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Abstract

The Stochastic Dual Dynamic Programming (SDDP) algorithm has become one of the
main tools to address convex multistage stochastic optimal control problem. Recently a
large amount of work has been devoted to improve the convergence speed of the algorithm
through cut-selection and regularization, or to extend the field of applications to non-linear,
integer or risk-averse problems. However one of the main downside of the algorithm remains
the difficulty to give an upper bound of the optimal value, usually estimated through Monte
Carlo methods and therefore difficult to use in the algorithm stopping criterion.

In this paper we present a dual SDDP algorithm that yields a converging exact upper
bound for the optimal value of the optimization problem. Incidently we show how to compute
an alternative control policy based on an inner approximation of Bellman value functions
instead of the outer approximation given by the standard SDDP algorithm. We illustrate the
approach on an energy production problem involving zones of production and transportation
links between the zones. The numerical experiments we carry out on this example show the
effectiveness of the method.

1 Introduction

In this paper, we consider a multistage stochastic optimization problem, with continuous decision
variables. We adopt the stochastic optimal control point of view, that is, we work with explicit
control and state variables in order to deal with an explicit dynamics of the system and to obtain
an interpretation of the multipliers associated to the dynamics.

1.1 Stochastic optimization problem in discrete time

Let (Ω,A,P) be a probability space, where Ω is the set of possible outcomes, A the associated
σ-field and P the probability measure. We denote by J0, T K the discrete optimization horizon
{0, 1, . . . , T}, and we define upon it three processes X =

{
Xt

}
t∈J0,T K, U =

{
U t

}
t∈J1,T−1K and

ξ =
{
ξt
}
t∈J1,T K where for all t, Xt : Ω → Rn, U t : Ω → Rm and ξt : Ω → R` are random
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variables representing respectively the state, the control and the noise variables. The state
process X is assumed to follow the linear dynamics

X0 = x0 ,

Xt+1 = AtXt +Bt+1U t+1 + Ct+1ξt+1 ∀t ∈ J0, T − 1K ,

where x0 is the given initial state at time 0 and where At ∈ Rn×n, Bt+1 ∈ Rn×m and Ct+1 ∈ Rn×`
are given matrices. We moreover assume that both the control and the state variables are subject
to bound constraints, that is,

ut+1 ≤ U t+1 ≤ ut+1 ∀t ∈ J0, T − 1K ,
xt+1 ≤Xt+1 ≤ xt+1 ∀t ∈ J0, T − 1K ,

and thus take values in compact subsets of Rn and Rm respectively. We assume that the problem
has a Hazard-Decision1 information structure, that is, the decision at time t is taken knowing the
noise that affects the system between t and t+ 1. Accordingly, the decision U t+1 is a function of
the uncertainties up to time t+ 1, which means that U t+1 has to be measurable with respect to
the σ-field Ft+1 generated by the uncertainties (ξ1, · · · , ξt+1). We write this non anticipativity
constraint as

U t+1 � Ft+1 ∀t ∈ J0, T − 1K .

Furthermore, we assume that the state variable Xt and the control variable U t satisfy a linear
coupling constraint

DtXt + Et+1U t+1 +Gt+1ξt+1 ≤ 0 ∀t ∈ J0, T − 1K ,

where Dt ∈ Rp×n, Et+1 ∈ Rp×m and Gt+1 ∈ Rp×` are given matrices. Finally, the cost incurred
at each time t ∈ J0, T − 1K is a linear function

a>t Xt + b>t+1U t+1 ,

with at ∈ Rn and bt+1 ∈ Rm, and the cost incurred at the final time T is

K(XT ) ,

where K is a polyhedral, hence convex lower semi-continuous, function.
Gathering all these elements, we get the following stochastic optimization problem:

min
X,U

E
[ T−1∑
t=0

(a>t Xt + b>t+1U t+1) +K(XT )

]
, (1a)

s.t. X0 = x0 , (1b)

Xt+1 = AtXt +Bt+1U t+1 + Ct+1ξt+1 ∀t ∈ J0, T − 1K , (1c)

ut+1 ≤ U t+1 ≤ ut+1 ∀t ∈ J0, T − 1K , (1d)

xt+1 ≤Xt+1 ≤ xt+1 ∀t ∈ J0, T − 1K , (1e)

DtXt + Et+1U t+1 +Gt+1ξt+1 ≤ 0 ∀t ∈ J0, T − 1K , (1f)

U t+1 � Ft+1 ∀t ∈ J0, T − 1K . (1g)

We make the following assumption throughout the paper.

1Wait-and-see in the Stochastic Programming terminology
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Assumption 1 (discrete white noise). Assume that Nξtt∈J1,T K is a sequence of independent

variable with finite support.

Independence is of paramount importance to obtain Dynamic Programming equation, while
finiteness of the support is required both to be able to compute exactly the expectation and for
theoretical convergence reasons.

1.2 Stochastic Dual Dynamic Programming and its weaknesses

Thanks to white noise Assumption 1, we can solve Problem (1) by the Dynamic Programming
approach (see the two reference books Bellman [1957] and Bertsekas [2005] for further details).
This approach leads to the so-called Bellman’s value functions Vt, such that Vt(x) is the optimal
value of the problem when starting at time t with state Xt = x. These functions are obtained
by solving the following recursive Bellman equation:

VT (x) =K(x) ,

Vt(x) =E
[

inf
ut+1,xt+1

a>t x+ b>t+1ut+1 + Vt+1(xt+1)
]
,

s.t. xt+1 = Atx+Bt+1ut+1 + Ct+1ξt+1 ,

ut+1 ≤ ut+1 ≤ ut+1 ,

xt+1 ≤ xt+1 ≤ xt+1 ,

Dtx+ Et+1ut+1 +Gt+1ξt+1 ≤ 0 .

Under further assumptions, we can show that Vt is finite on Xt. In the discrete state case,
we can solve the Bellman equation by exhaustive exploration of the state, yielding the exact
solution of the problem. In the continuous linear-convex case, we have to rely on polyhedral ap-
proximations. The Stochastic Dual Dynamic Programming algorithm (SDDP) builds polyhedral
approximations V t of the functions Vt by using a nested Benders decomposition (see Philpott
and Guan [2008], Girardeau et al. [2014], Guigues [2016] and Guigues [2017] for the convergence
of this approach). In particular the polyhedral value functions V t computed by SDDP are outer
approximations of the functions Vt at each stage, that is, V t ≤ Vt, so that the value v0 = V 0(x0)
is an exact (deterministic) lower bound on the optimal value v0 = V0(x0) of Problem (1).

The polyhedral value functions V t obtained from SDDP can also be used to derive an ad-
missible strategy, whose associated expected cost v0 gives an upper bound of the optimization
problem value. Unfortunately, computing the expectation is usually out of reach, and we need
to rely on some approximate computation. The most common way to perform that task is based
on the Monte Carlo approach: it consists in simulating the control strategy induced by the poly-
hedral value functions V t along a (large) number M of noise scenarios, and then computing the
arithmetic mean v̂M0 of the scenarios cost and the associated empirical standard deviation σ̂M0 .
The value v̂M0 is an approximate (statistical) upper bound of the optimal value of Problem (1).
Moreover, it is easy to obtain a α-confidence interval [v̂M0 −zασ̂M0 , v̂M0 +zασ̂

M
0 ]. Here 1−α ∈ [0, 1]

is a chosen confidence level and zα = Φ−1(1− α), Φ being the cumulative distribution function
of the standard normal distribution.

The classical way to use this statistical upper bound in SDDP, as presented in Pereira and
Pinto [1991], consists in testing at each iteration of the algorithm if the available exact lower
bound v0 is greater than the α-confidence lower bound v̂M0 − zασ̂M0 , and to stop the algorithm
in that case. Such a stopping criterion raises at least two difficulties:

1. the Monte Carlo simulation increases the computational burden of SDDP,
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2. the stopping test does not give any guarantee of convergence of the algorithm.

The first difficulty can be tackled by parallelizing the M simulations involved in the evaluation
of the upper bound, and also by calculating the empirical mean v̂0 over the last k iterations of
the algorithm, thus enlarging the sample size from M to kM without additional computation
(see [Shapiro et al., 2012, §3.2]). The second weakness induced by this stopping criterion has
been analyzed in Shapiro [2011]: the larger the standard deviation σ̂0 and the confidence (1−α)
are, the sooner the algorithm will be stopped. The author proposes another criterion based
on the difference between the α-confidence upper bound v̂0 + zασ̂0 and the exact lower bound
v0 up to a prescribed accuracy level ε. An interesting view on the class of stopping criteria
in terms of statistical hypothesis tests has been given in Homem-de Mello et al. [2011]: the
authors compare different hypothesis tests of optimality2 and so they find the stopping criteria
proposed by Pereira and Pinto [1991], Shapiro [2011], as well as another one which ensures an
upper bound on the probability of incorrectly claiming convergence (type II error). Moreover,
the simulation scenarios are obtained using Quasi-Monte Carlo or Latin Hypercube Sampling
rather than raw Monte carlo, so that the accuracy of the upper bound is increased. Nevertheless,
all these stopping criteria are based on a statistical evaluation and it is thus not possible to
obtain a guaranteed convergence criterion.

A different approach consists in building polyhedral inner approximations V t of the Bellman
functions Vt at each stage, that is, V t ≥ Vt. A deterministic upper bound V 0(x0) of the optimal
value of Problem (1) thus becomes available , and it is then possible to perform a stopping
test of SDDP on the (deterministic) gap V 0(x0) − V 0(x0). Such a test, giving a guarantee
on the algorithm convergence has been investigated in Philpott et al. [2013]. More precisely,
starting from a polyhedral inner approximation V t+1 at time t + 1, and choosing an arbitrary
sequence of points x1

t , . . . , x
Jt
t , the authors show how to compute a value qjt at each point xjt

such that qjt ≥ Vt(x
j
t ). The inner polyhedral approximation V t is then obtained from the pairs

{(xjt , q
j
t )}j∈J1,JtK. A delicate issue when devising the inner approximations is the choice of the

points xjt defining the polyhedral functions V t. The authors suggest to use points generated by
some other algorithm, such as SDDP. Another approach involving inner and outer approximations
of the Bellman functions is described in Baucke et al. [2017]. The main feature of this last
reference is that the algorithm presented herein is fully deterministic.

1.3 Contents of the paper

In Sect. 2, we introduce the formalism of linear Bellman operators for a large class of optimization
problem, we define its dual linear Bellman operator and we enlighten the relationships between
them thanks to the Fenchel conjugate. We also present the SDDP algorithm in this abstract
formalism. We apply in Sect. 3 the conjugacy results obtained in Sect. 2 to obtain a dual
SDDP algorithm associated to the standard SDDP algorithm used for solving Problem (1). The
main result of this section is that we eventually obtain an exact upper bound over the value of
Problem (1). In Sect. 4, we show how to build an inner approximation of Bellman functions
associated to Problem (1) thanks to the outer approximation functions computed by the dual
SDDP algorithm, and we prove that the expected cost induced by the control strategy based
on these inner approximation Bellman functions is lower than the exact upper bound obtained
in Sect. 3. Ultimately, in Sect. 5, we illustrate all the presented methodology on an energy
management problem inspired by Électricité de France, at the European scale. The results
show, on the one hand that having at disposal an exact upper bound in SDDP allows to devise a
more efficient stopping test for SDDP than the usual ones based on a Monte Carlo approach, and

2such as: (H0: v0 = v0) against (H1: v0 6= v0)
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on the other hand that the strategy based on the inner approximation of the Bellman functions
outperforms the usual strategy obtained using standard outer approximations.

1.4 Notations

• Ji, jK denotes the set of integer between i and j.

• Ω denotes a finite set of cardinality |Ω| supporting a probability distribution P:
Ω = {ω1, . . . , ω|Ω|} and P = (π1, . . . , π|Ω|).

• Random variables are denoted using bold uppercase letters (such as Z : Ω→ Z), and their
realizations are denoted using lowercase letters (z ∈ Z).

• X : Ω→ X corresponds to the state, U : Ω→ U to the control, ξ : Ω→ Ξ to the noise.

• Vt : Xt → R is the Bellman value function associated to Problem (1) at time t.

• Dt = [Vt]
?

is the dual value function associated to Problem (1) at time t.

• B is a generic linear Bellman operator, with associated solution operator S, and dual
operator denoted B‡.

• T is the Bellman operator associated to Problem (1), it’s dual being denoted T ‡

• Underlined notation (e.g. V ) corresponds to a lower approximation of a function (e.g V ).
Overlined notation (e.g. V ) denotes a upper approximation.

2 Linear Bellman operators

This self-contained section is devoted to the definition and properties of linear Bellman operators
(LBOs). In §2.1 we present the abstract formalism of LBOs that allows to write Dynamic
Programming equations in a compact manner. In §2.2 we show that the Fenchel transform of a
LBO is also a LBO. In §2.3 we present an abstract version of the SDDP algorithm.

2.1 Linear Bellman operator

We first introduce the notion of linear Bellman operator, which is a particular class of Bellman
operators (see Bertsekas [2005]) associated to stochastic optimal control problems where costs
and constraints are linear.

We consider an abstract probability space (Ω,A,P). Recall that Ω is a finite set (see As-
sumption 1) and assume that the σ-field A is generated by all the elements of Ω. We denote by
F (Rnx) the set of functions defined on Rnx and taking values in [−∞,+∞], and by L0(Rnx) the
space of Rnx -valued measurable functions defined on (Ω,A,P).

Remark 2. Since we suppose that the set Ω is finite, every function defined on Ω is measurable
and a property that holds almost surely is a property that holds for every ω ∈ Ω. In particular
L0(Rn) is also a finite-dimensional space. ♦
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Definition 3. An operator B : F (Rnx)→ F (Rnx) is said to be a linear Bellman operator (LBO)
if it is defined as follows

B : F (Rnx)→ F (Rnx)

R 7→ B(R) : x 7→ inf
(U ,Y )∈L0(Rnx×Rnu )

E
[
C>U +R(Y )

]
, (2a)

s.t. Tx+Wu(U ) +Wy(Y ) ≤H , (2b)

whereWu : L0(Rnu)→ L0(Rnc) andWy : L0(Rnx)→ L0(Rnc) are two linear operators. Here, U
and Y are two decision random variables respectively defined on Rnu and Rnx . The two random
variables C : Ω → Rnu and H : Ω → Rnc are exogenous uncertainties in Problem (2) and we
note ξ = (C ,H ). Deterministic matrix T ∈ Rnc×nx is given data.

We denote by S(R) the set valued mapping giving, for a given x ∈ Rnx , the set of solutions Y
of Problem (2):

S(R) : Rnx → L0(Rnx) (3a)

x 7→ arg min
Y ∈L0(Rnx )

(
inf

U∈L0(Rnu )
E
[
C>U +R(Y )

])
, (3b)

s.t. Tx+Wu(U ) +Wy(Y ) ≤H . (3c)

Let G : Rnx ⇒ L0(Rnu)× L0(Rnx) be the set valued mapping defined by

G(x) :=
{

(U ,Y ) | Tx+Wu(U ) +Wy(Y ) ≤H
}
. (4a)

With domain dom(G) =
{
x ∈ Rnx | G(x) 6= ∅

}
. Further, we say that B is compact if G is

compact-valued with non-empty compact domain.

Once the domain of G has been introduced, we define the key notion of relatively complete
recourse, introduced in Rockafellar and Wets [1976]. We use a definition of relatively complete
recourse close to the one given in [Shapiro et al., 2009, §2.1.3].

Definition 4. Let R ∈ F (Rnx) and B a LBO. We say that the pair (B, R) satisfy a relatively
complete recourse (RCR) assumption if

∀x ∈ dom(G) , ∃(U ,Y ) ∈ G(x) such that Y ∈ dom(R) P-a.s. . (5)

Remark 5. Note that the set valued function G, and thus dom(G), does not depend on the
operator R. We have that dom(B(R)) ⊂ dom(G) but we may not have equality because the
domain of R is also involved in dom(B(R)).

However, if the pair (B, R) satisfy the RCR assumption then dom(G) = dom(B(R)). Thus,
if B is compact with non-empty domain, and (B, R) satisfy the RCR assumption, then B(R) is
finite at some point x0. ♦

Example 1. We give some classical examples of operators Wu and Wy involved in Definition 3
of B. We stress out that W is a linear operator over a space of random variables, and we
describe the associated adjoint operator, that is, the linear operatorW† such that

〈
X ,W(Y )

〉
=〈

W†(X ) ,Y
〉
, with

〈
X ,Y

〉
= E

[
X>Y

]
.

• Linear point-wise operator:

W : L0(Rnx) → L0(Rnc)(
ω 7→ Y (ω)

)
7→

(
ω 7→ AY (ω)

)
.

Such an operator allows to encode an almost sure constraint, and W†(X ) = A>X.
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• Linear expected operator:

W : L0(Rnx) → L0(Rnc)(
ω 7→ Y (ω)

)
7→

(
ω 7→ A E(Y )

)
.

Such an operator allows to encode a constraint in expectation, and W†(X ) = A>E(X).

• Linear conditional operator: given a sub σ-field F of A,

W : L0(Rnx) → L0(Rnc)(
ω 7→ Y (ω)

)
7→

(
ω 7→ A E[Y |F ](ω)

)
,

Such an operator allows to encode, for example, measurability constraints and W†(X ) =
A>E[X |F ].

Of course, any mix between these three kinds of operator is possible. 4

We now turn to properties of LBOs and polyhedral functions. Recall that a polyhedral set of
Rnx is the finite intersection of closed half spaces, and a polyhedral function is a function whose
epigraph is a polyhedral set (see [Rockafellar, 1970, Section 19]). In particular a polyhedral
function is convex l.s.c., but not necessarily proper3. A non-proper polyhedral function takes
value −∞ on a polyhedral set, and +∞ elsewhere.

Proposition 6. Let R be a function of F (Rnx) and let B be a LBO. Then we have the following
properties.

1. If R is convex, then B(R) is convex.

2. If R is polyhedral, then B(R) is polyhedral.

3. If R ≥ R̃, then B(R) ≥ B(R̃).

Proof. The probability set Ω being finite, we denote by u (resp. y, c, h) the vectors concatenating
all possible values of U (resp. Y , C , H ) over the set Ω, that is u = (u1, . . . ,U |Ω|). Then the
extensive formulation of Constraint (2b) is

T̃ x+ W̃uu+ W̃yy ≤ h ,

where T̃ , W̃u and W̃y are adequate matrices deduced from T , Wu and Wy. Problem (2) rewrites

B(R)(x) = inf
u,y

J(R)(x, u, y) ,

with

J(R)(x, u, y) =

|Ω|∑
s=1

πs

(
c>s us +R(ys)

)
+ χ

{T̃x+W̃uu+W̃yy≤h}
(x, u, y) ,

where χ
A

is the characteristic function of a set A:

χ
A

(x) =

{
0 if x ∈ A,

+∞ otherwise.
(6)

1. If R is convex, then J(R) is jointly convex in (x, u, y) so that B(R) is a convex function.

3An extended real valued function is proper if it never takes the value −∞ and is not identically equal to +∞.
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2. If R is polyhedral, then J(R) is polyhedral in (x, u, y), and thus B(R) is a polyhedral
function (see [Borwein and Lewis, 2010, Prop 5.1.8]).

3. From R ≥ R̃, we deduce that J(R) ≥ J(R̃), and thus B(R) ≥ B(R̃).

The proof is complete. �

Remark 7. Assume that function R is proper and polyhedral. Then, under relatively complete
recourse (see Definition 4), B(R) is a proper polyhedral function. Furthermore, if B(R)(x) is
finite, computing it also generates a supporting hyperplane of B(R), that is, a pair (λ, β) ∈
Rnx × R such that {〈

λ , ·
〉

+ β ≤ B(R)(·)〈
λ , x

〉
+ β = B(R)(x) .

Such hyperplanes, or cuts, are of paramount importance for the SDDP algorithm. ♦

Proposition 8. Let R be a proper polyhedral function of F (Rnx) and let B be a LBO. Assume
that (B, R) satisfy the RCR assumption . If R is Lipschitz (for the L1-norm) with constant LR,
then B(R) is also Lipschitz on its domain (which is dom(G)) with constant φ(LR) = (‖C‖∞ +
LR)κW ‖T‖∞, where κW is a constant associated to the linear operator (Wu,Wy).

Proof. Consider x1 (resp. x2) an element in dom(B(R)), and denote by Z1 (resp. Z2) the
polyhedron of optimal solutions of Problem (2). These polyhedrons are non-empty thanks to the
RCR assumption. Let (U1,Y1) ∈ Z1 be fixed, from [Shapiro et al., 2009, Theorem 7.12], there
exists a positive constant κW such that

inf
(U2,Y2)∈Z2

‖(U1,Y1)− (U2,Y2)‖1 ≤ κW ‖T (x1 − x2)‖1 ≤ κW ‖T‖∞‖x1 − x2‖1 .

Let (U ]
2 ,Y

]
2 ) ∈ Z2 be an optimal solution of the above minimization problem. Then we have

that

B(R)(x1) = E
[
C>U1 +R(Y1)

]
≤ E

[
C>U ]

2 +C>(U1 −U
]
2) +R(Y ]

2 ) + LR|Y ]
2 − Y1|)

]
≤ B(R)(x2) + ‖C‖∞‖U1 −U

]
2‖1 + LR‖Y1 − Y

]
2 ‖1

≤ B(R)(x2) + (‖C‖∞ + LR)κW ‖T‖∞‖x1 − x2‖1 .

Exchanging x1 and x2 in the previous majoration leads to the reverse inequality. �

2.2 Fenchel transform of a LBO

We now define the dual LBO B‡ of a linear Bellman operator B.

Definition 9. Let B be a LBO (see Definition (3)). We denote by B‡ the dual LBO of B,
defined, for a given function Q ∈ F (Rnx) and for any λ ∈ Rnx , by

B‡(Q)(λ) = inf
µ∈L0(Rnx ),ν∈L0(Rnc )

E
[
− µ>H +Q(ν )

]
(7a)

s.t. T>E
[
µ
]

+ λ = 0 (7b)

W†u(µ) = C (7c)

W†y(µ) = ν (7d)

µ ≤ 0 , (7e)
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where W†u (resp. W†y) is the adjoint operator of Wu (resp. Wy). We define the dual constraint
set valued mapping

G‡(λ) =
{

(µ,ν ) ∈ Rnx+nc | T>E
[
µ
]

+ λ = 0 , W†u(µ) = C , W†y(µ) = ν , µ ≤ 0
}
. (8)

Note that straightforward computations show that (B‡)‡ = B.
The next proposition exhibit the relationship between B‡ and the Fenchel transform of B.

Proposition 10. Let R be a proper polyhedral function, B be a compact LBO (see Definition 3)
, such that the pair (B, R) satisfy the RCR assumption. Then B(R) is a proper polyhedral
function and we have that

[B(R)]
?

(λ) = B‡
(

[R]
? )

(λ) . (9)

Proof. First note that as B is compact, G has non-empty compact domain, thus by (RCR) B(R)
is finite at some point.

During the proof we denote
〈
X ,Y

〉
= E

(
X>Y

)
, R(Y ) = E

(
R(Y )

)
, and

K(x,Y ) = min
U

〈
C ,U

〉
s.t. Tx+Wu(U ) +Wy(Y ) ≤H .

By definition, we have
B(R)(x) = inf

Y
K(x,Y ) +R(Y ).

Thus, for any x? ∈ Rnx , we have

[B(R)]
?

(x?) = sup
x∈Rnx

{
x>x? − inf

Y

{
K(x,Y ) +R(Y )

}}
= − inf

Y

{
R(Y )− sup

x∈Rnx
x>x? −K(x, Y )︸ ︷︷ ︸

:=Φ(Y )

}

As R is polyhedral proper, so is R. By construction K is polyhedral. By compacity of B, the
minimization in U is over a compact, thus K > −∞. Further, as dom(B)(R) = dom(G) 6= ∅, K
is proper. Note that for x /∈ dom(G) we have K(x,Y ) = +∞, thus Φ(Y ) = supx∈dom(G) x

>x? −
K(x, Y ). Consequently, −Φ is polyhedral proper as dom(G) is a non empty compact set. Finally,
the RCR assumption ensures that dom(−Φ) ∩ dom(R) 6= ∅. Now, using Fenchel-Duality (in the
polyhedral case) we have that

[B(R)]
?

(x?) =− sup
Y ?

Φ?(Y
?)−R?(Y ?) = inf

Y ?
R?(Y ?)− Φ?(Y

?)

where R?(Y ?) = E
(
R?(Y ?)

)
and

Φ?(Y
?) = inf

Y

〈
Y ? ,Y

〉
− Φ(Y )

= inf
Y

〈
Y ? ,Y

〉
− sup

x

{
x>x? −K(x,Y )

}
= inf
x,Y

〈
Y ? ,Y

〉
− x>x? +K(x,Y )

= inf
x,Y ,U

〈
Y ? ,Y

〉
− x>x? +

〈
C ,U

〉
s.t. Tx+Wu(U ) +Wy(Y ) ≤H

9



As dom(G) 6= ∅, there exists a primal feasible solution to the above linear program, and by
duality we have

Φ?(Y
?) = sup

λ≥0
−
〈
λ ,H

〉
+ inf

x

{
− x>x? +

〈
T>λ , x

〉 }
+ inf

Y

{ 〈
Y ? ,Y

〉
+
〈
W†y(λ) ,Y

〉 }
+ inf

U

{ 〈
C ,U

〉
+
〈
W†u(λ) ,U

〉 }
= sup
λ≥0
−
〈
λ ,H

〉
s.t. W†y(λ) = −Y ?

W†u(λ) = −C
T>E(λ) = x?

Finally,

[B(R)]
?

(x?) = inf
Y ?,λ≥0

E
(
H>λ +R?(Y ?)

)
s.t. T>E

(
λ
)

= x?

W†y(λ) = −Y ?

W†u(λ) = −C ,

which ends the proof with λ→ −µ, x? → λ and Y ? → ν . �

2.3 An abstract SDDP algorithm

We consider a sequence of functions
{
Rt
}
t∈J0,T K that follows{

RT = K

Rt = Bt(Rt+1) ∀t ∈ J0, T − 1K ,
(10)

where K is a proper polyhedral function and Bt a LBO given by

Bt(R)(x) = inf
U ,Y

E
[
C>t U +R(Y )

]
s.t. Ttx+Wu

t (U ) +Wy
t (Y ) ≤Ht ,

with associated solution operator
{
St
}
t∈J0,T−1K:

St(R)(x) = arg min
Y

inf
U

E
[
C>t U +R(Y )

]
s.t. Ttx+Wu

t (U ) +Wy
t (Y ) ≤Ht .

Definition 11. We say that a sequence of LBOs (Bt)t∈J0,T−1K is compatible (with final cost
K) if, at any time t ∈ J0, T − 1K every future state Yt admissible for Bt is (almost surely)
an admissible current state for Bt+1. More precisely, for t ∈ J0, T − 1K, for all x ∈ dom(Gt),
for all (Ut,Yt) ∈ Gt(x) we have almost surely Yt ∈ dom(Gt+1), where, by convention we set
dom(GT ) := dom(K).
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SDDP is an algorithm that iteratively construct finite lower polyhedral approximation of Rt.
Starting from an initial point x0 ∈ Rnx , the algorithm determines in a forward pass a sequence of
state (xkt )t∈J0,T K at which the approximation will be refined in the backward pass. Algorithm 1
details more precisely the pseudo-code of the abstract SDDP algorithm.

Data: Initial point x0

Set R
(0)
t ≡ −∞

for k = 0, 1, . . . do
// Forward Pass : compute a set of trial points

{
xkt
}
t∈J0,T K

Randomly select ωk ∈ Ω;

Set xk0 = x0;
for t : 0→ T − 1 do

select Xk
t+1 ∈ St(R

k
t+1)

(
xkt
)
; // see Definition 3

set xkt+1 = Xk
t+1(ωk);

end
// Backard Pass : refine the lower-approximations at the trial points

Set Rk+1
T = K;

for t : T − 1→ 0 do

βk+1
t = Bt(Rk+1

t+1 )(xkt ) ; // cut coefficients (see Remark 7)

λk+1
t ∈ ∂Bt(Rk+1

t+1 )(xkt ) ;

βk+1
t := θk+1

t −
〈
λk+1
t , xkt

〉
;

set Ck+1
t : x 7→

〈
λk+1
t , x

〉
+ βk+1

t ; // new cut

Rk+1
t := max

{
Rkt , Ck+1

t

}
; // update lower approximation

end
If some stopping test is satisfied STOP ;

end
Algorithm 1: Abstract SDDP algorithm

Lemma 12. Assume that R0(x0) is finite and that (Bt)t∈J0,T−1K is a compatible sequence of
LBO. Then, the SDDP algorithm 1 is well defined and there exists a sequence (Lt)t∈J0,T−1K such

that Rt is Lt-Lipschitz on its domain, and ‖λ(k)
t ‖∞ ≤ Lt.

Proof. We prove by induction that x
(k)
t is well defined during the forward passes of SDDP. Let

t = 0. By hypothesis, xk0 ∈ dom(G0). So xk1 = X
(k)
1 (ωk) exists as solution of a finite valued LP.

Let t ≥ 1. By induction hypothesis, we suppose that xkt is well defined and belongs to dom(Gt).
We set xkt+1 = X

(k)
t+1(ωk), which is well defined as solution of a finite value LP. By assumption

the sequence
{
Rt
}
t∈J0,T K is compatible, hence xkt+1 ∈ dom(Gt+1), thus proving the hypothesis at

time t+ 1.
We now prove by backward induction that λ

(k)
t is well defined during the backward passes

of SDDP, and that it exists Lt such that ‖λ(k)
t ‖∞ ≤ Lt. As K is given and LT Lipschitz-

continuous, the property is direct for t = T . Let t ≤ T − 1. We suppose that induction
hypothesis holds for t+ 1. Then, by Proposition 8, we know that Bt(Rk+1

t+1 ) is Lt-Lipschitz. We

set λk+1
t ∈ ∂Bt(Rk+1

t+1 )(xkt ), which is well defined as subgradient of a polyhedral function. As

Bt(Rk+1
t+1 ) is Lt-Lipschitz on its domain, we are able to choose λk+1

t such that ‖λ(k+1)
t ‖∞ ≤ Lt

�

Proposition 13. Assume that R0(x0) is finite and that (Bt)t∈J0,T−1K is a compatible sequence
of LBO. Further assume that, for all t ∈ J0, T K there exists compact sets Xt such that, for all k,
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xkt ∈ Xt. In particular this is the case if Bt is compact for all t.

Then, the SDDP algorithm generates a non-decreasing sequence (R
(k)
t )k∈N of lower approxi-

mation of Rt, and limk R
(k)
0 (x0) = R0(x0).

Proof. Lemma 12 gives the boundedness of λ
(k)
t , from which we can easily adapt the proof of

Girardeau et al. [2014]. �

This algorithm is abstract in the sense that it only requires a sequence of LBOs. In the follow-
ing section we show how it can be applied to approximate the Bellman value functions

{
Vt
}
t∈J0,T K,

or to approximate the Fenchel transform of these functions.

3 Primal and dual SDDP

In this section we recall the usual SDDP algorithm applied to Problem (1). Next, leveraging the
results of Sect. 2, we introduce a dual SDDP algorithm, which is the abstract SDDP algorithm
applied to the dual value functions. This eventually gives an exact upper-bound over the value
of Problem (1).

In this section, we denote by Vt the primal value functions, and by Dt = [Vt]
?

the dual value
functions. As noted in Sect. 1.4, outer (resp. inner) approximations are denoted by V (resp. D).

3.1 Primal SDDP

3.1.1 Primal Dynamic Programming equations

We consider Problem (1) under the discrete white noise Assumption 1.
Denote by Ut+1(x, ξ) the set of admissible controls at time t with given state x and uncer-

tainty ξ
Ut+1(x, ξ) =

{
ut+1 ≤ u ≤ ut+1 | Dtx+ Et+1u+Gt+1ξ ≤ 0

}
, (11)

and by Xt ⊂ Rnx be the set of admissible state at time t, more precisely

Xt =
{
xt ≤ x ≤ xt | U(x, ξ) 6= ∅ P− a.s.

}
, (12)

with XT = dom(K).

Assumption 14. For all t ∈ J0, T − 1K, we make the following assumptions.

1. For all t ∈ J0, T − 1K, for all x ∈ Xt and for all ξ ∈ supp(ξt+1), the set of admissible
controls Ut+1(x, ξ) is a polytope (non empty since x ∈ Xt) of Rnu .

2. For all t ∈ J0, T K, the set of admissible states Xt is a polytope of Rn.

3. We are in a relatively complete recourse framework : for all t ∈ J0, T − 1K,

∀x ∈ Xt, ∀ξ ∈ supp(ξt), ∃u ∈ Ut(x, ξ), Atx+Bt+1u+ Ct+1ξ ∈ Xt+1 . (13)

4. Problem (1) is finite valued.

Under this assumptions we can solve Problem (1) by Dynamic Programming, computing
backward the value functions

{
Vt
}
t∈J0,T K given by{

VT = K ,

Vt = Tt
(
Vt+1

)
,

(14)
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where the primal Bellman operator Tt : F (Rn)→ F (Rn) is defined as follows:

Tt(R) : x 7→ inf
U
t+1

,X
t+1

E
[
a>t x+ b>t+1U t+1

+R(X
t+1

)
]
, (15a)

s.t. X
t+1

= Atx+Bt+1U t+1
+ Ct+1ξt+1 , (15b)

Dtx+ Et+1U t+1
+Gt+1ξt+1 ≤ 0 , (15c)

x ∈ Xt, ut+1 ≤ Ut+1 ≤ ut+1, Xt+1 ∈ Xt+1 . (15d)

For notational simplicity we assume from now on that constraint (15d) is included in the previous
ones.

Lemma 15. Under Assumption 14, we have that dom(Vt) = dom(Gt) = Xt. Further, (Tt)t∈J0,T−1K
is a compatible sequence of compact LBOs, and

Tt(R) : x 7→ E
(
T̂t(R)(x, ξt)

)
(16)

where

T̂t(R) : (x, ξ) 7→ inf
ut+1,xt+1

a>t x+ bt+1>ut+1 +R(xt+1) , (17a)

s.t. xt+1 = Atx+Bt+1ut+1 + Ct+1ξ , (17b)

Dtx+ Et+1ut+1 +Gt+1ξ ≤ 0 . (17c)

Proof. We can cast Bellman operator (15) into the definition of abstract Bellman operators (2),
by noting that

Tt(R) : x 7→ a>t x+ inf
U
t+1

,X
t+1

E
[
b>t+1U t+1

+R(X
t+1

)
]
,

s.t.

 At
−At
Dt

x+

 Bt+1

−Bt+1

Et+1

U
t+1

+

 I
−I
0

X
t+1
≤

−Ct+1

Ct+1

−Gt+1

 ξt+1 .

Then, the reformulation as Equations (16) and (17) is well known using the measurability as-
sumption U

t+1
� Ft+1. Compactness comes from constraints (1d) and (1e), and compatibility

from the relatively complete recourse assumption. �

To recover the optimal state and control trajectories from Bellman functions, we introduce
the set valued mappings:

Ŝt(R) : (x, ξ) 7→ arg min
xt+1

min
u

a>t x+ b>t+1u+R(xt+1) , (19a)

s.t. xt+1 = Atx+Bt+1u+ Ct+1ξ (19b)

Dtx+ Et+1u+Gt+1ξ ≤ 0 . (19c)

3.1.2 Primal SDDP

We now apply the abstract SDDP algorithm presented in §2.3 to the primal Bellman operator
given by Equations (15). We recall that the final cost K is polyhedral. We denote, for all
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t ∈ J1, T K, and πξt := P(ξt = ξ) for all ξ ∈ supp(ξ).

Data: Initial point x0, initial lower bounds V 0
t on Vt

for k ∈ N do
Draw a noise scenario

{
ξkt
}
t∈J0,T K;

// Forward Pass : compute a set of trial points
{
xkt
}
t∈J0,T K

Set xk0 = x0;
for t : 0→ T − 1 do

select xkt+1 ∈ Ŝt(V
k
t+1)(xkt , ξ

k
t+1)

end
// Backward Pass : refine the lower-approximations at the trial points

Set V k+1
T = K;

for t : T − 1→ 0 do
for ξ ∈ supp(ξt+1) do

solve the linear program T̂t(V k+1
t+1 )(xkt , ξ);

yielding θξ,k+1
t := T̂t(V k+1

t+1 )(xkt , ξ) and λξ,k+1
t ∈ ∂T̂t(V k+1

t+1 )(xkt , ξ) ;

end

λk+1
t :=

∑
ξ∈supp(ξt+1)

πξt+1λ
ξ,k+1
t ; // taking expectation

βk+1

t
:=

∑
ξ∈supp(ξt+1)

πξt+1(θξ,k+1
t −

〈
λξ,k+1
t , xkt

〉
);

V k+1
t := max

{
V kt (·) ,

〈
λkt , ·

〉
+ βk+1

t

}
; // update lower approximation

end
If some stopping test is satisfied STOP ;

end
Algorithm 2: Primal SDDP algorithm

Remark 16. Note that, the primal Bellman operator (15) is a specialized version of the ab-
stract Bellman operator used in Equation (10), which only involves pointwise operator in the

constraints. Hence, in the forward pass we just have to compute T̂t(V kt+1)(xkt , ξ
k
t+1) and do not

need to compute Tt(V kt+1)(xkt ) which would be a larger linear problem. Similarly, in the back-

ward pass at time t we solve |supp(ξt+1)| linear problem of the form T̂t(V k+1
t+1 )(xkt , ξ

s
t+1) instead

of the larger Tt(V k+1
t+1 )(xkt ) and then perform an expectation. We will show in the sequel that

this is no more the case in the dual SDDP algorithm. ♦

Proposition 17. Under Assumptions 1, and 14, the primal SDDP algorithm yields a converging

lower bound for the value of Problem (1). Further, the strategy induced by V
(k)
t is converging

toward an optimal strategy.

Proof. By Dynamic Programming, we know that the value functions Vt follow the recursion (14).
By Lemma 15 we have the compatibility of the sequence of LBOs (Tt)t∈J0,T−1K. The compacity of

Xt ensures that the sequence (xkt )k∈N remains in a compact. Hence, we can apply Proposition 13.
Proof of the convergence of the strategy obtained can be found in Girardeau et al. [2014]. �

3.2 Dual SDDP

We present here a dual SDDP algorithm, which leverages the results of §2.2. We show that the
Fenchel conjugate of the primal value functions Vt follows a recursive equation on which we apply
the abstract SDDP algorithm of §2.3.

14



3.2.1 Dual Dynamic Programming equations

By Definition 9, the dual LBO of Tt, is given by

T ‡t (Q) : λt 7→ inf
Λt+1,Nt+1≥0

E
[
− (C>t+1Λt+1 +G>t+1Nt+1)>ξt+1 +Q(Λt+1)

]
(20a)

s.t. at +A>t E
[
Λt+1

]
+D>t E

[
Nt+1

]
− λt = 0 (20b)

bt+1 +B>t+1Λt+1 + E>t+1Nt+1 = 0 , (20c)

where Λt+1 : Ω→ Rnx and Nt+1 : Ω→ Rnc are two ξt+1-measurable random variables.
In Equation (20), the function Q is a cost-to-go at time t+1 for the dual optimization problem,

λt is a state variable, and (Λt+1,Nt+1) are control variables. Equations (20b) and (20c) define
the admissible control set of the problem.

Theorem 18. Denote, for any t ∈ J0, T K, Dt := V ?t , where Vt is the Bellman value function
following Dynamic Programming equations (14). Let, for all t ∈ J0, T K, Lt > 0 be such that
Vt is Lt-Lipschitz (for the L1-norm) on its domain. Then the sequence of dual value functions{
Dt
}
t∈J0,T K satisfy the following backward recursion:

DT = K? , (21a)

Dt = T ‡t,Lt+1
(Dt+1) ∀t ∈ J0, T − 1K , (21b)

where T ‡t,Lt+1
is defined by Equation (20), with the additional constraint ‖Λt+1(ω)‖∞ ≤ Lt+1.

Remark 19. Lemma 12 shows that a sequence of Lipschitz constants NLtt∈J0,T K exists. But
in some cases we can directly derive Lipschitz constant on the value functions, and plug it into
Equation (21). ♦

Proof. First recall that by assumption Tt is a compact LBO. By Dynamic Programming (see
Equation (14)) we have VT = K, and for all t ∈ J0, T − 1K, Vt = Tt

(
Vt+1

)
. Let t ∈ J0, T − 1K.

Consider the Lt-Lipschitz regularization of Vt (or Pasch-Hausdorff enveloppe, see Bauschke et al.
[2017]) defined by V Ltt := Vt�(Lt‖·‖1), where f�g : x 7→ infy f(y)+g(x−y). As Vt is Lt-Lipschitz

continuous on its domain, V Ltt coincides with Vt on its domain, and is Lt-Lipschitz continuous
everywhere (see [Bauschke et al., 2017, Corollary 12.19]). The compatibility assumption implies

that only the restriction of Vt+1 to Xt+1 matters for all t ∈ J0, T − 1K, thus Vt = Tt
(
V
Lt+1

t+1

)
.

Then Proposition 10 gives

[Vt]
?

= T ‡t
( [
V
Lt+1

t+1

]? )
.

As Vt+1 and Lt+1‖ · ‖1 takes values in (−∞,+∞], we have ([Bauschke et al., 2017, Corollary
13.24]) [

V
Lt+1

t+1

]?
= [Vt+1]

?
+ χB∞(0,Lt+1) ,

where B∞(0, Lt+1) is the L∞-ball of radius Lt+1 centered in 0. Thus we have

Dt = T ‡t
(
Dt+1 + χB∞(0,Lt+1)

)
,

which proves (21). �
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3.2.2 Dual SDDP

From now on we assume that
{
T ‡t,Lt+1

}
t∈J0,T−1K is compatible. This is ensured for example if all

At in Problem (1) are square invertible matrix (see Appendix A.3).
The dual value functions

{
Dt
}
t∈J0,T K are solutions of a backward iterative scheme (Theo-

rem 18) involving linear Bellman Operators
{
T ‡t,Lt+1

}
t∈J0,T−1K, thus opening the door to the

computation of outer approximations
{
Dt
}
t∈J0,T K by SDDP.

Data: Initial primal point x0, Lipschitz bounds
{
Lt
}
t∈J0,T K

for k = 0, 1, . . . do

// Forward Pass : compute a set of trial points
{
λ

(k)
t

}
t∈J0,T K

Compute λk0 ∈ arg max‖λ0‖∞≤L0

{
x>0 λ0 −Dk0(λ0)

}
;

for t : 0→ T − 1 do

select λkt+1 ∈ arg min T ‡t (Dkt+1)(λkt ) ;

and draw a realization λkt+1 of λkt+1;

end
// Backard Pass : refine the lower-approximations at the trial points

Set DkT = K?. ;
for t : T − 1→ 0 do

θ
k+1

t := T ‡t,Lt+1
(Dk+1

t+1 )(λkt ) ; // computing cut coefficients

xk+1
t ∈ ∂T ‡t,Lt+1

(Dk+1
t+1 )(λkt );

β
k+1

t := θ
k+1

t −
〈
λkt , x

k+1
t

〉
;

Ck+1
t : λ 7→

〈
xk+1
t , λ

〉
+ β

k+1

t ;

Dk+1
t = max

(
Dkt , Ck+1

t

)
; // update lower approximation

end
If some stopping test is satisfied STOP ;

end
Algorithm 3: Dual SDDP algorithm

Remark 20. In the forward phase of Algorithm 3, we need to solve T ‡t (Dkt+1)(λkt ), which in
extended form reads{
λk,ξt+1

}
ξ∈supp(ξt+1)

∈ arg min{
λξt+1

}
ξ∈supp(ξt+1)

min
νt+1≥0

∑
ξ∈supp(ξt+1)

πξt+1

[
−
(
C>t+1λ

ξ
t+1 +G>t+1ν

ξ
t+1

)>
ξξt+1

+Dkt+1(λξt+1)
]

(22a)

s.t.
∑

ξ∈supp(ξt+1)

πξt+1(A>t λ
ξ
t+1 +D>t+1ν

ξ
t+1) = λkt

(22b)

ct+1 +B>t+1λ
ξ
t+1 + E>t+1ν

ξ
t+1 = 0 ∀ξ , (22c)

‖λξt+1‖∞ ≤ Lt+1 . (22d)

Then drawing a random realization of λkt+1 consists in drawing ξ with respect to the law of ξt+1
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and selecting λk,ξt+1.
In contrast with primal SDDP algorithm (Remark 16), here we need to solve a coupled

problem in both the forward and backward pass. In particular it means that we can also compute
cuts during the forward pass, thus rendering the backward pass optional. ♦

The convergence of this algorithm is analyzed in the next paragraph.

3.3 Upper-bound

To estimate an upper-bound of the optimal value of Problem (1), the seminal method consists in
computing the expected cost of SDDP’s strategy with a Monte-Carlo approach (see discussion
in §1.2). This approach has two weaknesses: it requires a large number M of forward pass
(simulation), and the bound obtained is only an upperbound with (asymptotic) probability α,
where increasing α increases the bound as well. In contrast to the Monte Carlo method, we can
obtain with dual SDDP a decreasing sequence of exact upper-bounds for Problem (1).

Lemma 21. For all t ∈ J0, T − 1K, (Dkt )? is a decreasing sequence of upper-bounds of the primal
value function Vt: (Dkt )? ≥ Vt.
Proof. The sequence of functions Dkt is obtained by applying SDDP to the dual problem and
we know by Proposition 13 that it gives an increasing sequence of lower-bounds of the function
Dt. By conjugacy property, we obtain a decreasing sequence of functions (Dkt )∗ which are upper-
bounds of the function D∗t = Vt. �

We obtain the following theorem.

Theorem 22. For any k ∈ N, (Dk0)?(x0) is an upper-bound to the value V (x0) of Problem (1).
Furthermore, limk(Dk0)?(x0) = V0(x0)

Proof. To take care of the fact that the dual initial point is not constant, we add a fictive time
step t = −1, and define T ‡−1,L0

as follows

T ‡−1,L0
(R) := min

λ0:‖λ0‖∞≤L0

−x>0 λ0 +R(λ0) .

then the algorithm presented in Sect. 3 is the abstract SDDP algorithm of §2.3 applied to the
recursion Dt = T ‡t,Lt+1

(Dt+1) for t ∈ J−1, T − 1K and DT = K?. The initial point is arbitrarily
set to a fixed value 0 as D−1 is constant.

We check that, by definition of T ‡t,Lt , ‖λ
k
t ‖∞ ≤ Lt. Further, as V0 is L0 Lipschitz for the

L1-norm, maxλ x
T
0 λ − V ?0 (λ) is attained for λ0 such that ‖λ0‖∞ ≤ L0, thus we have D−1(0) =

− [V ]
??

(x0) = −V (x0) ∈ R. Finally, note that
{
T ‡t,Lt+1

}
t∈J−1,T K is a compatible sequence of

LBO.
Lemma 21 shows that, for any k ∈ N, −Dk−1(0) = [D0(x0)]

?
is an upper bound of V0(x0).

Finally, the convergence of the abstract SDDP algorithm and the lower semicontinuity of V0

at x0 yields the convergence of the upper bound.
�

4 Inner-approximation strategy

In Sect. 3, we detailed how to use the SDDP algorithm to get an outer approximation
{
Dt
}
t∈J0,T K

of the dual value functions
{
Dt
}
t∈J0,T K. We now explain how to build an inner approximation

of the primal value functions
{
Vt
}
t∈J0,T K using this dual outer approximation. Assume that,

(Lt)t∈J0,T−1K is given by Lemma 12.
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4.1 Inner approximation of value functions

Let
{
Dkt
}
t∈J0,T K be the outer approximation of the dual value functions

{
Dt
}
t∈J0,T K obtained at

iteration k of the dual SDDP algorithm. We denote by
{

(xκt , β
κ

t )
}
κ∈J1,kK the cuts coefficients

computed by the dual SDDP algorithm:

Dkt (λ) = min
θ

θ , (23a)

s.t. θ ≥
〈
xκt , λ

〉
+ β

κ

t ∀κ ∈ J1, kK . (23b)

We define the linear inner approximation of the primal value functions
{
Vt
}
t∈J0,T K as the

Lipschitz regularization of the Fenchel conjugate of the dual outer approximation.

Definition 23. We define V
k

t by

V
k

t =
[
Dkt
]?

�(Lt‖ · ‖1) ∀t ∈ J0, T K . (24)

The following proposition gives properties of V
k

t .

Proposition 24. For all t ∈ J0, T K we have

i) V
k

t ≥ Vt on Xt.

ii) We have

V
k

t (x) = min
y∈Rnx ,σ∈∆

Lt‖x− y‖1 −
k∑
κ=1

σκβ
κ

t (25a)

s.t.

k∑
κ=1

σκx
κ
t = y , (25b)

where ∆ =
{
σ ∈ Rk | σ ≥ 0 ,

∑k
κ=1 σκ = 1

}
is the simplex of Rk.

iii) The inner approximation can be computed by solving

V
k+1

t (x) = sup
λ,θ

x>λ− θ (26a)

s.t. θ ≥
〈
xit , λ

〉
+ β

κ

t ∀κ ∈ J1, kK (26b)

‖λ‖∞ ≤ Lt . (26c)

iv) The Fenchel transform of the inner approximation is given by
[
V
k

t

]?
= Dkt + χB∞(0,Lt).

Proof. i) Lemma 21 proves that
[
Dkt
]?
≥ Vt for all t ∈ J0, T K. Thus V

k

t ≥ Vt�(Lt‖ · ‖1), which

is equal to Vt on Xt as Vt is Lt-Lipschitz on its domain.

ii) Further, the Fenchel conjugate
[
Dkt
]?

reads[
Dkt
]?

(x) = sup
λ,θ

x>λ− θ

s.t. θ ≥
〈
xit , λ

〉
+ β

κ

t ∀κ ∈ J1, kK ,
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which is a linear program whose dual reads

min
σ∈∆

−
k∑
κ=1

σκβ
κ

t

s.t.

k∑
κ=1

σκx
κ
t = x .

Taking the inf-convolution with Lt‖ · ‖ yields Problem (25)

iii) The right hand side of Equation (26) is simply
[
Dkt + χB∞(0,Lt)

]?
(x), which is equal to[

Dkt
]?

�
[
χB∞(0,Lt)

]?
(x) by finite polyhedrality, hence the results.

iv) Finally, [
V
k

t

]?
(λ) =

[
Dkt
]??

(λ) + χB∞(0,Lt)(λ) .

�

Figure 4.1 illustrateshow to interpret the dual outer approximation as a primal inner approxi-
mation of the original value function (in black). The slopes x1, x2, x3 computed for the dual outer
approximation (blue curve, right) are breakpoints for the primal problem and we can consider
the value of the dual value function at these points to build a primal inner approximation (blue
curve, left).

x1 x2 x3

λ3

λ2
λ1

x

Primal

x1
x2

x3

λ

Dual

Figure 1: Primal SDDP computes an outer approximation (in red) of the original value function
(in black). Dual SDDP computes an outer approximation in the dual, whose Fenchel-transform
(in blue) yields an inner approximation of the primal problem.

4.2 A bound on the inner-approximation strategy value

Hence, we have obtained inner approximations of the primal value functions. Such approxima-
tions can be used to define an admissible strategy for the initial problem. We now study the
properties of such a strategy.
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Lemma 25. We have,
T ‡t,Lt+1

(
Dkt+1

)
≥ Dkt ∀t ∈ J0, T K . (27)

Proof. Equation (27) is satisfied for k = 0. Assume that Equation (27) holds at iteration k.

By definition of Ck+1 in Algorithm 3, we have Ck+1 ≤ T ‡t,Lt+1
(Dk+1

t+1 ). On the other hand, by

monotonicity of T ‡t,Lt+1
, since Dk+1

t+1 ≥ D
k
t+1, we have T ‡t,Lt+1

(
Dk+1
t+1

)
≥ T ‡t,Lt+1

(
Dkt+1

)
which is

greater than Dkt by induction hypothesis. Thus, T ‡t,Lt+1

(
Dk+1
t+1

)
≥ max

{
Dkt , Ck+1

}
= Dk+1

t .
�

From the convergence proof of SDDP, we recall the following technical Lemma.

Lemma 26. Let V
k

t be the inner approximation of the value function Vt generated at iteration k
of the dual SDDP algorithm. Then,

Tt(V
k

t+1)(x) ≤ V kt (x) ∀t ∈ J0, T K . (28)

Proof. We have[
Tt(V

k

t+1)
]?

= T ‡t
( [
V
k

t+1

]? )
by Proposition 10

= T ‡t
(
Dkt+1 + χB∞(0,Lt+1)

)
by Proposition 24

= T ‡t,Lt+1

(
Dkt+1

)
≥ Dkt by Lemma 25

Furthermore, as Tt(V
k

t+1) is polyhedral, we have

Tt(V
k

t+1) =
[
Tt(V

k

t+1)
]??
≤
[
Dkt
]?

,

and as V
k

t+1 is Lt+1-Lipschtiz, then Tt(V
k

t+1) is Lt-Lipschtiz, thus Tt(V
k

t+1) ≤
[
Dkt
]?

�(Lt‖ · ‖)
which ends the proof. �

We are now able to state the main result of this section.

Theorem 27. Let
{
XIA
t ,U IA

t

}
t∈J0,T−1K be the state and control processes obtained by ap-

plying the strategy induced by the inner approximation
{
V
k

t

}
t∈J0,T K, that is, (XIA

t+1,U
IA
t+1) ∈

S
(
V
k

t+1

)
(XIA

t ). Consider the expected cost of this strategy when starting from state x at time t:

CIAt (x) = E
( T−1∑
τ=t

a>τ X
IA
τ + b>τ+1U

IA
τ+1 +K(XIA

T )
∣∣∣ XIA

t = x
)
.

Then,

CIAt (x) ≤ V kt (x) . (29)

Proof. We proceed by backward induction on time t. The property holds for t = T .
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Assume that CIAt+1 ≤ V
k

t+1. We have

CIAt (x) = E
[
a>t x+ b>t+1U

IA
t+1 + CIAt+1(XIA

t+1)
]

≤ E
[
a>t x+ b>t+1U

IA
t+1 + V

k

t+1(XIA
t+1)

]
by induction

= Tt
(
V
k

t+1

)
(x) by definition of U IA

t+1

≤ V kt (x) by Lemma 26

hence the result. �

Corollary 28. The cost CIA,k0 (x0) of the IA strategy converges to V0(x0).

lim
k→+∞

CIA,k0 (x0) = V0(x0) . (30)

Proof. Let k be the number of iterations performed by SDDP, and CIA,k0 (x0) the expected cost

of the inner strategy at iteration k. By definition of V0(x0), we have CIA,k0 (x0) ≥ V0(x0).
Furthermore, using Theorem 27, we obtain the following inequalities

V0(x0) ≤ CIA,k0 (x0) ≤ V k0(x0) . (31)

Using Theorem 22, we know that limk(V
k

0)(x0) = V0(x0). Hence the result. �

Remark 29. A similar result on the performance of an inner approximation is given in Philpott
et al. [2013]. As already explained in §1.2, the authors construct polyhedral inner approximations
V t of the Bellman functions Vt. They then prove that the expected cost of the policy based on
the functions V t is always less than or equal to the deterministic upper bound given by the inner
approximation algorithm. ♦

We sum up the available inequalities for the values obtained when implementing the primal
and dual SDDP algorithms.

V 0(x0) ≤ V0(x0) ≤ V 0(x0) , (32a)

V 0(x0) ≤ CIA0 (x0) ≤ V 0(x0) , (32b)

V 0(x0) ≤ COA0 (x0) . (32c)

Equation (32a) corresponds to the deterministic bounds of the optimal value of Problem (1),
whereas Equations (32b) and (32c) are of statistical nature.

5 Numerical results

In this section, we present some numerical results applying dual SDDP and inner strategy eval-
uation to a stochastic operation planning problem inspired by Électricité de France (EDF, main
European electricity producer). The problem is about the energy production planning on a
multiperiod horizon including a network of production zones, like in the European Market for
electricity. It results in a large-scale stochastic multi-stage optimization problem, for which we
need to determine strategies for the management of the European water dams. Such strategies
cannot be computed via Dynamic Programming because of the state variable size, so that SDDP
is the reference method to compute the optimal Bellman functions.
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5.1 Description of the problem

We consider an operation planning problem at the European scale. Different countries are
connected together via a network, and exchange energy with their neighbors. We formulate the
problem on a graph, where each country is modeled as a node and each interconnection line
between two countries as an edge (see Figure 2). Every country uses a reservoir to store energy,

FRA

SPAPT

UK

BEL

GER

SWI

ITA

Figure 2: Schematic description of the European network

and must fulfill its own energy demand. To do so, it can produce energy from its reservoir, with
its local thermal power plant, or it can import energy from the other countries. A very similar
problem has already been studied by Mahey et al. [2017]. Its formulation is close to the one
given in Shapiro et al. [2012] concerning the Brazilian interconnected power system.

Let G = (N , E) the graph modeling the European network. The number of nodes in N is
denoted by n and the number of edges in E by `. For each node i ∈ J1, nK, we denote by vit the
energy stored in the reservoir at time t. The reservoir’s dynamics is given by

vit+1 = vit + ait+1 − qit+1 − sit+1 , (33)

where ait+1 is the (random) water inflow in the reservoir and qit+1 is the water turbinated between
time t and t + 1 in order to produce electricity. We add a spillage sit+1 as recourse variable to
avoid to overthrow the reservoir. Still at node i, the load balance equation at stage t writes

qit + git +
∑
j∈Ni

f jit + rit = dit , (34)

where git is the thermal production, Ni ⊂ N is the set of nodes connected to node i and f jit is
the energy exchanged between nodes j ∈ Ni and node i, dit is the (random) demand of the node
and rit ≥ 0 is a recourse variable added to ensure that the load balance is always satisfied. The
thermal production git and the exchanges f jit between node i and nodes j ∈ Ni induce linear
costs, and the cost of the recourse variable rit is taken into account through a linear penalization.
Hence the total cost attached to node i at time t writes

citg
i
t + δitr

i
t +

∑
j∈Ni

pjit f
ji
t , (35)

where cit is the thermal price, δit is the recourse price and pjit is the transportation price between
nodes j and i. To avoid empty stocks at the end of the time horizon, we penalize the final stock
at each node i if it is beyond a threshold vi0 using a piecewise linear function:

Ki(viT ) = κiT max(0, vi0 − viT ) . (36)

Stocks and controls are bounded:
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• 0 ≤ vit ≤ vi, reservoir volume upper bound,

• 0 ≤ qit ≤ qi, reservoir generation upper bound,

• 0 ≤ git ≤ gi, thermal generation upper bound,

• 0 ≤ rit, recourse control lower bound,

• f ji ≤ f jit ≤ f
ji

, energy flow lower and upper bound.

This problem is formulated as a stochastic optimal control problem, where for all t,

• the state is vt = (v1
t , · · · , vnt ) (denoted xt in §3),

• the control is ut = (qt, st, gt, rt, ft), with qt = (qit)i∈J1,nK and likewise for st, gt, rt and ft,

• the uncertainty is ξt = (ait, d
i
t)i∈J1,nK.

The state has dimension n, the control ut dimension 4n+ ` and the uncertainty ξt dimension 2n.
We assume that the random variables ξt have a discrete finite support. For a given realization

(at+1, dt+1) of the uncertainty, the primal Bellman operator T̂t, defined by (17), writes

T̂t(Vt+1)
(
vt, (at+1, dt+1)

)
= min
vt+1,qt+1,st+1,gt+1,rt+1,ft+1

n∑
i=1

(cit+1g
i
t+1 + δit+1r

i
t+1+∑

j∈Ni

pjit+1f
ji
t+1) + Vt+1(vt+1) , (37a)

s.t. vit+1 = vit − qit+1 − sit+1 + ait+1 , (37b)

qit+1 + git+1 +
∑
j∈Ni

f jit+1 + rit+1 = dit+1 , (37c)

0 ≤ vit+1 ≤ vi , 0 ≤ qit+1 ≤ qi , 0 ≤ rit+1 , (37d)

0 ≤ git+1 ≤ gi , f
ji ≤ f jit+1 ≤ f

ji
. (37e)

We rewrite Problem (37) in the standard form (1) with matrices (A,B,C) for the dynamics and
(D,E,G) for the constraints. We note that A is the identity matrix In. The expressions of these

matrices are given in §A.1. Then the expression (20) of the dual Bellman operator T ‡t is obtained
in a straightforward manner, namely

T ‡t,Lt+1
(Dt+1)(λt) = inf

λξt+1,ν
ξ
t+1≥0

∑
ξ∈supp(ξt+1)

πξ
[
− (ξξt+1)>C>λξt+1 − g>t+1ν

ξ
t+1 +Dt+1(λξt+1)

]
(38a)

s.t.
∑

ξ∈supp(ξt+1)

πξ(λ
ξ
t+1 +D>νξt+1) = λt (38b)

c̄t+1 +B>λξt+1 + E>νξt+1 = 0 ∀ξ , (38c)∥∥∥λξt+1

∥∥∥
∞
≤ Lt+1 , (38d)

where Lt a Lipschitz constant of Vt+1.
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Remark 30. Problem (38) cannot be decomposed into S independent optimization subproblems
because of the coupling constraint (38b), so that the number of constraints in the problem is pro-
portional to the support size S of the uncertainty ξt+1. Indeed, the number of constraint defined
by Equation (38c) is equal to S ×m. Furthermore, if the value function Dt+1 is approximated

by k cuts (xlt+1, β
l

t+1)l∈J1,kK (as the SDDP algorithm does), then we have to add k constraints

of the form θ ≥
〈
xlt+1 , λ

ξ
t+1

〉
+β

l

t+1 for each term Dt+1(λξt+1) present in the cost function (38a),
thus adding S × k constraints in Problem (38). The consequence for the numerical resolution is
that the bigger the quantization size S, the slower the resolution by dual SDDP. ♦

5.2 Numerical implementation

The forward and backward passes of dual SDDP are independent from the forward and backward
passes of primal SDDP. Accordingly, a first “natural” implementation of the whole algorithm
run primal and dual SDDP in two independent processes, thus able to compute primal and dual
value functions in parallel.

However, each backward pass of the primal SDDP algorithm computes a set of cuts whose
slopes are

{
λt
}
t∈J0,T K. As explained in Figure 4.1, these slopes can be considered as trajectories

for the dual problem. If primal SDDP has converged, they are even the optimal co-state of
the problem, because of the Fenchel-Young equality. Thereby, it may prove useful to view these
sequences of slopes as trajectories for the dual problem, along which we run afterward a backward
pass producing cuts for the dual problem. In this implementation, the algorithm becomes for
each iteration:

1. Run a forward pass of primal SDDP Algorithm 2 and get trajectories
{
xt
}
t∈J0,T K.

2. Run a backward pass of primal SDDP Algorithm 2 along
{
xt
}
t∈J0,T K and obtain new

slopes
{
λt
}
t∈J0,T K.

3. Run a backward pass of dual SDDP Algorithm 3 along
{
λt
}
t∈J0,T K, thus updating the sets

of cuts for the dual problem.

4. Run a forward pass of dual SDDP Algorithm 3 and update the cuts along the obtained
trajectories.

The complete algorithm is given in §A.2.
The last step of this iteration ensures that we recover the convergence hypotheses of SDDP,

as given in Girardeau et al. [2014], by having one set of cuts computed at point sampled along
uncertainty drawn independently from the past. This algorithm has the same number of forward
and backward passes as the original one (one forward pass and one backward pass in both the
primal and the dual space). However, this scheme proves to be numerically more efficient, both
in term of convergence and computation time. That is why we use this implementation in all
the numerical experiments.

From the computational point of view, we implement primal and dual SDDP in Julia 0.6,
with the StochDynamicProgramming.jl package built on top of the JuMP modeler of Dunning
et al. [2017]. We use Gurobi 7.02 to solve the LP subproblems. All experiments are run on a
Intel Core i7-5500 CPU @2.4GHz, 64bit computer.
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5.3 Results

We consider the problem described at §5.1, which exhibits a 8-dimensional state. We aim to
compute the value functions

{
Vt
}
t∈J0,T K with monthly time steps, and we consider different time

horizons T , depending on the desired goal (illustration of convergence, comparison of bounds. . . ).
The uncertainties in the model are the inflows at in the reservoir and the demands dt in every
considered countries. Inflows and demands trajectories are simulated using a software provided by
EDF, so that these data are realistic enough. From these simulated samples, we use quantization
methods to obtain the marginal laws of the uncertainty ξt at each t ∈ J0, T K. The support of the
quantized probability laws is limited to 10 possible values for ξt at each timestep t.

To solve the problem, we run primal and dual SDDP on 1,000 iterations, with a single forward
pass in the primal and in the dual.

5.3.1 Assessing convergence

To ease the description of the results, we denote by Primal LB the primal lower bound V 0(x0)
obtained by primal SDDP, and by Dual UB the upper bound [D0]

?
(x0) given by dual SDDP.

The Monte Carlo cost evaluation obtained by simulating the outer (resp. inner) strategy uses
the procedure described in §3.1.2, and is denoted by MC OA (resp. MC IA). Confidence intervals
(with a confidence level α = 97.5%) are associated to these Monte Carlo approximations, and
we denote by MC OA UB and MC IA UB the associated upper bounds of these intervals. Whereas
Primal LB and Dual UB are deterministic bounds, MC OA, MC IA MC OA UB and MC IA UB are
statistical quantities.

Solving the problem over a one-year time horizon. First, we run dual and primal SDDP
on a twelve months problem, that is, with T = 12. Convergence of the optimal costs given by dual
and primal SDDP is detailed in Figure 3. The two last columns in the table give the cumulative
computation times needed to run both primal and dual SDDP algorithms. We observe that
the upper bound Dual UB [D0]

?
(x0) given by dual SDDP converges towards the primal lower

bound Primal LB V 0(x0) given by primal SDDP, with a relative gap close to 0.03% after 1,000
iterations. For this specific (with few time steps) example, the convergence of dual SDDP proves
to be effective. As noticed at Remark 30, running dual SDDP is much more time consuming as
running primal SDDP.

The outer and inner strategies are evaluated by Monte Carlo. An evaluation is performed
every 50 iterations with an once for all given set of 10,000 scenarios, that is, a “large” sample.
Both evaluations MC OA and MC IA converge to the optimal value. We notice that MC IA is below
Dual UB, thus illustrating the result stated by Theorem 27.

Solving the problem over a three years time horizon. We now consider the same prob-
lem, but over a three years horizon, that is, with T = 36. The convergence of primal and dual
SDDP is shown in Figure 4. Compared to Figure 3, we have materialized the confidence inter-
vals (here very thin) of the inner and outer strategies Monte Carlo simulations, both estimated
every 50 iterations with an once for all given set of 10,000 scenarios. A first observation is that
both dual and primal SDDP exhibit a slower convergence than in the first example: after 1,000
iterations, the gap between the primal lower bound Primal LB and the dual upper bound Dual

UB is equal to 0.13%. This well-known behavior of SDDP arises from the increasing number of
time-steps (36 instead of 12). Moreover, Dual UB is still significantly decreasing after iteration
500, and it seems that it converges more slowly than Primal LB.

25



0 200 400 600 800 1000
Iterations

870000

875000

880000

885000

890000

895000

900000

905000

910000

Dual UB
Primal LB
MC OA
MC IA

Iter. Primal LB (×105) Dual UB (×105) Gap (%) Time LB (s) Time UB (s)

50 8.861 9.577 8.08 2. 8.
100 8.874 8.969 1.06 3. 22.
200 8.890 8.910 0.21 8. 72.
300 8.891 8.904 0.14 13. 153.
400 8.891 8.900 0.09 20. 275.
500 8.891 8.898 0.08 29. 443.
600 8.891 8.897 0.06 38. 651.
700 8.891 8.896 0.05 49. 888.
800 8.891 8.896 0.04 61. 1191.
900 8.891 8.895 0.04 74. 1534.
1000 8.891 8.895 0.03 89. 1928.

Figure 3: Convergence of primal and dual SDDP for T = 12. Time corresponds to cumulated
time along iterations.

A second observation is that the dual upper bound Dual UB is better than the statistical cost
value MC OA up to iteration 500. After the first 500 iterations, MC OA is better that Dual UB and
slightly fluctuates above the primal lower bound Primal LB (the remaining gap being around
0.1% after 1,000 iterations).

Finally, on this example, the value of MC OA is greater than the value of MC IA at every
iteration. Surprisingly enough, the value of MC IA exhibits a more stable behavior than the one
given by MC OA. It would be interesting to be able to assess such behaviors.

5.3.2 Using the dual upper bound in a stopping criteria

Consider the problem over a three years time horizon. The gap between the two deterministic
bounds (primal lower bound Primal LB and dual upper bound Dual UB) against the number of
iterations is given in Figure 4. To complete these results, we give the evolution of the statistical
upper bound MC OA UB obtained by the outer strategy in Table 1. We aim at comparing two
stopping tests.

Statistical stopping test: it is the stopping test proposed in Shapiro [2011] and which has been
detailed at §1.2. We choose a confidence level α = .975, and we estimate the statistical
upper bound MC OA UB every 50 iterations with a given set of 10,000 scenarios.
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2980000

3000000

3020000

3040000

3060000

3080000

3100000

Dual UB
Primal LB
MC OA
MC IA
Confidence (97.5%)

Iter. Primal LB (×106) Dual UB (×106) Gap (%) Time LB (s) Time UB (s)

50 2.837 3.917 38.1 5. 20.
100 2.980 3.151 5.7 11. 74.
200 3.029 3.070 1.4 27. 267.
300 3.039 3.059 0.67 46. 592.
400 3.040 3.055 0.46 75. 1113.
500 3.041 3.051 0.34 108. 1783.
600 3.041 3.049 0.25 144. 2601.
700 3.041 3.048 0.21 187. 3585.
800 3.041 3.047 0.18 235. 4751.
900 3.041 3.046 0.15 296. 6140.
1000 3.041 3.046 0.13 360. 7545.

Figure 4: Convergence of primal and dual SDDP for T = 36. Time corresponds to cumulated
time along iterations.

Iter. Primal LB (×106) Gap Dual UB (%) MC OA UB (×106) Gap MC OA UB (%)

50 2.837 38.1 3.392 19.6
100 2.980 5.7 3.310 11.1
200 3.029 1.4 3.137 3.6
300 3.039 0.67 3.069 1.0
400 3.040 0.46 3.059 0.62
500 3.041 0.34 3.046 0.18
600 3.041 0.25 3.046 0.18
700 3.041 0.21 3.046 0.15
800 3.041 0.18 3.046 0.16
900 3.041 0.16 3.045 0.14
1000 3.041 0.13 3.044 0.08

Table 1: Statistical upper bound for T = 36.

Dual stopping test: this stopping test is just based on the gap between the available deter-
ministic upper and lower bounds, namely Dual UB and Primal LB.

For different accuracy levels ε, as described by Shapiro [2011] we compare the CPU times taken
by these two tests in order to stop the SDDP algorithm. Results are given in Table 2. The given
times correspond to the total time required to run SDDP (including both the computation of cuts
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Dual stopping test Statistical stopping test

ε (%) n it. CPU time n it. CPU time

2.0 156 183s 250 618s
1.0 236 400s 300 787s
0.5 388 1116s 450 1429s
0.1 > 1000 . 1000 5519s

Table 2: Comparing dual and statistical stopping criteria for different accuracy levels ε.

and the computation of the stopping test). We notice that the dual stopping test gives better
results than the statistical stopping test: for ε ≥ 0.45%, it stops SDDP earlier and require less
computation time. Compared with the statistical test, the speed-up is between 3.3 for ε = 2%
and 1.3 for ε = 0.5%. However, the dual stopping test is penalized by the slow convergence of
dual SDDP. Indeed it cannot achieve a gap lower than 0.1 %, thus penalizing the performance
of the dual stopping test for high accuracy levels ε.

As a conclusion of these numerical experiments, the deterministic dual stopping test seems to
be better that the statistical stopping test, especially if restrictions on the CPU time impose to
perform a limited number of SDDP iterations (less than 500 in our case). Such a situation exists
in the energy field, as shown by the description of the Brazilian interconnected power system in
Shapiro et al. [2012].

Remark 31. We can also use the statistical upper bound MC IA UB obtained by evaluating
the inner strategy for the statistical stopping test designed by Shapiro. Indeed, in our numerical
experiments, this upper bound is always lower than the one given by the outer strategy. However,
this would require much longer computational time, as this approach combines the computation
of the dual cuts together with a Monte-Carlo estimation. ♦

5.3.3 Strengths and weaknesses of dual SDDP

Dual SDDP allows us to obtain a deterministic stopping criterion, which proves to be effective
compared to the standard statistical stopping test. Furthermore, dual SDDP computes cuts that
can be used to design an inner approximation strategy, which appears to be better than the
outer strategy whenever primal SDDP has not exactly converged.

However, we observe that the convergence of dual SDDP is penalized by different considera-
tions.

• It is well-known from Shapiro [2011] that the convergence of SDDP is impacted by the
number of stages in the problem. This issue impacts both primal and dual SDDP.

• Furthermore, we notice that dual SDDP exhibits a slower convergence than primal SDDP.
In fact, primal SDDP computes its trajectories from a fixed initial point x0, whereas dual
SDDP updates its initial point λ0 at each iteration, with

λk0 ∈ arg max
‖λ0‖≤L0

{
x>0 λ0 −Dk0(λ0)

}
(39)

• One iteration of dual SDDP takes longer than one iteration of primal SDDP. Indeed, dual
SDDP solves bigger LP problems than primal SDDP, as it has to consider explicitly a
coupling constraint (38b) between all samples. Dual SDDP would greatly benefit from a
cuts selection algorithm, which would limit the number of constraints added in the problem.
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6 Conclusion

In this paper, we give a new method to compute exact upper-bounds for SDDP, which relies
on applying SDDP to the Fenchel transform of Bellman’s value functions. We have shown that
under classical assumptions the upperbound converges.

We have taken advantage of the dual value functions
{
Dt
}
t∈0,T

to build a set of inner ap-

proximations
{
V t
}
t∈J0,T K of the primal value function

{
Vt
}
t∈J0,T K. We proved that the policy

induced by these inner approximations is converging to an optimal policy, with guaranteed per-
formance of the expected cost associated. We tested dual SDDP with extensive numerical results
on a stochastic production planning problem. These numerical results proved the effectiveness
of dual SDDP and the underlying inner strategy. Furthermore, we showed on this particular
problem that using a dual stopping test outperforms the classical statistical stopping test of
SDDP, both in term of iterations number and in term of computational burden.

We plan to extend this study in several directions. First, an extension of dual SDDP risk
averse or distributionally robust problems remains to be investigated. Second, the dual SDDP
algorithm used in this paper does not decompose the subproblems at each time steps uncertainty
by uncertainty, so as to obtain smaller subproblems with a more tractable size. This penalizes
dual SDDP towards primal SDDP, leading to greater computation times. A proper way to
decompose the dual subproblems effectively is under study. Third, we want to test dual SDDP
on other problem, such as the Brazilian hydro power operation planning problem presented
in Shapiro et al. [2012]. Finally we want to explore the interactions between primal and dual
SDDP. For example, we think that the upper-bounds given by dual SDDP might be effective to
regularize SDDP, for instance with the method introduced by Van Ackooij et al. [2017].

A Appendix

A.1 Numerical settings

We describe the problem in §5 with dynamics and constraint matrix.

A = In , B = −(In In 0n 0n 0qn) , C = (In 0n) , (40)

where In is the identity matrix and 0n the square null matrix with size n. The costs vector
becomes at = 0 and bt = (0 0 ct tt pt)

>. The constraints matrix write

D =
(
0n 0n 0n 0n 0n 0n 0qn 0qn A −A

)>
, (41)

and

E =



In 0n 0n 0n 0qn
−In 0n 0n 0n 0qn
0n −In 0n 0n 0qn
0n 0n In 0n 0qn
0n 0n −In 0n 0qn
0n 0n 0n −In 0qn
0qn 0qn 0qn 0qn Iq
0qn 0qn 0qn 0qn −Iq
In 0n In In R

B
−B


, (42)

and
gt+1 =

(
q 0 0 g 0 0 f f dt+1 dt+1 (v − at+1) at+1

)>
(43)
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A.2 Exhaustive dual SDDP algorithm

Data: Lipschitz bounds NLtt∈J0,T K

for k ∈ N do

Draw a noise scenario
{
ξk
t

}
t∈J0,T K;

begin
Primal Forward Pass : compute a set of trial points

{
xkt
}
t∈J0,T K;

Primal Backward Pass: refine primal value functions V kt along
{
xkt
}
t∈J0,T K;

Fetch computed cuts
{
λk+1
t

}
t∈J0,T K;

Dual Backward Pass: refine dual value functions
{
Dk+ 1

2
t+1

}
t∈J0,T K

along
{
λk+1
t

}
t∈J0,T K;

end

Draw a new noise scenario
{
ξ
k

t

}
t∈J0,T K;

begin

Compute λk0 ∈ arg max‖λ0‖≤L0

{
x>0 λ0 −Dk0(λ0)

}
;

Dual Forward Pass: compute a set of trial points
{
λ
k

t

}
t∈J0,T K and update directly

dual value functions
{
Dk+1
t+1

}
t∈J0,T K;

end

end
Algorithm 4: Primal-Dual SDDP algorithm

A.3 Compatibility of the primal and dual Bellman operators

We consider Problem (1) and its associated recursive Bellman equation:

VT (x) =K(x) ,

Vt(x) = inf
U ,Y

E
[
a>t x+ b>t+1U + Vt+1(Y )

]
,

s.t. Y = Atx+Bt+1U + Ct+1ξt+1 ,

U ∈ [ut+1, ut+1] ,

Y ∈ [xt+1, xt+1] ,

Dtx+ Et+1U +Gt+1ξt+1 ≤ 0 .

Ignoring the constant term a>t x, this equation rewrites as a linear Bellman operator

Bt(Vt+1)(x) = inf
U ,Y

E
[
b>t+1U + Vt+1(Y )

]
,

s.t. Tx+Wu(U) +Wy(Y ) ≤H ,
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with the notation:

T =



At
−At

0
0
0
0
Dt


, Wu =



Bt+1

−Bt+1

I
−I
0
0

Et+1


, Wy =



−I
I
0
0
I
−I
0


, H =



−Ct+1ξt+1

Ct+1ξt+1

ut+1

−ut+1

xt+1

−xt+1

−Gt+1ξt+1


.

Denoting by µ = (µ1, . . . ,µ7) the multiplier associated to the constraint of this problem, the
Fenchel conjugate of Bt(Vt+1)

B‡t (V ?t+1)(λ) = inf
µ,ν

E
[
− µ>H + V ?t+1(ν )

]
,

s.t. T>E
[
µ
]

+ λ = 0 ,

W†u(µ) = bt+1 ,

W†y(µ) = ν ,

µ ≤ 0 ,

writes:

B‡t (V ?t+1)(λ) = inf
µ,ν

E
[
(µ1 − µ2)>Ct+1ξt+1 − µ

>
3
ut+1 + µ>

4
ut+1 − µ>5 xt+1

+ µ>
6
xt+1 + µ>

7
Gt+1ξt+1 + V ?t+1(ν )

]
,

s.t. A>t E
[
µ1 − µ2

]
+D>t E

[
µ7

]
= −λ ,

B>t+1

(
µ1 − µ2

)
+
(
µ3 − µ4

)
+ E>t+1µ7 = bt+1 ,

−
(
µ1 − µ2

)
+
(
µ5 − µ6

)
= ν ,

µ1 ≤ 0 , µ2 ≤ 0 , µ3 ≤ 0 , µ4 ≤ 0 , µ5 ≤ 0 , µ6 ≤ 0 , µ7 ≤ 0 .

We make the following assumption.

Assumption 32.

∀λ ∈ Rn, ∃µa ∈ Rn, ∃µb ∈ Rp, µb ≤ 0 such that A>t µa +D>t µb + λ = 0 .

Remark 33. Such an assumption is for example fulfilled if At is a (square) full rank matrix. ♦

Under Assumption 32, and with any arbitrary non positive random variables µ5 and µ6, the
pair of random vectors (µ,ν ) defined by

• µ =
(

(µa)−,−(µa)+, (bt+1−B>t+1µa−E>t+1µb)
−,−(bt+1−B>t+1µa−E>t+1µb)

+,µ5,µ6, µb

)
,

• ν = −µa + (µ5 − µ6),

satisfies the constraints of the optimization problem associated to the computation of B‡t (V ?t+1)(λ).
Such a pair (µ,ν ) exists for all possible values of λ. Moreover, ν linearly depends on the differ-
ence µ5 −µ6, µ5 and µ6 being any arbitrary negative random variables, so that ν can take any
possible value in Rn.
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We thus deduce that the domain of the dual constraint set valued mapping G‡t , with

G‡t (λ) =
{

(µ,ν ) ∈ Rnx+nc | T>E
[
µ
]

+ λ = 0 , W†u(µ) = C , W†y(µ) = ν , µ ≤ 0
}
,

is equal to the whole space Rn, so that the sequence of dual linear Bellman operators
(
B‡t
)
t∈J0,T−1K

is compatible.
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