction u− µsc and any step

size α ∈ [0, 1]

Dρ(µ
s+1, ξ)−Dρ(µ

s, ξ) = Dρ,c(µ
s+1
c , µs−c)−Dρ,c(µ

s
c, µ

s
−c)

≥ Dρ,c(µ
s
c + α(u− µsc), µs−c)−Dρ,c(µ

s
c, µ

s
−c)

≥ D̆ρ,c(µ
s
c + α(u− µsc);µs)−Dρ,c(µ

s
c, µ

s
−c). (26)

Showing the desired inequality for the second form of update thus implies the inequality for the first type of
update. Expliciting D̆ρ,c(µ

s
c + α(u− µsc);µs), we have

D̆ρ,c(µ
s
c + α(u− µsc);µs) =− f∗c (µsc + α(u− µsc))

− r(µs)− 〈∇µcr(µs), α(u− µsc)〉 −
α2Lc

2
‖u− µsc‖2. (27)

Since f∗c (u) assumed σc-strongly convex, we have

f∗c (µsc + α(u− µsc)) ≤ αf∗c (u) + (1− α)f∗c (µsc)−
σc
2
α(1− α)‖u− µsc‖22. (28)
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Combining (27) and (28), we obtain

D̆ρ,c(µ
s
c + α(u− µsc);µs) ≥ −α

(
f∗c (u)− f∗c (µsc) + 〈∇µcr(µs), u− µsc〉

)
− f∗c (µsc)− r(µs) +

(σc
2
α(1− α)− α2Lc

2

)
‖u− µsc‖2. (29)

Now, if we choose u ∈ ∂fc
(
−∇µcr(µs)

)
, by Fenchel conjugacy, it follows that

fc
(
−∇µcr(µs)

)
= −f∗c (u)− 〈∇µcr(µs), u〉.

One can easily see that θ̃c(ws, δs) = −∇µcr(µs) by maintaining the optimality conditions

∀c ∈ C : wsτc = − 1

λ

∑
b∈Cτ

Ψbµ
s
b, ∀e ∈ E , i ∈ e : δsei = ξei −

1

ρ
(µsi −Aiµse).

Thus, we can further simplify (29) as

D̆ρ,c(µ
s
c + α(u− µsc);µs)−Dρ,c(µ

s
c, µ

s
−c) ≥α

(
fc(θ̃c(w

s, δs)) + f∗c (µsc)− 〈θ̃c(ws, δs), µsc〉
)
, (30)

provided that σc
2 α(1− α)− α2Lc

2 ≥ 0, that is, 0 ≤ α ≤ σc
σc+Lc

.
The key observation is that

gap(w, δ, µ, ξ) =
∑
c∈C

fc(θ̃c(w, δ)) + f∗c (µc)− 〈θ̃c(w, δ), µc〉 (31)

if we maintain the optimality conditions. By using (31) and taking expectation Ec w.r.t. a uniform random
choice of the clique c on both sides of (30), we guarantee that, for α ∈ [0, σc

σc+Lc
],

Ec[Dρ(µ
s+1, ξ)−Dρ(µ

s, ξ)] ≥ Ec
[ α
|C|

gap(ws, δs, µs, ξ)
]
.

So, we can choose the maximum value σc
σc+Lc

for α. It follows that

Ec[Dρ(µ
s+1, ξ)−Dρ(µ

s, ξ)] ≥
(

min
c∈C

σc
|C|(σc + Lc)

)
Ec[ gap(ws, δs, µs, ξ)].

We can now prove Proposition 1.

Proposition 1. If A is SDCA, let |C| be the total number of cliques, σc the strong convexity constant of f∗c ,
and Lc the Lipschitz constant of µc 7→ r(µ), then A is linearly convergent with rate π = minc∈C

σc
|C|(σc+Lc) .

Proof. Denote ∆s
t := Dρ(µ̄

t, ξt) − Dρ(µ
t,s, ξt). Since we update µt,s to µt,s+1 using SDCA, according to

Lemma E.1, we have

Ec[∆s
t −∆s+1

t ] = Ec[Dρ(µ
t,s+1, ξt)−Dρ(µ

t,s, ξt)]

≥ π Ec[P̃ρ(w(µt,s), δ(µt,s, ξt), ξt)−Dρ(µ
t,s, ξt)]

≥ π Ec[Dρ(µ̄
t, ξt)−Dρ(µ

t,s, ξt)] = πEc[∆s
t ],

and π = minc∈C
σc

|C|(σc+Lc) . The above inequality implies that

Ec[∆s+1
t ] ≤ (1− π)Ec[∆s

t ] ≤ (1− π)s+1 Ec[∆0
t ].

The result follows if we set Tin = s+ 1.
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E.1 Proof of Propositions 2 and 3 (Linear convergence in the primal)
Proposition 2. Let ŵt = w(µ̂t). If A is SDCA, then

E[P (ŵt)− P (w?)] ≤ E[
1

π
∆̂t + Γt].

Proof. Recall that P (w?) = D(µ?) = Dρ(µ
?, ξ?) by Corollary 5.

P (wt,s)− P (w?) = P (wt,s)−Dρ(µ̄
t, ξt) +Dρ(µ̄

t, ξt)− P (w?)

= P (wt,s)−Dρ(µ̄
t, ξt) +Dρ(µ̄

t, ξt)−Dρ(µ
?, ξ?)

≤ P̃ (wt,s, δt,s, ξt)−Dρ(µ̄
t, ξt) + d(ξt)− d(ξ?)

≤ P̃ (wt,s, δt,s, ξt)−Dρ(µ
t,s, ξt) + d(ξt)− d(ξ?)

= gap(wt,s, δt,s, µt,s, ξt) + Γt

If A is SDCA, by Lemma E.1, we have

E[P (wt,s)− P (w?)] = E[ gap(wt,s, δt,s, µt,s, ξt) + Γt]

≤ E
[ 1

π
(∆s

t −∆s+1
t ) + Γt

]
≤ 1

π
E[∆s

t ] + E[Γt].

Given that ∆̂t = ∆Tin
t , the result follows by setting s = Tin.

Proposition 3. Let wt,s = w(µt,s). If A is a linearly convergent algorithm and µ 7→ −Happrox + 1
2ρ‖Aµ‖

2
2

is strongly convex then P (wt,s)− P (w?) converges to 0 linearly.

Proof. Note that, if σ is the strong convexity constant ofDρ w.r.t. µ, then given that Pρ(w, ξ) = minδ P̃ρ(w, δ, ξ)
with

P̃ρ(w, δ, ξ) = γFI

(θ(w) +Aᵀδ

γ

)
+
ρ

2
‖δ − ξ‖2 +

λ

2
‖w‖22,

we also have

Pρ(w, ξ) = max
µ

[
〈µ,Ψᵀw〉+ γHapprox(µ) + 〈ξ, Aµ〉 − 1

2ρ
‖Aµ‖22

]
+
λ

2
‖w‖22,

which shows that w 7→ Pρ(w, ξ) is a function with Lipschitz gradient as the sum of w 7→ λ
2 ‖w‖

2
2 and of the

Fenchel conjugate of a strongly convex function. Let LP be its Lipschitz smoothness constant and note that
it does not depend on the value of ξ. We thus have

Pρ(w
t,s, ξt)− Pρ(w̄t, ξt) ≤ LP ‖wt,s − w̄t‖22.

Then given the representer theorem, and by strong convexity of µ 7→ Dρ(µ, ξ) we have

‖wt,s − w̄t‖22 = ‖Ψ(µt,s − µ̄t)‖22 ≤
1

σ
‖Ψ‖2op(Dρ(µ

t,s, ξt)−Dρ(µ̄
t, ξt))

So that, since P (wt,s) ≤ Pρ(wt,s, ξt) and P (w?) = Pρ(w
?, ξ?), we have

P (wt,s)− P (w?) ≤ Pρ(wt,s, ξt)− Pρ(w̄t, ξt) + Pρ(w̄
t, ξt)− Pρ(w?, ξ?) ≤

LP
σ
‖Ψ‖2op ∆s

t + Γt.

Finally, global linear convergence in the primal also follows from the linear convergence of ∆̂t and Γt.
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F Notation summary
Given the number of notations in the main paper, we summarize some of them in Tables 2,3 and 4. The
block matrices Ψ and A are schematically drawn below to illustrate their structure.

Ψ =


c

...
τc · · · Ψc

 A =


i ij

...
...

ij · · · Iki −Ai



Table 2: Notations for sets
Notation Dimension Description
C the set of cliques
E the set of edges
V the set of nodes
Yi = Sk Sk := {u ∈ {0, 1}k | ‖u‖1 = 1}
Yc

∏
i∈c ki Yc :=×i∈c Yi

Y
∏
i∈V ki Y :=×i∈V Yi

T the set of clique types
Cτ the set of cliques of type τ
M the marginal polytope
L the local polytope
I I :=

∏
i∈V ∆ki ×

∏
e∈E ∆ke
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Table 3: Notations for variables, parameters and functions
Notation Domain Description
ki N the number of values that Yi can take
kc N kc := |Yc| =

∏
i∈c ki

τ N the type of a clique
τc N the type of clique c
wτ Rdτ the parameter shared by all cliques with type τ
w R

∑
τ dτ w := [wτ ]τ∈T

φc(x, yc) Rdτc the feature vector associated with the clique c given Yc = yc
Z(x,w) R+∗ the partition function of p(y|x;w)

`c(y
(n)
c , yc) R+ the user defined loss function associated with the clique c

γ (0,+∞) the temperature parameter of the loss-augmented CRF
Ψ

(n)
c Rdτc×kc Ψ

(n)
c :=

[
φc(x

(n), yc)− φc(x(n), y(n)c )
]
yc∈Yc

Ψ(n) R
∑
τ dτ×

∑
c kc see the drawing

`
(n)
c Rkc `

(n)
c :=

[
`c(y

(n)
c , yc)

]
yc∈Yc

`(n) R
∑
c kc `(n) := [`

(n)
c ]c∈C

θ
(n)
c (w) Rkc θ

(n)
c (w) := Ψ

(n)
c

ᵀ
wτc + `

(n)
c

θ(n)(w) R
∑
c kc θ(n)(w) := [θ

(n)
c (w)]c∈C , the natural parameter

F R
∑
c kc → R the log partition function of θ

T (y) R
∑
c kc the sufficient statistics

µc Rkc the mean parameter associated with the clique c
µ R

∑
c kc the mean parameter

F ∗ R
∑
c kc → R the Fenchel conjugate of F

ιC R
∑
c kc → {0,+∞} the indicator function of set C

λ R+ the coefficient of the regularizer
Ai Rki×ke the matrix encoding the marginalization constraint for i in e.
A R

∑
e

∑
i∈e ki×

∑
c kc see the matrix form

Table 4: Notations smoothness, strong convexity constant and related quantities
Notation Description
Ld the Lipschitz constant of ∇d(ξ)
τ the constant of PL inequality for d(ξ)
σc the strong convexity constant of µc 7→ −HApprox(µ)
Lc the Lipschitz constant of µc 7→ 1

λΨᵀw(µ) + 1
ρA

ᵀδ(µ, ξt)
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