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Abstract

Electrode materials in lithium-ion batteries offer an example of medium in which stress
and plastic flow are generated by the diffusion of guest atoms. In such a medium, deforma-
tion and diffusion are strongly coupled processes. For designing electrodes with improved
lifetime and electro-mechanical efficiency, it is crucial to understand how plasticity and
diffusion evolve over consecutive charging-recharging cycles. With such questions in mind,
this paper provides general results for the large-time behavior of media coupling plastic-
ity with diffusion when submitted to cyclic chemo-mechanical loadings. Under suitable
assumptions, we show that the stress, the plastic strain rate, the chemical potential and
the flux of guest atoms converge to a cyclic steady state which is largely independent of
the initial state. A special emphasis is laid on the special case of elastic shakedown, which
corresponds to the situation where the plastic strain stops evolving after a sufficiently large
number of cycles. Elastic shakedown is expected to be beneficial for the fatigue behavior
and – in the case of lithium-ion batteries – for the electro-chemical efficiency. We provide
a characterization of the chemo-mechanical loadings for which elastic shakedown occurs.
Building on that characterization, we suggest a general method for designing structures in
such fashion that they operate in the elastic shakedown regime, whatever the initial state
is. An attractive feature of the proposed method is that incremental analysis of the fully
coupled plasticity-diffusion problem is avoided. The results obtained are applied to the
model problem of a battery electrode cylinder particle under cyclic charging. Closed-form
expressions are obtained for the set of charging rates and charging amplitudes for which
elastic shakedown occurs, as well as for the corresponding cyclic steady states of stress,
lithium concentration and chemical potential. Some results for a spherical particle are also
presented.
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1. Introduction

In In lithium-ion batteries, the flow of electrons results from the transport of lithium
ions in an electrolyte and their diffusion in solid electrodes. The intercalation of lithium in
the electrode material results in a local volumetric change which may in turn produce some
stress, in a way similar to thermal stress. Diffusion-induced stress may lead to fracture and
thus contribute to the power loss and the capacity fading of batteries (Huggins and Nix,
2000).

The critical role of diffusion-induced stress in lithium-ion batteries has motivated a lot
of work in the modeling community. Most models assume a linear elastic behavior for the
electrode material, so that diffusion is the only dissipative process. In some models, the
diffusion problem is further decoupled from the mechanical problem by assuming that the
chemical potential – which is the thermodynamical force driving diffusion – is independent
of the stress (Zhao et al., 2010). Under such an assumption, analytical expressions can be
obtained for electrode particles with simple geometries (Cheng and Verbrugge, 2009). More
realistic models account for full coupling between diffusion and mechanics by appealing
to the consistent thermodynamical framework introduced by Larché and Cahn (1973).
Numerical results have been obtained for various geometries (Christensen and Newman,
2006; Zhang et al., 2007; Swaminathan et al., 2016) but no analytical expression has been
obtained so far.

For spherical or cylindrical electrode particles, the mentioned elastic models show that
some stress concentration occurs at fast charging. In such a condition, the yield limit of
the electrode material may be reached so that plasticity needs to be taken into account.
Models coupling plasticity with diffusion have notably been considered by Bower et al.
(2011); Zhao et al. (2011); Cui et al. (2012); Brassart et al. (2013) and Yang et al. (2014).
From a thermodynamic point of view, plastic flow and diffusion act as two concurrent
dissipative processes. The interplay between plasticity and diffusion may lead to some
unusual behavior: For instance, under a monotone loading, a particle may start to flow
plastically and then unload elastically after some time (Brassart et al., 2013).

Since improving life cycle and durability is a major concern in the design of lithium-ion
batteries, it is essential to understand how plasticity and diffusion evolve over many cycles
of lithiation–delithiation. Using numerical simulations, Brassart et al. (2013) studied the
behavior of a spherical elastic-plastic particle under cyclic charging. For a charging at
high rate or high amplitude, a steady state regime of cyclic plasticity is observed. For
a charging at low rate and low amplitude, the plastic strain stops evolving after a few
cycles so that the particle evolves elastically in subsequent cycles. This last behavior is
known as elastic shakedown in plasticity theory. The results of Brassart et al. (2013) were
obtained for a special geometry and using an initial natural state. For other geometries
such as thin films, a ratcheting behavior can be observed at fast charging, i.e. there is an
unbounded accumulation of plastic strain over consecutive lithiation–delithiation cycles,
leading to early failure (Haftbaradaran and Gao, 2012). Those types of plastic behaviors
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are not specific to diffusion-related problems and are also encountered in classical elastic-
plastic structures. In that last case, it is known that the stress and the plastic strain rate
always1 converge to a cyclic response as time tends to infinity (Frederick and Armstrong,
1966; Halphen, 1978; Johnson et al., 1978). It is not clear whether a similar result holds
for problems coupling plasticity with diffusion. The role of residual stress also needs to
be addressed: in real specimen, some residual stress may exist as a result of inelastic
deformation due to material process or trapped lithium ions. Such a residual stress has
an influence on the plastic flow and the diffusion of lithium over the loading cycles. In
particular, the impact of the residual stress on the large-time behavior needs to be clarified.

This paper aims at answering such questions by providing general results regarding the
large-time behavior of cyclically loaded media coupling plasticity with diffusion. Although
much emphasis is laid on lithium-ion batteries, the results may apply to other problems such
as hydrogen embrittlement in metals. The general framework considered is formulated in
the geometrically linear setting and is described in Sect.2. Full coupling between diffusion
and mechanics is accounted for, in the spirit of Larché and Cahn (1973). Both the plasticity
flow rule and the law of diffusion are allowed to be nonlinear. In Sect. 3 we establish the
equation (3.8) that governs the evolution of the stress and chemical potential fields. The
evolution equation (3.8) is central in our analysis. We first establish some of its properties
by extending some results established by Halphen (1978) in standard plasticity. Those
properties are used in Sect. 4 for proving some of the main results of this paper: The
stress, the chemical potential, the local concentration of guest atoms as well as the plastic
strain rate always2 converge to a cyclic steady state as time tends to infinity. Moreover,
the values reached by the plastic strain rate and the chemical potential in the steady state
cycle are independent of the initial state. Those results (see Properties 3 and 4 for the
exact statements) have a number of consequences. First, there is no other plastic behavior
than the three ones listed previously (shakedown, cyclic plasticity, ratcheting), whatever
the structure or the loading. Second, for a given structure, the observed plastic behavior
depends only on the loading, i.e. there is no influence of the residual stress. Third, diffusion
reaches a cyclic steady state in which the flux and the local concentration of injected atoms
are independent of the initial state. For lithium-ion batteries, the charge–voltage response
thus converges to a uniquely defined cyclic steady state.

In Sect. 5 we focus on the particular case of elastic shakedown which is arguably the
most beneficial with respect to fatigue (see e.g. Constantinescu et al. (2003) and references
therein). Our objective is to obtain a priori restrictions on the loading for ensuring that
elastic shakedown occurs, in the spirit of Melan theorem in standard plasticity (Melan,
1936; Koiter, 1960; Symonds, 1951). That theorem was originally proposed for elastic-
perfectly plastic materials and has been extended to several more complex behaviors –

1under suitable technical assumptions
2under some assumptions formulated in Sect. 4, see Property 4
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see e.g. Ahn et al. (2008); Peigney (2010, 2014a,b); Pham (2008, 2017); Klarbring et al.
(2017) and Spagnoli et al. (2017) for some recent examples. The proof used in the original
Melan theorem – as well as in most of its extensions – consists in showing that the total
energy dissipation remains bounded as time tends to infinity. When plastic flow is the
only dissipative process, bounding the total dissipation indeed amounts (at least formally)
to requiring that the plastic strain tends to a time-independent limit (see e.g. Nguyen
(2003) for more detail). The situation changes when diffusion is introduced: Bounding the
total energy dissipation means that the plastic strain tends to a limit and that diffusion
reaches an equilibrium (i.e. the local concentration of guest atoms converges to a time-
independent limit). Such a situation is of limited interest for systems such as lithium-ion
batteries: One is more interested in bounding the plastic dissipation only, allowing for the
total dissipation to remain unbounded as a result of continuous diffusion over consecutive
lithiation–delithiation cycles. The arguments at play in Melan theorem do not allow only
one part of the total dissipation to be bounded, hence a different line of reasoning is
needed. Building on the results of Sect. 4, we establish necessary and sufficient conditions
for elastic shakedown to occur – without enforcing that diffusion reaches an equilibrium.
Those results could notably be used for the elastic shakedown design of lithium-ion batteries
under operative charging conditions, ensuring that the electrode behaves elastically after
a run-in period of plastic flow.

The results obtained are illustrated in Sect. 6 on the model problem of a cylinder
electrode particle under cyclic lithitation-delithiation. The two loading parameters are
the lithiation rate and the total number of injected lithium ions. Explicit expressions are
first obtained for the purely elasto-diffusive response of the particle, thus complementing
available results in the literature. That elasto-diffusive solution is needed for applying the
shakedown conditions, leading to closed-form expressions of the shakedown domain in the
space of loading parameters. Some results for a spherical particle are also presented.

2. Chemo-mechanical evolutions of an elastic-plastic continuum

2.1. Conservation equations

Consider a deformable continuum in which guest atoms diffuse. The local concentration
of guest atoms and the displacement (with respect to a reference configuration) are denoted
by c and u, respectively. The mass conservation leads to the diffusion equation

ċ+ div  = 0 in Ω, (2.1)

where  is the flux of guest atoms and Ω is the domain occupied by the continuum. The
superscript ˙ denotes time differentiation. Eq. (2.1) is complemented by the boundary
conditions

µ = M on Γµ,  · n = J on ΓJ = ∂Ω− Γµ (2.2)
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where µ is the chemical potential and n is the outward-pointing normal vector. Eq. (2.2)
expresses the fact that the chemical potential is required to take a prescribed value M on
a part Γµ of the boundary. On ΓJ , the normal flux J of guest atoms is prescribed.

We restrict our attention to the geometrically linear setting, defining the strain ε as
ε = (∇u + ∇Tu)/2. Deformation is considered to be much faster than diffusion so that
mechanical equilibrium holds at all time. The stress field σ thus satisfies the equilibrium
equation

divσ + f = 0 in Ω (2.3)

where f is the body force. Eq. (2.3) is complemented by the boundary conditions

σ · n = T on ΓT , u = U on Γu = ∂Ω− ΓT (2.4)

where T are tractions prescribed on a part ΓT of the boundary and U are prescribed
displacements.

All the functions M ,J ,f , U and T depend on the location x and time t. Similarly, the
fields c, µ, u and σ are all functions of x and t. Unless in the case of possible ambiguities,
the dependence in (x, t) will be omitted in the notations.

2.2. Constitutive equations

An elastic-plastic constitutive material is considered. Assuming small perturbations
with respect to a reference configuration, the free energy w of the material is taken as a
quadratic function of the form

w(ε, εp, c) =
1

2
(ε− εp) : L : (ε− εp) +

1

2
kc2 + cA : (ε− εp) + cµ0 (2.5)

where εp is the (deviatoric) plastic strain. In (2.5), L is the symmetric positive definite
fourth-order elasticity tensor and A is a symmetric second-order tensor coupling the elastic
strain ε− εp with the concentration c. The notation : denotes contraction with respect to
the last two indices, e.g. (L : ε)ij =

∑
kl Lijklεlk. The constant µ0 in (2.5) is a reference

value of the chemical potential. The function w in (2.5) can be verified to be convex if the
material parameter k satisfies

k −A : L−1 : A > 0. (2.6)

The condition (2.6) is assumed to be satisfied in the following.
From (2.5) we obtain the expressions of the stress σ and the chemical potential µ as

σ =
∂w

∂ε
= L : (ε− εp) + cA,

µ =
∂w

∂c
= µ0 + kc+A : (ε− εp).

(2.7)
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It is clear from (2.7) that the coupling between the mechanical variables (σ, ε, εp) and the
chemical variables (c, µ) operates in a two-way fashion. On one hand, the concentration
c indeed has a linear influence on the stress, in a way similar to thermal stress. On the
other hand, the chemical potential µ depends linearly on the elastic strain ε − εp, which
implies that the mechanical state has an influence on the diffusion process, see Eqs. (2.1)
and (2.8).

The constitutive equations (2.7) are complemented by a law of diffusion and a plasticity
flow rule. In more detail, the flux  of guest atoms is assumed to derive from a differentiable,
strictly convex potential ψ through the relation

 = −∂ψ(∇µ). (2.8)

Fick’s law corresponds to the particular case where ψ is quadratic in ∇µ. The plasticity
flow rule is taken in the classical form

ε̇p ∈ ∂φ(σ) (2.9)

where φ is the dissipation potential. In (2.8) and (2.9), ∂ denotes the subdifferential
operator (Van Tiel, 1984). Following standard requirements, φ is assumed to be convex,
positive and null at the origin. Under those assumptions, we note for later reference that
the flow rule (2.9) implies that

(σ′ − σ) : ε̇p ≤ 0 for any σ′ ∈ C, (2.10)

where C = {σ : φ(σ) = 0} is the elasticity domain of the material. The relation (2.10) is
known as the principle of maximum dissipation (Hill, 1950).

In this paper we will consider two of the most usual situations in viscoplasticity and
rate-independent plasticity :

Viscoplasticity. φ is a differentiable, strictly convex function of the deviatoric stress.

Rate-independent plasticity. φ is infinite outside of C and the elasticity domain C can
be written as

C = {σ : f(σ) ≤ 0}
for some differentiable, strictly convex function f of the deviatoric stress.

In the case of viscoplasticity, ∂φ is single-valued and (2.9) can be written more simply
as ε̇p = ∂φ(σ). In the case of rate-independent plasticity, the subdifferential ∂φ is multi-
valued and Eq. (2.9) corresponds to the normality flow rule

ε̇p = λ
∂f

∂σ
(σ) with λ ≥ 0, f(σ) ≤ 0, λf(σ) = 0. (2.11)

The set of equations (2.1)-(2.4) and (2.7)-(2.9) governs the evolution of the continuum
starting from a given initial state. The latter is represented by initial values of the plastic
strain and concentration fields.
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3. Evolution equation for the fields of stress and chemical potential

3.1. Weak formulation

The equations formulated in Sect.2 are now used to derive an evolution equation in-
volving the fields (σ, µ) only, without reference to the other chemo-mechanical fields of the
problem. Such an evolution equation will prove to be very convenient in the later sections.
The fields (σ, µ) are assumed to live in a subspace H of H(div; Ω)×H1(Ω). We denote by
K(f ,T ,M) the set of stress and chemical potential fields that are compatible with data
(f ,T ,M), i.e.

K(f ,T ,M) =
{

(σ, µ) ∈ H : divσ + f = 0 in Ω,σ · n = T on ΓT , µ = M on Γµ
}
.

The Euclidean scalar product in R3×3
s × R is denoted by :̇, i.e.

(σ, µ):̇(σ′, µ′) = σ : σ′ + µµ′.

Observe that the free energy (2.5) can be put in the form

w(ε, εp, c) =
1

2
(ε− εp, c):̇M:̇(ε− εp, c) + cµ0

where M is the symmetric fourth-order tensor determined by the relations

M:̇(ε− εp, c) = (L : (ε− εp) + cA, kc+A : (ε− εp)) . (3.1)

for any ε − εp and c. Under the requirement (2.6), the tensor M is symmetric positive
definite. Hence the space H of stress and chemical potential fields is a Hilbert space for
the scalar product 〈·, ·〉 defined by

〈(σ, µ), (σ′, µ′)〉 =

∫
Ω

(σ, µ):̇M−1 :̇(σ′, µ′) dω (3.2)

for any (σ, µ) and (σ′, µ′) in H. It can be calculated from (3.1) that

(σ, µ):̇M−1 :̇(σ′, µ′) = σ : L−1 : σ′ +
1

k′
(
(B : σ)(B : σ′) + µµ′ − µ′B : σ − µB : σ′

)
(3.3)

where B = A : L−1 and k′ = k − A : L−1 : A. Note that the last two terms in (3.3)
introduce a coupling between the stress and the chemical potential fields.

Let (σ, µ,u, c, , εp) be a solution of the evolution problem for the continuum, as de-
tailed in Sect. 2. We necessarily have

(σ, µ) ∈ K(f ,T ,M).

Consider now an arbitrary (ρ, ν) in K(0, 0, 0) so that

divρ = 0 in Ω,ρ · n = 0 on ΓT , ν = 0 on Γµ. (3.4)
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The set K(0, 0, 0) is more simply denoted by K0 in the following. Noting from (2.7) and
(3.1) that (ε̇− ε̇p, ċ) = M−1 :̇(σ̇, µ̇), we have

〈(σ̇, µ̇), (ρ, ν)〉 =

∫
Ω

(ε̇− ε̇p) : ρ+ ċνdω. (3.5)

Let us examine the right hand side of (3.5). Integrating by parts and using the mechanical
boundary conditions (2.4) as well as the conditions (3.4), we find∫

Ω
ε̇ : ρ dω =

∫
Γu

U̇ · ρ · n dS. (3.6)

Using the diffusion equation (2.1) and integrating by parts, we have∫
Ω
ċν dω = −

∫
Ω
ν div  dω =

∫
Ω
 · ∇ν dω −

∫
∂Ω
n ·  ν dS.

Further using the law of conduction (2.8) as well as the boundary conditions (2.2) and
(3.4) yields ∫

Ω
ċν dω = −

∫
Ω
∂ψ(∇µ) · ∇ν dω −

∫
ΓJ

Jν dS. (3.7)

Replacing (3.6) and (3.7) in (3.5), we can finally see that (σ, µ) satisfies

(σ, µ) ∈ K(f ,T ,M),

〈(σ̇, µ̇), (ρ, ν)〉 = −
∫

Ω
(ε̇p : ρ+ ∂ψ(∇µ) · ∇ν) dω +

∫
Γu

U̇ · ρ · n dS −
∫

ΓJ

Jν dS

∀(ρ, ν) ∈ K0.

(3.8)

In (3.8), no reference is made to the displacement nor the concentration. Since ε̇p is directly
related to the stress via (2.9), Eq. (3.8) can be interpreted as an evolution equation for the
stress and chemical potential fields (σ, µ). We emphasize that the fields σ and µ in (3.8)
are coupled implicitly through the scalar product in (3.2) and (3.3). In the next section,
we establish some properties of solutions to Eq. (3.8). Those properties will play a crucial
role in Sect. 4 when studying the large-time behavior.

3.2. Contraction properties

The compact notation Σ = (σ, µ) is used in the following. The norm associated to the
scalar product 〈·, ·〉 in (3.2) is denoted by ‖ · ‖, i.e.

‖Σ‖2 =

∫
Ω

Σ:̇M−1 :̇Σ dω. (3.9)

We show that the evolution equation (3.8) enjoys the two following properties:
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Property 1. Let Σ and Σ′ be two solutions of (3.8). Then

‖Σ(t2)−Σ′(t2)‖ ≤ ‖Σ(t1)−Σ′(t1)‖ for all t1 < t2.

Property 2. Let Σ = (σ, µ) and Σ′ = (σ′, µ′) be two solutions of (3.8) such that ‖Σ(t)−
Σ′(t)‖ = ‖Σ(t1)−Σ′(t1)‖ for all t1 ≤ t. Then there exists a time-independent stress field
ρ and a constant η such that (ρ, η) ∈ K0 and

σ(x, t)− σ′(x, t) = ρ(x), µ(x, t)− µ′(x, t) = η for t1 ≤ t. (3.10)

In the case of viscoplasticity, we have in addition

ε̇p(x, t) = ε̇p′(x, t) for t1 ≤ t.

The proof of property 1 and 2 is reported in Appendix A and Appendix B, respectively.
We emphasize that both properties 1 and 2 crucially rely on the choice (3.9) for the norm
on stress and chemical potential fields. Property 1 means that the distance between two
solutions of (3.8) is decreasing with time. This notably implies that the solution of (3.8)
taking a prescribed value at t = 0 is unique. Property 2 essentially means that if the
distance between two solutions Σ(t) and Σ′(t) is time-independent, then necessarily Σ −
Σ′ = (σ−σ′, µ−µ′) is time-independent. This generalizes a result established by Halphen
(1978) in plasticity with no diffusion. Furthermore, property 2 states that µ − µ′ is also
space-independent and hence equal to a constant η. It can observed that the constant η
is necessarily equal to 0 if Γµ 6= ∅, i.e. if the chemical potential is imposed on a part of
the boundary. By contrast, there is no need for the stress field ρ in (3.10) to be space-
independent, even if tractions are imposed all over the boundary.

4. Large-time behavior under cyclic chemo-mechanical loadings

From now on we assume that the functions (M,J,f ,T ,U) defining the chemo-mechanical
loading history are all periodic in time with the same period T (such functions are referred
to as T−periodic). Our objective in this section is to study the behavior of solutions to
(3.8) as time tends to infinity.

4.1. Periodic solutions

T−periodic solutions to (3.8) will play an important role in the subsequent develop-
ments. Although there is not uniqueness, T−periodic solutions to (3.8) are quite similar
to one another, as demonstrated by the following
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Property 3. Let Σ = (σ, µ) and Σ′ = (σ′, µ′) be two T−periodic solutions of (3.8). Then
there exists a time-independent stress field ρ and a constant η such that (ρ, η) ∈ K0 and

σ(x, t)− σ′(x, t) = ρ(x), µ(x, t)− µ′(x, t) = η.

In the case of viscoplasticity, we have in addition

ε̇p(x, t) = ε̇p′(x, t).

Let indeed Σ = (σ, µ) and Σ′ = (σ′, µ′) be two T−periodic solutions of (3.8). Property
1 yields

‖Σ(T )−Σ′(T )‖ ≤ ‖Σ(t)−Σ′(t)‖ ≤ ‖Σ(0)−Σ′(0)‖ (4.1)

for all t ∈ [0, T ]. By T−periodicity of Σ and Σ′, we have ‖Σ(T )−Σ′(T )‖ = ‖Σ(0)−Σ′(0)‖.
It follows that (4.1) holds as an equality, i.e. that ‖Σ(t) − Σ′(t)‖ is independent of t.
Applying property 2 gives the desired result.

4.2. Convergence to a periodic solution

We are now in a position to prove the main result of this section:

Property 4. Assume that there exists a T−periodic solution to (3.8) and that the dimen-
sion of H is finite. Then every solution of (3.8) converges to a T−periodic solution as
t→∞.

A convenient way to prove the claim is to use Opial’s lemma (Opial, 1967), which
is a general result in Hilbert spaces that has proved to be very useful in several studies
related to large time convergence (see e.g Baillon and Haraux (1977); Johnson et al. (1978);
Wesfreid (1981)). In the present context, Opial’s lemma reads as follows:

Let F be a nonempty subset of H and {un} a sequence in H such that :
(i) {‖un − f‖} converges for all f ∈ F ,
(ii) the limit of every (weakly) convergent subsequence of {un} is in F .
Then the whole sequence {un} (weakly) converges to a point of F .

The proof of Opial’s lemma is recalled in Appendix C for the sake of completeness. In
the following we will only consider the simplified situation where the dimension of H is
finite, so that weak and strong convergences coincide. Considering an arbitrary solution
Σ(t) of (3.8), we will apply Opial’s lemma to the sequence {un} = {Σ(nT )} and to the set
F formed by the initial values of T−periodic solutions to (3.8), i.e.

F =
{
Σ̃(0) : t 7→ Σ̃(t) is a T−periodic solution of (3.8)

}
.
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In order to check assumption (i) in Opial’s lemma, consider f ∈ F and let Σ′ be a
T−periodic solution of (3.8) such that f = Σ′(0). By periodicity, we have

Σ′(nT ) = f (4.2)

for all n ∈ N. We know from property 1 that

‖Σ((n+ 1)T )−Σ′((n+ 1)T )‖ ≤ ‖Σ(nT )−Σ′(nT )‖,

i.e. that ‖un+1 − f‖ ≤ ‖un − f‖. The positive sequence {‖un − f‖} is thus decreasing. It
follows that

‖Σ(nT )− f‖ −→
n→∞

A (4.3)

for some constant A. The assumption (i) in Opial’s lemma is thus verified. To check the
assumption (ii), consider a converging subsequence {unk} of {un} and denote its limit by
g. Let Σ∗(t) be the solution of (3.8) for the initial condition Σ∗(0) = g. We wish to show
that g ∈ F , i.e. that Σ∗(t) is T−periodic. Considering a fixed t in the interval [0, T ] and
using property 1 with Σ and Σ∗, we have

‖Σ(nkT + t)−Σ∗(t)‖ ≤ ‖Σ(nkT )−Σ∗(0)‖ = ‖unk − g‖ −→
k→∞

0.

Thus
Σ(nkT + t) −→

k→∞
Σ∗(t) (4.4)

for any given t in [0, T ]. Besides we have

nkT ≤ nkT + t ≤ nk+1T,

hence, using property 1 with Σ and Σ′,

‖Σ(nk+1T )−Σ′(nk+1T )‖ ≤ ‖Σ(nkT + t)−Σ′(t)‖ ≤ ‖Σ(nkT )−Σ′(nkT )‖ (4.5)

where the T−periodicity of Σ′ has been used. Using (4.2), Eq. (4.5) can be rewritten more
simply as

‖Σ(nk+1T )− f‖ ≤ ‖Σ(nkT + t)−Σ′(t)‖ ≤ ‖Σ(nkT )− f‖. (4.6)

By (4.3), both the left and the right terms in (4.6) converge to A as k → ∞. It follows
that

‖Σ(nkT + t)−Σ′(t)‖ −→
k→∞

A. (4.7)

Combining (4.4) and (4.7), it can be seen that

‖Σ∗(t)−Σ′(t)‖ = A (4.8)

for all t in [0, T ]. By property 2 we can conclude that Σ∗(t) −Σ′(t) is time-independent.
Hence Σ∗(t) is T−periodic, i.e. Σ∗(0) = g ∈ F . The assumption (ii) is thus verified.
Applying Opial’s lemma gives the desired result: For any solution Σ(t) of (3.8), there
exists a T−periodic solution Σ∗(t) such that Σ(nT ) → Σ∗(0) as n → ∞. By property 1,
it follows that Σ(t)−Σ∗(t)→ 0 as n→∞.
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4.3. Consequences

Let us collect the results we have established so far. Under the assumptions that there
exists a T−periodic solution to (3.8) and that the dimension of H is finite, property 4 shows
that the stress and the chemical potential fields always become T−periodic in the large time
limit, regardless of the initial state. Noting from (3.1) that (ε− εp, c) = M−1 : (σ, µ−µ0),
it follows that the elastic strain ε− εp and the concentration c also become T−periodic in
the large time limit.

Since there is not necessarily uniqueness of T−periodic solutions to (3.8), the asymp-
totic T−periodic response (σ∞, µ∞) depends on the initial state considered. However, the
property 3 shows that some features of the asymptotic response are independent of the
initial state. This is notably the case of the stress rate σ̇∞, the flux ∞(x, t) and – possibly
up to a constant if Γµ = ∅ – of the chemical potential µ∞(x, t). Thus diffusion reaches
a cyclic steady state which is largely independent of any residual stress and residual con-
centration of guest atoms in the initial state. For lithium-ion batteries, diffusion-related
quantities are directly related to operational electrical quantities. More precisely, the flux
 is related to the charge and the chemical potential µ is related to the voltage. Therefore,
the charge-voltage response – which is of primary concern in lithium-ion batteries – reaches
a cyclic steady state that is essentially independent of the initial conditions (some examples
will be given in Sect. 6, see Fig. 14).

For a viscoplastic behavior, property 4 also shows that the plastic strain rate con-
verges to a T−periodic response ε̇p∞. The situation where ε̇p∞ = 0 corresponds to elastic

shakedown. When ε̇p∞ 6= 0, only two cases can occur depending on the value of
∫ T

0 ε̇
p
∞dt.

Indeed, if
∫ T

0 ε̇
p
∞dt = 0, then ε̇p∞(t + T ) = ε̇p∞(t) i.e. cyclic plasticity occurs. Otherwise

(
∫ T

0 ε̇
p
∞dt 6= 0), there is plastic strain accumulation with a constant increment over each

cycle, i.e. ratcheting occurs. Whatever the geometry and the loading, the plastic behav-
ior necessarily falls in one of those three categories (elastic shakedown, cyclic plasticity,
ratcheting) – there is no other possible regime. Moreover, as a consequence of the property
3, the plastic strain rate ε̇p∞ in the cyclic steady state is independent of the initial state.
Therefore, for a given geometry, the type of plastic behavior depends only of the loading.
Those theoretical results justify establishing some maps in the space of load parameters,
in the spirit of Bree diagrams (Bree, 1967) : For each point in the map are recorded cor-
responding path-independent properties such as the type of plastic behavior, the plastic
dissipation

∫ T
0 σ∞ : ε̇p∞dt and, for lithium-ion batteries, the charge-voltage response in the

steady state.
Such a map has been reported by Brassart et al. (2013) for a spherical particle of elec-

trode material under cyclic lithiation. For each considered values of the loading parameters,
the cyclic steady state was estimated using incremental analysis over a sufficiently large
number of cycles. The case of elastic shakedown was identified as the most favorable for
the electromechanical efficiency because the hysteresis in the charge-voltage response was
found to be reduced. It can be added that elastic shakedown is also expected to be fa-
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vorable for the mechanical fatigue behavior (Constantinescu et al., 2003). Building on
such arguments, elastic shakedown appears as the most desirable regime for lithium-ion
batteries. Using properties 3 and 4, it is possible to find the set of loading parameters for
which elastic shakedown occurs, without resorting to incremental analysis of the coupled
plasticity-diffusion problem. That point is the focus of the next section.

5. Elastic shakedown under cyclic chemo-mechanical loading

5.1. Conditions for elastic shakedown

Let us consider the purely elasto-diffusive problem obtained by discarding plastic flow
in the original problem. That fictitious problem is defined by the very same equations as
in Sect.2, except that the dissipation potential φ is set to 0. As a particular case of the
developments presented in Sect. 3, the stress and chemical potential fields (σ̃, µ̃) of the
purely elasto-diffusive problem satisfy

(σ̃, µ̃) ∈ K(f ,T ,M),

〈( ˙̃σ, ˙̃µ), (ρ, ν)〉 = −
∫

Ω
∂ψ(∇µ̃) · ∇ν dω +

∫
Γu

U̇ · ρ · n dS −
∫

ΓJ

Jν dS

∀(ρ, ν) ∈ K0.

(5.1)

Uniqueness of the solution of (5.1) is obtained if one further specifies the value of (σ̃, µ̃) at
time t = 0. Eq. (5.1) gives the stress and chemical potential fields that would reign in the
body if plasticity was ignored.

Eq. (5.1) is instrumental for formulating conditions under which elastic shakedown
occurs for the original problem coupling plasticity with diffusion, as is now explained. In
all the reasoning that follows, we consider the T−periodic asymptotic response (σ∞, µ∞)
of the coupled plasticity-diffusion problem (3.8) for some (unspecified) initial state and we
denote by ε̇p∞ the corresponding plastic strain rate. Elastic shakedown corresponds to the
situation where ε̇p∞(x, t) = 0, in which case the evolution equation (3.8) yields

〈(σ̇∞, µ̇∞), (ρ, ν)〉 = −
∫

Ω
∂ψ(∇µ∞) · ∇ν dω +

∫
Γu

U̇ · ρ · ndS −
∫

ΓJ

Jν dS (5.2)

for all (ρ, ν) ∈ K0. In the case of viscoplasticity, the condition ε̇p∞(x, t) = 0 also implies
that

σ∞(x, t) ∈ C.

Comparing (5.2) with (5.1) shows that a necessary condition for shakedown is given by the
following

Shakedown condition 1 (viscoplasticity). There exists a T−periodic solution (σ̃, µ̃) to
the purely elasto-diffusive equation (5.1) that satisfies the condition σ̃ ∈ C.
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In the case of viscoplasticity, the condition 1 is also sufficient for shakedown to occur.
Let indeed (σ̃, µ̃) satisfying condition 1. In viscoplasticity, the relation σ̃ ∈ C implies that
∂φ(σ̃) = 0. Hence (σ̃, µ̃) is also a T−periodic solution of (3.8) and the corresponding
plastic strain ε̃p vanishes everywhere. Property 3 implies that ε̇p∞ = dε̃p/dt = 0.

In the case of rate-independent plasticity, similar arguments show that the condition
1 is necessary for shakedown to occur. A sufficient condition is provided by the more
restrictive

Shakedown condition 2 (rate-independent plasticity). There exists a T−periodic solu-
tion (σ̃, µ̃) to the purely elasto-diffusive equation (5.1) such that σ̃ is in the interior of C.

Let indeed be (σ̃, µ̃) satisfying condition 2. Note that (σ̃, µ̃) is also a solution of the
elastic-plastic problem (3.8). By applying the property 3 to the two T−periodic solutions
Σ∞ = (σ̃, µ̃) and Σ̃ = (σ∞, µ∞), we obtain that ‖Σ∞(t) − Σ̃(t)‖ is time-independent.
Reproducing the arguments used in Appendix B for proving property 2, we obtain

(σ∞ − σ̃) : ε̇p∞ = 0. (5.3)

Since the elasticity domain C is strictly convex in the deviatoric space and σ̃ is in the
interior of C, the condition (5.3) can only be realized if ε̇p∞ = 0. Suppose indeed for the
sake of contradiction that ε̇p∞ 6= 0. By (2.11) we have

f(σ∞) = 0, ε̇p∞ = λ
∂f

∂σ
(σ∞) (5.4)

where λ > 0. Since σ̃ is in the interior of C, we have

f(σ̃) < 0. (5.5)

The strict convexity of f implies that

f(σ̃)− f(σ∞) > (σ̃ − σ∞) :
∂f

∂σ
(σ∞).

Multiplying the above inequality by λ and using (5.3) as well as (5.4), we obtain that
f(σ̃) > 0 which is contradiction with Eq. (5.5).

In view of the shakedown conditions 1 and 2, the issue of characterizing T−periodic
solutions to the elasto-diffusive equation (5.1) is essential for determining whether elastic
shakedown occurs or not. That issue is addressed in more detail in the next section, with
special emphasis on the case of linear diffusion.
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5.2. Periodic solutions in elasto-diffusion

Let (σE , µE) be a particular T−periodic solution to the elasto-diffusive equation (5.1).
Applying the property 3, any T−periodic solution (σ̃, µ̃) to (5.1) can be written as

σ̃(x, t) = σE(x, t) + ρ̃(x), µ̃(x, t) = µE(x, t) + η̃ (5.6)

for some time-independent stress field ρ̃ and some constant η̃ such that (ρ̃, η̃) ∈ K0. Con-
versely, for any (ρ̃, η̃) ∈ K0, it can easily be verified that the field (σ̃, µ̃) given (5.6) is
a T−periodic solution of (5.1). Hence, the whole family of T−periodic solutions to the
elasto-diffusive equation (5.1) is{

(σE + ρ̃, µE + η̃) : (ρ̃, η̃) ∈ K0; ρ̃ time-independent; η̃ constant
}
. (5.7)

Further progress can be made if the diffusion is linear, i.e. obeys the Fick’s law  =
−(D/k)∇µ where D is the diffusion parameter, assumed to be independent of µ. In such
case, the pure elasto-diffusion problem reads as

(σ, µ) ∈ K(f ,T ,M),
(u, ) ∈ K′(U , J),

(σ, µ) = M:̇(ε(u), c) + (0, µ0),
 = −(D/k)∇µ,
ċ+ div = 0;

(5.8)

where ε(u) = (∇u + ∇Tu)/2 and K′(U , J) is the set of displacement and flux fields
compatible with data (U , J), i.e.

K′(U , J) =
{

(u, ) : u = U on Γu,  · n = J on ΓJ
}
. (5.9)

A T−periodic solution (σE , µE ,uE , cE) to (5.8) can be constructed using Fourier expan-
sion, writing

σE(x, t) =
+∞∑

n=−∞
σ̂n(x)einωt, µE(x, t) =

+∞∑
n=−∞

µ̂n(x)einωt,

uE(x, t) =
+∞∑

n=−∞
ûn(x)einωt, cE(x, t) =

+∞∑
n=−∞

ĉn(x)einωt,

(5.10)

where ω = 2π/T and (σ̂n, µ̂n, ûn, ĉn) are complex-valued fields defined in Ω. The re-
quirement that σE is real-valued implies that σ̂n and σ̂−n are complex conjugates (the
same remark applies to the other fields in (5.10)). Substituting (5.10) in (5.8) leads to the
harmonic elasto-diffusion problem

(σ̂n, µ̂n) ∈ K(f̂n, T̂ n, M̂n),

(ûn, ̂n) ∈ K′(Ûn, Ĵn),
(σ̂n, µ̂n) = M:̇(ε(ûn), ĉn) + (0, δn0µ0),

̂n = −(D/k)∇µ̂n,
inωĉn + div̂n = 0;

(5.11)
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where f̂n (resp. T̂ n, M̂n, Ûn, ̂n) are the Fourier components of f (resp. T , M , U , J),

i.e. f̂n = 1
T

∫ T
0 f(t)e−inωtdt. The boundary value problem (5.11) is linear and elliptic, i.e.

it only involves space variables. For simple geometries, the problem (5.11) can be solved
explicitly as will be illustrated in Sect. 6.

5.3. Shakedown design in coupled plasticity-diffusion

The results obtained suggest a general two-step approach for the shakedown design of
cyclically loaded bodies in which plasticity is coupled with diffusion:

Step 1. Calculate a T−periodic solution (σE , µE) to the purely elasto-diffusive equation
(5.1).

Step 2. Using the characterization (5.7), check whether some (σ̃, µ̃) satisfying the shake-
down condition 1 (in viscoplasticity) or 2 (in rate-independent plasticity) can be
found. In such case, elastic shakedown occurs regardless of the initial state.

Let us elaborate on Step 2, focusing – to fix ideas– on the shakedown condition 1. In
view of (5.7), checking condition 1 amounts to checking if one can find a time-independent
stress field ρ̃ verifying

divρ̃ = 0 in Ω, ρ̃ · n = 0 on ΓT (5.12)

and
σE(x, t) + ρ̃(x) ∈ C (5.13)

for all x and t ∈ [0, T ]. An important observation is that the conditions (5.12) and (5.13)
are identical to those used in the shakedown design of standard elastic-plastic bodies (i.e.
with no diffusion). Consequently, Step 2 can be performed using available methods that
have been proposed in standard plasticity (Maier et al., 2003). All the specificities of the
coupling with diffusion are thus concentrated in Step 1. For Fick’s law, performing Step 1
amounts to solve a sequence of ”equilibrium-type” problems as detailed in Sect. 5.2.

In the next section, the suggested two-step approach is applied on a model problem
related to lithium-ion batteries.

6. Application to a lithium-ion battery electrode particle

We consider the model problem of a cylinder electrode particle with radius R, under
the assumption of plane strain. Cyclic lithiation-delithiation is achieved by applying a
T−periodic flux J(t) of lithium on the outer surface r = R (Fig. 1). Body forces are
neglected and the outer surface r = R is considered as stress-free.

The constitutive material is taken as isotropic, in which case the free energy in (2.5)
specializes as

w(ε, εp, c) =
1

2
K(trε)2 +G(εd − εp) : (εd − εp) +

1

2
kc2 + ac trε+ cµ0 (6.1)
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Ω J(t)J(t)

ez

Figure 1: A cylinder particle under cyclic lithiation-delithiation.

where εd is the deviatoric strain and c is the concentration of lithium. In (6.1), the bulk
modulus K and the shear modulus G are related to Young’s modulus E and Poisson’s ratio
ν by the expressions K = E/3(1−2ν) and G = E/2(1+ν). The scalar material parameter
a in (6.1) accounts for the chemo-mechanical coupling. The constitutive relations (2.7)
become

σm = Ktrε+ ac , s = 2G(εd − εp),
µ = µ0 + kc+ atrε,

(6.2)

where σm = (trσ)/3 is the hydrostatic stress and s is the deviatoric stress. In particular,
for stress-free states in the elastic regime, Eq. (6.2) gives

trε = − a

K
c,

hence the ratio −a/K can be interpreted as the volumetric expansion coefficient associated
with the insertion of lithium. Positive (resp. negative) values of a correspond to situations
where the insertion of lithium involves a contraction (resp. expansion) of the volume. We
can observe that the requirement (2.6) of convexity of the free energy w translates as

kK − a2 > 0 (6.3)

and therefore does not place any constraint on the sign of a.

6.1. Harmonic loading

We first consider the harmonic loading

J(t) = −Rω
4
H sinωt (6.4)

where ω = 2π/T and H > 0 are given. Lithiation occurs for 0 ≤ t ≤ T/2 and delithiation
occurs for T/2 ≤ t ≤ T . The loading parameter H in (6.4) is directly related to the
maximum number of inserted lithium ions. More precisely, for a unit length in the z

direction, the maximum number of inserted lithium ions is given by −2πR
∫ T/2

0 J(t)dt =
πR2H which corresponds to an average concentration equal to H.
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6.1.1. Cyclic steady state in elasto-diffusion

Let us first consider the case where the constitutive material is purely elastic. For the
harmonic loading (6.4), a particular T− periodic solution (σE , µE ,uE , cE) to the elasto-
diffusive problem (5.8) can be sought in the form

σE(x, t) = <(σ̂(x)eiωt), µE(x, t) = µ0 + <(µ̂(x)eiωt),

uE(x, t) = <(û(x)eiωt), cE(x, t) = <(ĉ(x)eiωt),
(6.5)

where (σ̂, µ̂, û, ĉ) is the solution of (5.11) with n = 1 and Ĵ1 = iRωH/4. As in Sect. 5.2,
the superscript ˆ is used to denote complex-values quantities. The real and imaginary parts
of complex-valued quantities are denoted by < and =, respectively.

In view of the circular symmetry of the problem, we look for a solution in the form

û(x) = û(r)er, ĉ(x) = ĉ(r)

where (er, eθ, ez) is the local basis for the cylindrical coordinates (r, θ, z). The constitutive
relations (6.2) show that σ̂ = σ̂rer ⊗ er + σ̂θeθ ⊗ eθ + σ̂zez ⊗ ez where

σ̂r =
2G

3
(2
dû

dr
− û

r
) +K(

dû

dr
+
û

r
) + aĉ,

σ̂θ =
2G

3
(2
û

r
− dû

dr
) +K(

dû

dr
+
û

r
) + aĉ,

σ̂z = −2G

3
(
dû

dr
+
û

r
) +K(

dû

dr
+
û

r
) + aĉ.

(6.6)

Integrating the equilibrium equation divσ̂ = 0 and using the boundary condition σ̂r(R) = 0
leads to the relation

2G
û(R)

R
=

3K + 4G

3
(
dû

dr
+
û

r
) + aĉ(r). (6.7)

Using the constitutive relation (6.2) as well as the relation ̂ = −(D/k)(dµ̂/dr)er, the
diffusion equation gives

k

Da

(
iωĉ− D

r

d

dr
(r
dĉ

dr
)
)

=
d2

dr2
(
dû

dr
+
û

r
) +

1

r

d

dr
(
dû

dr
+
û

r
). (6.8)

Eliminating dû
dr + û

r between (6.7) and (6.8) leads to the Bessel differential equation

iω

D(1− 3a2

k(3K+4G)
)
rĉ =

dĉ

dr
+ r

d2ĉ

dr2
. (6.9)

Bounded solutions to Eq.(6.9) take the form

ĉ(r) = AJ0(λ̂r) (6.10)
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where J is the Bessel function of the first kind and

λ̂ = ei
3π
4

√
ω

D(1− aã/k)
, ã =

3a

3K + 4G
. (6.11)

Substituting (6.10) in (6.7) allows the displacement û to be obtained. The constant A
in (6.10) is obtained from the boundary condition er · ̂ = iRωH/4 at r = R. The final
expressions are

ĉ = −H
4

R̂J0(r̂)

J1(R̂)
,

û

R
= ã

H

4

(
(1− 2ν)

r̂

R̂
+
J1(r̂)

J1(R̂)

)
(6.12)

where r̂ = λ̂r and R̂ = λ̂R. Replacing in (6.6) gives the expression of the stress σ̂ as

σ̂r =
GãH

2

(
1− R̂

r̂

J1(r̂)

J1(R̂)

)
,

σ̂θ =
GãH

2

(
1 +

R̂

r̂

J1(r̂)

J1(R̂)
− R̂J0(r̂)

J1(R̂)

)
,

σ̂z =
GãH

2

(
2ν − R̂J0(r̂)

J1(R̂)

)
.

(6.13)

The chemical potential µ̂ is obtained from the constitutive relations (6.2) as

µ̂ =
H

4

(
(aã− k)

R̂J0(r̂)

J1(R̂)
+ 2(1− 2ν)aã

)
. (6.14)

The obtained T−periodic response (σE , µE ,uE , cE) is directly related to the large-time
behavior in pure elasto-diffusion. As a particular case of the results of Sect. 4, the fields
of stress and chemical potential in pure elasto-diffusion are indeed expected to converge to
a cyclic steady state (σ∞, µ∞) such that

σ∞(x, t) = σE(x, t) + ρ(x), µ∞(x, t) = µE(x, t) + η

where ρ is a time-independent self-equilibrated stress field and η is a constant. Using the
constitutive equations shows that ρ and η satisfy

ρ = L : ε(〈u∞〉) + a〈c∞〉I, η = k〈c∞〉+ atrε(〈u∞〉) (6.15)

where 〈c∞〉 (resp. 〈u∞〉 ) denotes the time average of the lithium concentration c∞ (resp.
displacement u∞) in the cyclic steady state. The tensor I in (6.15) denotes the second-
order identity tensor. Let us find the values of ρ and η corresponding to a lithium-free
initial configuration. Reproducing the calculations used for finding ĉ and û shows that

ρ = (1− 2ν)a〈c∞〉ez ⊗ ez, η =
(
k − 2(1− ν)aã

)
〈c∞〉 (6.16)
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and
〈u∞〉 = −(1− ν)ã〈c∞〉rer.

For a lithium-free initial state, the volume average of the lithium concentration is c̄(t) =
− 2
R

∫ t
0 J(t′)dt′ = 1

2H(1 − cosωt). The time average of c̄(t) over a cycle is thus equal to
H/2. It follows that c∞ = H/2, which sets the value of the constant η in (6.16). The cyclic
steady state reached from a lithium-free initial state is thus given by

σ∞(r, t) =
H

2
(1− 2ν)aez ⊗ ez + <(σ̂(r)eiωt),

µ∞(r, t) = µ0 +
H

2

(
k − 2(1− ν)aã

)
+ <(µ̂(r)eiωt),

u∞(r, t) = −H
2

(1− ν)ãrer + <(û(r)eiωt),

c∞(r, t) =
H

2
+ <(ĉ(r)eiωt).

(6.17)

The solution (6.17) complements existing analytical results for electrode particles in
elasto-diffusion. Let us briefly study the influence of the charging rate ω on the obtained
solution, focusing only on the time-dependent terms <(ĉ(r)eiωt) and <(σ̂(r)eiωt). In view
of (6.11), it is natural to introduce the time scale

T0 =
R2

D(1− aã

k
)
. (6.18)

In the following, the results are presented in terms of the dimensionless charging rate ω̃
defined by ω̃ = ωT0.

The magnitude |ĉ| is shown in Fig. 2 as a function of r/R for several values of the
dimensionless charging rate ω̃. For low values of ω̃, ĉ is almost uniform and approximatively
equal to −H/2. This implies that c∞(r, t) ' 1

2H(1 − cosωt): The insertion rate is so
slow that diffusion equilibrium is reached at each time. As ω̃ increases, |ĉ| displays a
monotonically increasing behavior with r, meaning that the time fluctuations of c∞(r, t)
get more pronounced as r approaches the boundary. For high values of ω̃ (>50), |ĉ|(r) is
almost zero in the core of the cylinder, i.e. the lithium ions are concentrated in the outer
shell of the particle. The asymptotic expression of ĉ in the limit ω̃ →∞ can be calculated
using a variation of the stationary phase method (Wong, 2001), yielding

ĉ(r) ∼ −H
4

√
ω̃

r̃
e
iπ
4

+
(1+i)√

2

√
ω̃(r̃−1)

(6.19)

where r̃ = r/R. The expression (6.19) shows that the concentration of |ĉ| at the boundary
grows as

√
ω̃.

In Fig. 3 are shown the magnitude |σ̂θ| and the relative phase Φθ between the hoop
stress σθ and the loading J(t). The magnitude |σ̂θ| is not monotonically increasing with r
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but still reaches its maximum at r = R. For low values of ω̃, σ̂θ can be approximated by
the first order expansion of (6.13) as

σ̂θ ∼ i
GãH

16
ω̃
(
1− 3r̃2

)
. (6.20)

The expression (6.20) shows that the hoop stress in the inner shell r < R
√

3 is in antiphase
with the hoop stress in the outer shell r > R

√
3: The inner shell is in circumferential

traction (resp. compression) when the outer shell is in circumferential compression (resp.
traction). If a < 0 (i.e. lithiation results in volumetric expansion), the expression (6.20)
also shows that the hoop stress at the boundary is in phase with the prescribed flux J(t):
the outer surface r = R is in circumferential compression (resp. traction) when lithiation
(resp. delithiation) occurs.

For high values of ω̃, we obtain

σ̂θ ∼
GãH

2

(
1−

√
ω̃

r̃
e
iπ
4

+
(1+i)√

2

√
ω̃(r̃−1)

)
. (6.21)

The expression (6.21) shows that |σ̂θ|(r) is approximatively equal to G|ã|H/2 except in the
outer shell where the hoop stress concentrates. On the outer surface r = R, Eq. (6.21)
yields |σ̂θ(R)| ∼

√
ω̃G|ã|H/2 as ω̃ →∞, hence the hoop stress concentration grows as

√
ω̃.

It can also be observed in Fig. 3 (right) that the phase shift Φθ(R, t) − Φθ(0, t) remains
relatively close to π, whatever ω̃ is: The hoop stress in the center is almost in antiphase
with the hoop stress on the boundary, even for high values of ω̃.

The stress σ̂z is shown in Fig. 4 in the case ν = 0.3. For low values of ω̃, the expression
(6.13) gives

σ̂z ∼ i
GãH

2

(
ω̃

4

(
1− 2r̃2

)
+ 2i(1− ν)

)
.

For high values of ω̃, we obtain

σ̂z ∼
GãH

2

(
2ν −

√
ω̃

r̃
e
iπ
4

+
(1+i)√

2

√
ω̃(r̃−1)

)
. (6.22)

In a way similar to the hoop stress, σ̂z displays a concentration (growing as
√
ω̃) at the

boundary. Comparing Fig. 3 (right) with Fig. 4(right) further shows that the phases Φθ(r)
and Φz(r) almost coincide for high values of ω̃, consistently with (6.21) and (6.22).

Finally, the radial stress σ̂r is shown in Fig. 5. For low values of ω̃, we have

σ̂r ∼ i
GãH

16

(
1− r̃2

)
,

hence |σ̂r| is maximum at the center. When ω̃ increases, the value of r maximizing |σ̂r|
moves towards the boundary. For high values of ω̃, we obtain

σ̂r ∼
GãH

2

(
1− e

(1+i)√
2

√
ω̃(r̃−1)

r̃−
3
2

)
.
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Thus, in contrast with σ̂θ and σ̂z, the magnitude of σ̂r remains bounded as ω̃ →∞. It can
also be observed in Fig. 5 (right) that the fluctuations of the phase Φr with r are much
smaller than for the other stress components.
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Figure 2: Magnitude of the complex concentration ĉ of lithium as a function of r/R, for several values of the
dimensionless charging rate ω̃. The quantity |ĉ|/H measures the time-fluctuations of the local concentration
c of lithium in the cyclic steady-state.

6.1.2. Application of the shakedown condition

Let now consider the case of an elastic-plastic behavior. We detail the application of
the shakedown conditions introduced in Sect. 5.1 for an elasticity domain C of the Von
Mises type, i.e. defined by

1

2
s : s ≤ σ2

Y

where σY is the yield strength. All the considerations presented in this section are not
restricted to harmonic loadings and apply for any chemo-mechanical loading that respects
the circular symmetry. In such case, a T−periodic stress response to the purely elasto-
diffusive problem can be obtained in the form

σE(x, t) = σEr (r, t)er ⊗ er + σEθ (r, t)eθ ⊗ eθ + σEz (r, t)ez ⊗ ez.
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Figure 3: Magnitude (left) and phase (right) of the complex-valued hoop stress σ̂θ as a function of r/R, for
several values of the dimensionless charging rate ω̃.
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Figure 4: Magnitude (left) and phase (right) of the complex-valued stress σ̂z as a function of r/R, for
several values of the dimensionless charging rate ω̃.

The corresponding deviatoric stress sE is parameterized by its two components (sEr , s
E
θ ) as

sE = sEr er ⊗ er + sEθ eθ ⊗ eθ − (sEr + sEθ )ez ⊗ ez (6.23)

where the dependence on (x, t) has been omitted in the notations.
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Figure 5: Magnitude (left) and phase (right) of the complex-valued radial stress σ̂r as a function of r/R,
for several values of the dimensionless charging rate ω̃.

To fix ideas, we consider a rate-independent plastic behavior. Following the observations
made in Sect. 5.3, checking the relevant shakedown condition 2 amounts to finding a time-
independent self-equilibrated stress field ρ such that

(ρdr + sEr )2 + (ρdθ + sEθ )2 + (ρdr + ρdθ + sEr + sEθ )2 + 2(ρ2
rθ + ρ2

rz + ρ2
θz) < 2σ2

Y (6.24)

for all x and all t ∈ [0, T ]. In (6.24), ρd denotes the deviatoric part of ρ. Eq. (6.24) implies
that

(ρdr + sEr )2 + (ρdθ + sEθ )2 + (ρdr + ρdθ + sEr + sEθ )2 < 2σ2
Y . (6.25)

Setting
XE =

√
3(sEr + sEθ ), Y E = sEr − sEθ ,

X0 =
√

3(ρdr + ρdθ), Y 0 = ρdr − ρdθ,

Eq. (6.25) can be rewritten as

(XE(r, t) +X0(x))2 + (Y E(r, t) + Y 0(x))2 < 4σ2
Y (6.26)

for all x and all t ∈ [0, T ]. Eq. (6.26) can be interpreted in geometrical terms: At each
point x, the local elastic stress path t 7→ (XE , Y E)(r, t) is enclosed by the disk with radius
2σY and centered at (X0(x), Y 0(x)). Thus, denoting by γ(r, ω̃) the radius of the smallest
disk enclosing the curve t 7→ (XE , Y E)(r, t), we have

γ(r, ω̃) < 2σY ∀r ∈ [0, R). (6.27)
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The reasoning so far shows that the fulfillment of the shakedown condition 2 implies
(6.27). The converse is also true: If (6.27) is satisfied for all r ∈ [0, R), then there exists
some time-independent functions (αr(r), αθ(r)) such that

(αr + sEr )2 + (αθ + sEθ )2 + (αr + αθ + sEr + sEθ )2 < 2σ2
Y (6.28)

for all r ∈ [0, R) and t ∈ [0, T ]. We claim that

αr(r) = ρdr(r), αθ(r) = ρdθ(r) (6.29)

for some self-equilibrated stress field ρ. It can indeed be easily verified that the stress field
ρ defined by

ρ(r) =
(
αθ(r)−αr(r)

)
eθ⊗eθ−

(
αθ(r)+2αr(r)

)
ez⊗ez−

(∫ R

r

αθ(s)− αr(s)
s

ds
)
I (6.30)

fulfills (6.29) as well as the equilibrium equations divρ = 0 and ρr(R) = 0. Consequently,
the stress field ρ in (6.30) is self-equilibrated and verifies (6.24), i.e. the shakedown condi-
tion 2 is satisfied.

Eq. (6.27) offers a practical shakedown criterion for the problem at hand. Let us now
apply that criterion to the harmonic loading in (6.4), in which case a T−periodic stress
response σE to the pure elasto-diffusion problem is given by Eqs. (6.5) and (6.13). In the
following, the curves t 7→ (XE , Y E)(r, t) are referred to as stress loops and are denoted
by Γ(r, ω̃). Some stress loops are represented in Fig. 6 for several values of r and ω̃, in
the case ν = 0.3. Two main observations are in order. The first one is that any given
stress loop is symmetrical with respect to the origin O. This actually follows from the
T/2−antiperiodicity of the stress response σE(r, t). As a consequence of that symmetry,
the smallest disk D enclosing a given stress loop Γ(r, ω̃) is necessarily centered3 at O so
that its radius γ(r, ω̃) is simply given by

γ(r, ω̃) = sup
0≤t≤T

√
(XE(r, t))2 + (Y E(r, t))2. (6.31)

A second observation is that, at any given ω̃, all the stress loops Γ(r, ω̃) are enclosed in
the stress loop Γ(R, ω̃) (shown in red in Fig. 6). As a consequence, the condition (6.27)
reduces to

γ(R, ω̃) < 2σY . (6.32)

Using (6.31) and the expressions (6.13) of σE , it can be calculated that

γ(R, ω̃)

G|ã|H
=

1√
6

(
A(ω̃) +

√
A2(ω̃)−B(ω̃)

) 1
2

(6.33)

3Denoting the reflection through the origin by S, we have indeed Γ(r, ω̃) ⊂ D hence SΓ(r, ω̃) ⊂ SD, i.e.
Γ(r, ω̃) ⊂ SD. The disk SD has the same radius as D. The uniqueness of the smallest disk enclosing Γ(r, ω̃)
then implies that SD = D, i.e. that D is centered at the origin.
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Figure 6: Stress loops Γ(r, ω̃) for a harmonic loading with ω̃ = 1 (a), ω̃ = 10 (b), ω̃ = 25 (c), ω̃ = 50 (d).
The blue curves show the stress loops at the location r/R = i/10 with i = 0, · · · 9. The red curve is the
stress loop at r = R. The smallest disk enclosing Γ(R, ω̃) is shown as a dashed green curve.

where

A(ω̃) = 3(1− ν)2 + (<z − 1− ν)2 + (=z)2, B(ω̃) = 12(1− ν)2(=z)2; (6.34)

and

z =
R̂J0(R̂)

J1(R̂)
.
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From (6.32), the shakedown domain in the (ω̃,H) map is defined by

H < HSD(ω̃) (6.35)

where

HSD(ω̃) = 2

√
6σY
G|ã|

(
A(ω̃) +

√
A2(ω̃)−B(ω̃)

)− 1
2

. (6.36)

The shakedown limit ω̃ 7→ HSD(ω̃) is shown as a solid line in Fig. 7. Even though rate-
independent plasticity is considered, the loading rate ω̃ has an influence on the shakedown
limit. This unusual behavior results from the coupling with diffusion. It can also be
observed that HSD(ω̃) → ∞ as ã → 0. In that limiting case, the coupling between
plasticity and diffusion vanishes so that a purely chemical loading does not induce any
stress.

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

1.2

1.4

ω̃

H
/H

0

Figure 7: Shakedown domain for the harmonic loading, case ν = 0.3: (solid line) shakedown limit HSD;
(dotted line) simplified expressions (6.37-6.38) in the limiting cases ω̃ → 0 (green curve) and ω̃ → ∞ (red
curve).

The expression of the shakedown limit HSD(ω̃) can be simplified in the limiting cases
ω̃ → 0 and ω̃ →∞. For ω̃ → 0, a Taylor expansion of (6.36) gives

HSD(ω̃)

H0
∼ 1

1− ν
− 1

2

(
ω̃

8(1− ν)

)2( 1

4(1− ν)
+

1

3

)
(6.37)
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where

H0 =

√
3σY
G|ã|

.

For ω̃ → ∞, the asymptotic behavior of HSD(ω̃) is obtained from a variation of the
stationary phase method (Wong, 2001) as

HSD(ω̃)

H0
∼ 2√

ω̃
. (6.38)

In Fig. 7, the shakedown limits provided by the simplified expressions (6.37) and (6.38) are
shown as green and red dashed lines, respectively. To put things in perspective, consider
a particle with a radius R of 1 µm. For common electrodes materials such as LiCoO2 or
MnO4, the diffusion parameter D is of the order of 10−16 m2/s (Reimers and Dahn, 1992;
Christensen and Newman, 2006). In the most favorable situation where aã/k is negligible,
the time scale T0 in (6.18) is minimized and approximatively equal to 104 s. For batteries
used in electronic devices, the typical charging/decharging period is in the range 1-10 h,
which correspond to dimensionless charging rates ω̃ in the range 2 − 20. The maximum
concentration of lithium in common electrodes materials is in the range 104 - 4.104 mol/m3.
Using the representative values E = 80 GPa, ν = 0.3, σY = 500 MPa, a = −2.72× 10−18

J, charging the cylinder particle at its maximum capacity then corresponds to values of H
in the range 5H0 − 20H0. Such values are above the shakedown limit as can be observed
in Fig. 7. For a charging time of 10 h (ω̃ ' 2) and a maximum concentration of 104

mol/m3, the particle can only be charged at approximatively 30% of its maximum capacity
for remaining in the elastic shakedown regime. Those rather severe restrictions partly stem
from the plane strain assumption used in the calculations and become less stringent for a
stress free configuration, as will be further detailed in Sects. 6.3-6.4 below.

We emphasize that the fulfillment of the condition (6.35) ensures that shakedown occurs
for any initial state, even if the latter does not respect the circular symmetry. To illustrate
that point, finite-element calculations have been performed to obtain the evolution of the
particle starting from two initial plastic strain fields, labeled as εpA and εpB. The fields εpA
and εpB are represented in Fig. 8. The exact expression of εpA is εpA = 0.003 sin(πr/2R)(e1⊗
e2 + e2⊗ e1). The field εpB consists in two circular inclusions with a uniform plastic strain
0.0006(e1⊗e2+e2⊗e1) in each inclusion. The material parameters used for the simulations
are E = 80 GPa, ν = 0.3, σY = 500 MPa, a = −2.72 × 10−18 J, k = 0.5 × 10−13 J.m3,
D = 10−16 m2/s. The charging rate ω̃ is set to ω̃ = 10, in which case the shakedown
limit predicted by Eq. (6.36) is approximatively equal to 0.53H0. In Fig. 9 is plotted
the evolution of the norm

∫
Ω |ε

p(t)| of the plastic strain field, as estimated numerically for
H = 0.5H0, i.e. below the shakedown limit. As expected, the plastic strain field is found to
reach a steady state value for both initial states, which is illustrated in Fig. 9. In Fig. 10
is plotted the evolution of the plastic strain rate field in the case H = 0.6H0, i.e. above the
shakedown limit. As expected, the plastic strain does not stabilize to a time-independent
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Figure 8: Initial plastic strain fields εpA and εpB used in the finite-element calculations.
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Figure 9: Time-evolution of the norm of the plastic strain field (normalized with respect to its value at
t = 0), for the two different initial states εpA and εpB . The loading is harmonic with parameters ω̃ = 10,
H = 0.5H0.
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value: As can be observed in Fig. 10, the plastic strain rate converges towards a non zero
cyclic steady state that is the same for both initial states considered.

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
·10−3

t/T

1
ω
|Ω
|∫ Ω
|ε̇
p
(t

)|

εp(t = 0) = εpA
εp(t = 0) = εpB

Figure 10: Time-evolution of the plastic strain rate field (in norm), for the two different initial states εpA
and εpB . The loading is harmonic with parameters ω̃ = 10, H = 0.6H0.

Remark: The presented analysis can be adapted to the case where the chemical potential
µ is imposed at r = R, instead of the flux J . Writing the imposed chemical potential µ(R, t)
as µ0 +Ma sinωt where Ma is the loading parameter, the shakedown limit MSD(ω̃) on Ma

is given by

MSD(ω̃) =
HSD(ω̃)

4

(
(k − aã)|z|+ 2(1− 2ν)aã

)
(6.39)

where z = R̂J0(R̂)/J1(R̂). The shakedown limit MSD(ω̃) does not decrease monotonically
with ω̃. For instance, in the case aã� k, MSD(ω̃) increases for ω̃ < ω̃M and decreases for
ω̃ > ω̃M , with ω̃M ' 3.1. This non monotonic behavior comes from the fact that the terms
HSD(ω̃) and |z| that appear in (6.39) vary in opposite fashion with ω̃. In particular, |z| is
increasing with ω̃, which means that the maximum number of lithium ions injected for a
fixed value of Ma is decreasing with ω̃.
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6.2. Smoothed square-wave loading

As a further illustration, we use the solution of the harmonic problem to study the case
of the smoothed square-wave loading J(t) defined by

J(t) = −RωH
τ

J0(t) (6.40)

where

J0(t) =

N∑
n = 1
n odd

1

n

(
sinc2 n

N

)
sinnωt (6.41)

and
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Figure 11: Smoothed square-wave loading.

τ = 4
N∑

n = 1
n odd

1

n2

(
sinc2 n

N

)

In (6.41), N is a fixed even integer. The function J0(t) in (6.41) is represented in Fig. 11
for N = 10. In (6.40), the dimensionless number τ is introduced in such fashion that the
loading parameter H is equal to the maximum number of inserted lithium ions (per unit
volume). Compared to the harmonic case, the loading in Fig. 11 is more representative of
situations where charge and discharge occur under a constant electric current.
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A T−periodic response (σE , µE ,uE , cE) to the pure elasto-diffusion problem can be
constructed using the procedure described in Sect. 5.2. For instance, the displacement uE

is given by

uE =
N∑

n = 1
n odd

<(ûne
inωt)er

where ûn is obtained by replacing (ω̃,H) with (nω̃, (4H/τn2) sinc2 n
N ) in the expression of

û in (6.12). Similarly, the stress σE can be written as σE = <(σ̂) where σ̂ = σ̂rer ⊗ er +
σ̂θeθ ⊗ eθ + σ̂zez ⊗ ez and

σ̂r
GãH

=
2

τ

N∑
n = 1
n odd

1

n2

(
sinc2 n

N

)(
1− R̂

r̂

J1(
√
nr̂)

J1(
√
nR̂)

)
einωt,

σ̂θ
GãH

=
2

τ

N∑
n = 1
n odd

1

n2

(
sinc2 n

N

)(
1 +

R̂

r̂

J1(
√
nr̂)

J1(
√
nR̂)

−
√
nR̂

J0(
√
nr̂)

J1(
√
nR̂)

)
einωt,

σ̂z
GãH

=
2

τ

N∑
n = 1
n odd

1

n2

(
sinc2 n

N

)(
2ν −

√
nR̂J0(

√
nr̂)

J1(
√
nR̂)

)
einωt.

(6.42)

Some stress loops corresponding to the expressions (6.42) are shown in Fig. 12. Since the
applied loading is T/2-antiperiodic, every stress loop Γ(r, ω̃) is symmetrical with respect
to the origin O so that the expression (6.31) of γ(r, ω̃) still holds. As for the harmonic
loading, we further observe that the stress loop Γ(R, ω̃) encloses all the other stress loops
Γ(r, ω̃) at the same charging rate. The shakedown condition is thus

sup
0≤t≤T

√
(XE(R, t))2 + (Y E(R, t))2 <

√
2σY . (6.43)

For any given ω̃, the supremum in (6.43) can be estimated numerically from the expressions
(6.42). The resulting shakedown diagram is presented in Fig. 13(solid line) for the case
ν = 0.3. When ω̃ > 7.5, the smoothed square-wave loading is found to be more favorable
than the harmonic loading, in the sense that the shakedown limit is higher. The conclusion
is reversed when ω̃ < 7.5. However, it should be observed that the relative difference
between the shakedown limits for those two loadings remains small and never exceeds 6%.

Consider some loading parameters (ω̃,H) that fall in the shakedown domain. In the
large-time limit, the stress and chemical potential fields differ from the purely elasto-
diffusive response (σE , µE) by some time-independent field (ρ, η) ∈ K0. Up to a constant,
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2G|ã|H

Y
E
/

1 2
G
|ã
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Figure 12: Stress loops Γ(r, ω̃) for a smoothed square-wave loading with ω̃ = 1 (a), ω̃ = 10 (b), ω̃ = 25 (c),
ω̃ = 50 (d). The blue curves show the stress loops at the location r/R = i/10 with i = 0, · · · , 9. The red
curve is the stress loop at r = R. The smallest disk enclosing Γ(R, ω̃) is shown as a dashed green curve.

the large-time expression of the chemical potential µ(R, t) on the surface r = R is thus
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Figure 13: Shakedown map for a smoothed square-wave loading (solid line) and a harmonic loading (dotted
line). Case ν = 0.3.

given by µ0 + <(µ̂(R, t)) with

µ̂(R, t)

H
=

1

τ

N∑
n = 1
n odd

1

n2

(
sinc2 n

N

)(
(aã− k)

√
nR̂J0(

√
nR̂)

J1(
√
nR̂)

+ 2(1− 2ν)aã
)
einωt. (6.44)

The chemical potential µ(R, t) is directly related to the voltage V (t) between the considered
electrode particle and a reference electrode at a chemical potential µ0. We have indeed the
relation

V (t) = −(µ(R, t)− µ0)/e

where e = 1.602 × 10−19 C is the elementary charge. The voltage V (t) corresponding to
(6.44) is represented in Fig. 14 as a function of the average volume fraction c̄(t) of lithium,
in the case ãa � k. The curves in Fig. 14 can be interpreted as charge-voltage responses
in the large-time limit. Changing the initial state may only result in a time-independent
shift of the curves in the (c̄, V ) plane. Those c̄− V curves hold provided that the loading
parameters (ω̃,H) respect the shakedown condition (6.43). In such a condition, the charge–
discharge hysteresis that is observed in Fig.14 results only from the diffusion and increases
with the charging rate ω̃. Compared with the curves obtained for harmonic loadings (shown

34



as red dotted lines in Fig. 14), the c̄ − V curves for the smoothed square-wave loading
display a smaller hysteresis, which is especially visible for high values of ω̃.
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Figure 14: Charge-voltage response in the cyclic steady state of elastic shakedown, for a smoothed square-
wave loading (solid line) and a harmonic loading (dotted line).

6.3. Chemo-mechanical loading

The loadings considered so far are purely chemical, but the shakedown condition (6.27)
can be used in more general situations where both chemical and mechanical loadings are
involved. To illustrate that point, we study an example of chemo-mechanical loading with
two parameters. Specifically, the axial strain of the particle is assumed to vary cyclically
in time due to prescribed normal tractions T (x, t) applied on the top and bottom surfaces
(z = 0, H). The normal force F (t) =

∫
z=H T (x, t)dS on the top surface is written as

F (t) = πR2σF cosωt ez when σF is the mechanical loading parameter. Cyclic lithiation is
imposed as in (6.4) where H is the chemical loading parameter.

Omitting the detail of the calculations, the purely elasto-diffusive stress σE is found to
be given by the same equations as (6.5) and (6.13) except that σ̂z is now defined by

σ̂z =
GãH

2

(
2− R̂J0(r̂)

J1(R̂)

)
+ σF . (6.45)
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Following the analysis reported in Sect. 6.1.2, shakedown occurs if γ(r, ω̃) < 2σY for
all r. Assuming that a < 0 (i.e. that lithiation results in volumetric expansion), γ(r, ω̃) is
found to be maximum at r = R so that the shakedown condition reduces to γ(R, ω̃) < 2σY .
That last requirement is found to translate as

1

3

(
σF
σY

)2

+

(
H

H1(ω̃)

)2

− β(ω̃)
σF
σY

H

H1(ω̃)
− 1

4
(1− 3β(ω̃)2)

(
σF
σY

H

H1(ω̃)

)2

< 1 (6.46)

where

H1(ω̃) =
2

G|ã|

√
3σY√

(<z − 2)2 + (=z)2
, β(ω̃) =

√
3(<z − 2)

3
√

(<z − 2)2 + (=z)2
(6.47)

and z = R̂J0(R̂)/J1(R̂). Eq. (6.46) defines the shakedown domain in the space of loading
parameters (H,σF ). The boundary of the shakedown domain is represented in Fig. 15 for
several values of the loading rate ω̃. For H = 0, the shakedown limit on σF is equal to√

3σY . For σF = 0 (case of a free cylinder), the shakedown limit on the chemical loading
parameter H is equal to H1(ω̃) and becomes infinite when ω̃ tends towards 0. For later
reference, the shakedown limit for the free cylinder is shown in Fig. 16 in the (ω̃,H) plane.
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Figure 15: Shakedown map for a cylinder particle under a harmonic chemo-mechanical loading.
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6.4. Spherical particle

The case of a spherical particle can be studied by a similar analysis. We only report some
results for a free-standing spherical particle (with radius R) submitted to a T−periodic flux
J(t) of lithium on its boundary. The shakedown domain in the (ω̃,H) is shown in Fig.
16 for a harmonic charging (red dotted line) and a smoothed square-wave charging (red
solid line). The charging parameter H is the maximum average concentration of injected
lithium. The expression of the shakedown limit HSD(ω̃) in the harmonic case is

HSD(ω̃) =
3
√

3σY
G|ã|

(
(<ζ − 3)2 + (=ζ)2

)− 1
2 (6.48)

where ζ = R̂j0(R̂)/j1(R̂) and ji is the spherical Bessel function of the first kind. In the
limit ω̃ → 0, the shakedown limit HSD(ω̃) in (6.48) becomes infinite, as for the stress-free
cylinder particle. In free standing conditions, the spherical geometry allows for higher
shakedown limits than the cylindrical geometry, see Fig. 16. As mentioned in Sect. 6.1.2,
the maximum concentration of lithium in common electrode materials is in the range
104−4 104 mol/m3, which corresponds to a charging parameter H in the range 5H0−20H0.
The results in Fig. 16 can be used to assess the minimum time for charging a free particle
to its maximum capacity while ensuring that it remains in the elastic shakedown regime.
For a smoothed square wave charging, that minimum time falls in the range 4 − 16 h for
a spherical particle and in the range 10− 40 h for a cylinder particle.

7. Concluding remarks

Setting aside the technical assumptions that there exists a T−periodic solution to (3.8)
and that the dimension of H is finite, the main results of Sect. 4 can be informally
summarized a follows: For cyclically loaded media coupling plasticity with diffusion, there
is a convergence to a cyclic steady state in which the stress, the chemical potential, the flux
of guest atoms and the plastic strain rate evolve in a time-periodic fashion. Some features
of the cyclic steady state are path independent, i.e. independent of the initial state. This
is notably the case of the stress rate, the plastic strain rate and the flux of guest atoms.

The cyclic steady-state carries a lot of relevant information for the design of structures.
The most intuitive way of estimating the cyclic steady state is to resort to step-by-step
incremental analysis over a sufficiently large number of cycles. More computationally
efficient methods could possibly be developed by building on various techniques that have
been used in standard plasticity (Maitournam et al., 2002; Spiliopoulos and Panagiotou,
2012; Peigney and Stolz, 2001, 2003). Such ’direct’ methods would tentatively reduce the
computational effort needed to establish Bree-type diagrams recording the main features
of the cyclic steady state as a function of the loading parameters.

As mentioned in Sect. 4.3, the particular case of elastic shakedown is of special inter-
est both from mechanical and chemical considerations. The two-step method suggested
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Figure 16: Shakedown maps for a free spherical particle (red) and a free cylinder particle (blue). Case of a
harmonic charging (dotted line) and a smoothed square-wave charging (solid line).

in Sect. 5 allows one to estimate the set of loading parameters for which shakedown oc-
curs – without resorting to step-by-step calculation of the chemo-mechanical evolution in
elasto-plasticity. Interestingly, that two-step method is relatively simple to use: The first
step is completely disconnected from plasticity and consists in finding the cyclic steady-
state for the fictitious elasto-diffusive problem. Once the elasto-diffusive problem is solved,
the second step is performed without any reference to diffusion. For the simple geometry
considered in Sect. 6, most of the needed calculations could be performed in closed-form.
For more complex geometries, adequate numerical techniques would be necessary: the
fictitious elasto-diffusive problem could possibly be solved by combining a Fourier decom-
position with a finite-element method (for solving the harmonic problem). Step 2 could
be performed numerically by observing that it amounts to solve a convex programming
problem, for which efficient algorithms (such as interior-point methods) are available.

The results presented in this paper could tentatively contribute to the design of Li-ion
batteries with improved efficiency and cycle life. In that regard, it would be interesting
to investigate whether similar shakedown conditions could be obtained in the finite strain
setting: This would be relevant for the study of emerging silicon-based electrode materials
as the lithium-induced volumetric change in those materials can reach values up to 300%.
Coupling with temperature is also an important topic to be explored. Furthermore, it would
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be interesting to study whether the results presented could be extended to more complex
cases such as non quadratic free energies, concentration-dependent diffusion coefficients, or
non-associative plasticity.

Appendix A. Proof of property 1

Let Σ = (σ, µ) and Σ′ = (σ′, µ′) be two solutions of (3.8). We have

1

2

d‖Σ(t)−Σ′(t)‖2

dt
= 〈Σ(t)−Σ′(t), Σ̇(t)− Σ̇

′
(t)〉. (A.1)

Using (3.8) with (ρ, ν) = (σ(t)− σ′(t), µ(t)− µ′(t)) ∈ K0 gives

〈Σ̇(t),Σ(t)−Σ′(t)〉 = −
∫

Ω
ε̇p : (σ − σ′) dω −

∫
Ω
∂ψ(∇µ) · (∇µ−∇µ′) dω

+

∫
Γu

U̇ · (σ − σ′) · ndS −
∫

Γj

J(µ− µ′) dS
(A.2)

where ε̇p ∈ ∂φ(σ). Since Σ′(t) is also a solution of (3.8), we have similarly

〈Σ̇′(t),Σ(t)−Σ′(t)〉 = −
∫

Ω
ε̇p′ : (σ − σ′) dω −

∫
Ω
∂ψ(∇µ′) · (∇µ−∇µ′) dω

+

∫
Γu

U̇ · (σ − σ′) · ndS −
∫

Γj

J(µ− µ′) dS
(A.3)

where ε̇p′ ∈ ∂φ(σ′). Subtracting (A.3) from (A.2) and using (A.1) gives

1

2

d‖Σ(t)−Σ′(t)‖2

dt
= −Dp −Dd (A.4)

where

Dp =

∫
Ω

(ε̇p − ε̇p′) : (σ − σ′) dω (A.5)

and

Dd =

∫
Ω

(∂ψ(∇µ)− ∂ψ(∇µ′)) · (∇µ−∇µ′) dω.

Since ψ is convex, ∂ψ is monotone i.e. (∂ψ(∇µ) − ∂ψ(∇µ′)) · (∇µ −∇µ′) ≥ 0 (Van Tiel,
1984). Hence

Dd ≥ 0. (A.6)

In a similar fashion, the convexity of φ yields

Dp ≥ 0. (A.7)

It follows that d‖Σ(t)−Σ′
(t)‖2

dt ≤ 0 which leads to property 1.
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Appendix B. Proof of property 2

We now proceed to prove property 2, using the same notations as in Appendix A.
If ‖Σ(t) − Σ′(t)‖ is constant for t ≥ t1, then Eqs. (A.4), (A.6) and (A.7) imply that
Dp = Dd = 0 for all t ≥ t1. Consequently

(ε̇p(x, t)− ε̇p′(x, t)) : (σ(x, t)− σ′(x, t)) = 0 (B.1)

and
(∂ψ(∇µ(x, t))− ∂ψ(∇µ′(x, t)) · (∇µ(x, t)−∇µ′(x, t)) = 0 (B.2)

at each location x and each time t ≥ t1. Since ψ is strictly convex, Eq. (B.2) implies that
∇µ(x, t) = ∇µ′(x, t), i.e.

µ(x, t)− µ′(x, t) = f(t) (B.3)

for some function f .
Using (3.8) with the field (ρ, ν) = (σ̇(t) − σ̇′(t), µ̇(t) − µ̇′(t)) ∈ K0 and taking (B.3)

into account, we obtain

〈Σ̇(t), Σ̇(t)− Σ̇
′
(t)〉 = −

∫
Ω
ε̇p : (σ̇ − σ̇′) dω +

∫
Γu

U̇ · (σ̇ − σ̇′) · ndS −
∫

ΓJ

Jḟ dS. (B.4)

We have similarly

〈Σ̇′(t), Σ̇(t)− Σ̇
′
(t)〉 = −

∫
Ω
ε̇p′ : (σ̇ − σ̇′) dω +

∫
Γu

U̇ · (σ̇ − σ̇′) ·ndS −
∫

ΓJ

Jḟ dS. (B.5)

Subtracting (B.5) from (B.4) gives

‖Σ̇(t)− Σ̇
′
(t)‖2 = −

∫
Ω

(σ̇ − σ̇′) : (ε̇p − ε̇p′) dω (B.6)

At this point it is necessary to distinguish between viscoplasticity and rate-independent
plasticity. In the case of viscoplasticity, Eq. (B.1) together with the strict convexity of the
dissipation potential (outside of the elasticity domain) implies that ε̇p = ε̇p′. It follows

from (B.6) that ‖Σ̇(t) − Σ̇
′
(t)‖ = 0. Hence σ̇ − σ̇′ = 0 and µ̇ − µ̇′ = 0, i.e. σ − σ′ and

µ−µ′ are time-independent fields. We can conclude that the function f in (B.3) is actually
a constant. Since Σ and Σ′ are both in K(f ,T ,M), we necessarily have Σ−Σ′ ∈ K0.

The case of rate-independent plasticity is slightly more involved and can be handled
using arguments introduced by Halphen (1978): From the principle of maximum dissipation
(2.10), we have (σ − σ′) : ε̇p ≥ 0 and (σ′ − σ) : ε̇p′ ≥ 0. Hence the relation (B.1) implies
that

0 = (σ − σ′) : ε̇p = (σ − σ′) : ε̇p′. (B.7)

For any dt we have

(σ′(t+ dt)− σ′(t)) : ε̇p = (σ′(t+ dt)− σ(t)) : ε̇p + (σ(t)− σ′(t)) : ε̇p. (B.8)
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In the right-hand side of (B.8), the first term is negative because of the principle of max-
imum dissipation (2.10). The second term vanishes because of (B.7). Taking the limit
dt→ 0 in (B.8), we thus obtain that

σ̇′ : ε̇p ≤ 0. (B.9)

A similar reasoning can be used to show that

σ̇ : ε̇p′ ≤ 0. (B.10)

Moreover, the normality flow rule (2.11) implies that

σ̇ : ε̇p = σ̇′ : ε̇p′ = 0. (B.11)

Combining the relations (B.9)-(B.11) shows that (σ̇ − σ̇′) : (ε̇p − ε̇p′) ≥ 0. Using (B.6) we
thus have

0 ≤ ‖Σ̇(t)− Σ̇
′
(t)‖2 = −

∫
Ω

(σ̇ − σ̇′) : (ε̇p − ε̇p′) ≤ 0 (B.12)

It follows that ‖Σ̇(t) − Σ̇
′
(t)‖ = 0. From this point, one can conclude as in the case of

viscoplasticity.

Appendix C. Proof of Opial’s lemma

For the sake of self-containment, we give in this section a proof of Opial’s lemma. We
recall the assumptions of that lemma:

(i) {‖un − f‖} converges for all f ∈ F ,
(ii) the limit of every (weakly) convergent subsequence of {un} is in F

We wish to show that the whole sequence {un} weakly converges. We first prove that
the limit of any weakly converging subsequence is uniquely defined. To that purpose,
consider two converging subsequences (denoted by {uϕ(n)} and {uϕ′(n)}) and let (f, f ′) be
their respective weak limits, i.e.

lim
n→∞

〈uϕ(n) − f, g〉 = 0, lim
n→∞

〈uϕ′(n) − f ′, g〉 = 0 (C.1)

for any g ∈ H. We set

R(f) = lim
n→∞

‖uϕ(n) − f‖, R(f ′) = lim
n→∞

‖uϕ′(n) − f ′‖. (C.2)

The limits in (C.2) exist because of the assumption (i). For each n we have

‖uϕ(n) − f‖2 = ‖uϕ(n) − f ′ + f ′ − f‖2 = ‖uϕ(n) − f ′‖2 + ‖f ′ − f‖2 + 2〈uϕ(n) − f ′, f ′ − f〉.
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Taking the limit n→∞ and using (C.1) as well as (C.2), we obtain

R(f)2 = R(f ′)2 + ‖f ′ − f‖2. (C.3)

Using a similar reasoning with {uϕ′(n)} gives

R(f ′)2 = R(f)2 + ‖f ′ − f‖2. (C.4)

Combining (C.3) and (C.4) gives f = f ′. The weak limit of any weakly converging subse-
quence is thus unique. Since the unit ball is compact for the weak topology (Rudin, 1991)
and the sequence {un} is bounded (by (i)), it follows that the whole sequence {un} weakly
converges to f . By (ii), we have f ∈ F .
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ingénieurs anciens éleves de l’E.N.P.C., pp. 253–255.

Klarbring, A., Barber, J., Spagnoli, A., Terzano, M., 2017. Shakedown of discrete systems
involving plasticity and friction. Eur. J. Mech. A 64, 160–164.

Koiter, W. T., 1960. General problems for elastic solids. Progress in solid mechanics.
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tique d’une structure anélastique sous chargement cyclique. C.R. Mecanique 330, 703–
708.

Melan, E., 1936. Theorie statisch unbestimmter systeme aus ideal-plastischen baustoff.
Sitz.Berl.Ak.Wiss. 145, 195–218.

Nguyen, Q. S., 2003. On shakedown analysis in hardening plasticity. J. Mech. Phys. Solids
51, 101–125.

Opial, Z., 1967. Weak convergence of the sequence of successive approximations for non-
expansive mappings. Bull. Amer. Math. Soc. 73, 591–597.

Peigney, M., 2010. Shakedown theorems and asymptotic behaviour of solids in non-smooth
mechanics. Eur. J. Mech. A 29, 784–793.

43



Peigney, M., 2014a. On shakedown of shape memory alloys structures. Ann. Solid Struct.
Mech. 6, 17–28.

Peigney, M., 2014b. Shakedown of elastic-perfectly plastic materials with temperature-
dependent elastic moduli. J. Mech. Phys. Solids 71, 112–131.

Peigney, M., Stolz, C., 2001. Approche par contrôle optimal des structures
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