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1 INTRODUCTION 

The Ultimate Limit State Design of reinforced con-
crete structures may be appropriately performed 
within the theoretical framework of the yield design 
(Salençon, 2013) or limit analysis (Chen, 1982) the-
ory. As regards the most frequently encountered sit-
uation when the structure to be designed is made of 
an assemblage of 1D (beams or arches) or 2D (plates 
or shells) structural members, its ultimate bearing 
capacity may be evaluated from the previous deter-
mination of interaction yield criteria involving gen-
eralized stresses such as axial-membrane forces and 
bending moments. This method, which proves par-
ticularly attractive from an engineering point of 
view, has been quite recently used for spatial frame 
structures (Bleyer & de Buhan, 2013) and reinforced 
concrete plates (Bleyer et al., 2015) in combination 
with efficient convex optimization procedures. 

On the other hand, assessing the ultimate load 
bearing capacity of constructions incorporating mas-
sive three-dimensional reinforced concrete compo-
nents, which can no more be modelled as beams or 
plates, requires a specific analysis, such as the well-
known “strut-and-tie” model which, in some way, 
can be related to the static approach of yield design 
which provides lower bound estimates for the ulti-
mate load bearing capacity of the structure.  

With a special attention to evaluating the ultimate 
shear capacity of reinforced concrete deep beams, 
both the lower and upper bound methods of yield de-
sign have been implemented in the context of a finite 
element formulation with the help of linear pro-
gramming techniques (Averbuch & de Buhan, 1999). 

In this study, reinforced concrete was described ac-
cording to a “mixed modelling” approach, in which 
plain concrete was modelled as a two-dimensional 
continuous medium subject to plane stress loading, 
while the reinforcement bars were treated as one di-
mensional flexible beams embedded in the surround-
ing concrete material. 

The generalization to the more representative 
configuration of linear reinforcing inclusions placed 
into three-dimensional concrete bodies is posing a 
somewhat serious challenge as regards the possibil-
ity of treating such a case in a “1D-3D” mixed mod-
elling approach. Some attempts to circumvent this 
problem have already been proposed either in the 
context of the finite element formulation (Llau et al., 
2016) or making use of an implicit homogenization 
method (Nielsen & Hoang, 2010) or so-called “mul-
tiphase model” (Figueiredo et al., 2013).  

The present contribution is devoted to applying 
the previously mentioned multiphase model, initially 
developed for reinforced soils, to the yield design of 
three-dimensional reinforced concrete structures. It 
is based on the combination of the following ele-
ments. 

✓ Formulation of the plain concrete three-
dimensional strength properties by means of 
the widely employed Rankine’s criterion 
characterized by the uniaxial tensile and 
compressive strengths of the concrete. 

✓ Modelling the strength of each individual re-
inforcement with its surrounding concrete 
volume as an anisotropic continuum account-
ing for the axial strength of the reinforcing 
inclusion. 
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ABSTRACT: This contribution is addressing the evaluation of the ultimate bearing capacity of massive rein-
forced concrete structures. It is based on the finite element implementation of both the lower bound static and 
upper bound kinematic approaches of yield design, adopting the well-known Rankine criterion for modelling 
the three-dimensional strength properties of plain concrete, while the reinforcing bars are treated by means of 
an extended homogenization method. Both yield design approaches lead to optimization problems which are 
solved by resorting to Semi-Definite Programming (SDP) techniques. The whole computational procedure is 
finally applied to the design of a bridge pier cap, leading to a fairly narrow bracketing of the exact failure load 
of this kind of structure. 



✓ Finite element formulation of both the lower 
bound static and upper bound kinematic ap-
proach of yield design based on a discretiza-
tion of the structure into tetrahedral elements 
with a piecewise linear variation of the 
stresses. 

✓ The final optimization procedure is carried 
out by means of Semi-definite Programming 
(SDP). 

The whole design procedure will be illustrated on 
the typical example of evaluating the ultimate bear-
ing capacity of a reinforced concrete bridge pier cap 
subjected to concentrated vertical loads. 

2 STRENGTH PROPERTIES OF PLAIN AND 
REINFORCED CONCRETE 

2.1 Plain concrete strength condition: the Ranki-
ne’s criterion 

It is generally acknowledged (Chen, 1982; Averbuch 
& de Buhan, 1999; Bleyer et al., 2015) that the 
strength of plain concrete under a three-dimensional 
multi-axial solicitation is adequately described by a 
“tension cut-off” Mohr-Coulomb criterion of the 
form: 

 ( ) sup ; 0c

p M m c M t
F K f f           (1) 

where 
M
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m



 are the major and minor principal 

components of the stress tensor 
t

f  and 
c

f the 

uniaxial tensile and compressive strengths of the 
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where  is the internal friction angle, which is usual-

ly taken equal to 37°.  
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Figure 1. Rankine and tension cut-off Mohr-Coulomb criteria 
under plane stress conditions 

In the following contribution, the simpler Rankine 
criterion defined by:  

( ) 0c

c m M t
F f f              (3) 

will be adopted. Figure 1 shows that, under plane 
stress conditions, the Rankine criterion is slightly 
conservative with respect to the Mohr-Coulomb one, 
both criteria being even coincident for 0

t
f  . It may 

also be represented by means of an intrinsic curve in 
the Mohr-plane, as shown in Figure 2.  
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Figure 2. Rankine’s intrinsic curve in the Mohr-plane 

2.2 Reinforcements 

The concrete material is reinforced by one-
dimensional steel bars or rods, the strength condition 
of which may be simply expressed in terms of axial 
force N only, thereby neglecting any resistance to 
shear force V and bending moment M: 

0 0
,   0kN N N V M          (4) 

where N0 denotes the tensile resistance of each indi-
vidual rebar, while k is a non-dimensional parameter 
ranging from 0 to 1, expressing the reduced re-
sistance of the reinforcement under compression 
(buckling for instance). 

2.3 Reinforced concrete as homogenized material 

Some significant zones of the reinforced concrete 
structure (such as deep beams: see for instance: 
Averbuch & de Buhan, 1999) may be reinforced by 
such uniformly distributed bars (case of stirrups or 
open frames). Provided that the spacing between two 
neighboring reinforcements is sufficiently small as 
compared with the size of the reinforced zone, the 
latter may be replaced by a zone where the homoge-
nized constituent material obeys a macroscopic 
strength condition (see de Buhan & Taliercio, 1991, 
for composite materials, or Michalowski & Zhao, 
1996 for reinforced soils and Averbuch & de Buhan, 
1999 for reinforced concrete). 

This macroscopic strength condition may be ex-
pressed as follows: 
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where e1 is the unit vector parallel to the reinforcing 
bar, and 0 is defined as the tensile resistance of the 
bars per unit transverse area: 

2

0 0
/N s          (6) 

which may also be expressed as: 

2

0
/s s s

y y
A f s f           (7) 

where s

y
f  denotes the uniaxial strength of the bar 

constituent material (steel) and As the bar cross-
sectional area, so that represents the reinforcement 
volume fraction (see Figure 3 where 2 s cs A A  ). 

Figure 3 illustrates the macroscopic strength con-
dition (4) expressed on an oriented facet of the ho-
mogenized reinforced concrete in the particular case 
when k=0 (no compressive resistance of the rein-
forcements). Such a geometric representation gives a 
clear evidence of the strength anisotropy of the ho-
mogenized reinforced concrete in exactly the same 
way as for fiber composite materials. 
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Figure 3. Homogenized strength condition of reinforced con-
crete relative to an oriented facet 

It should be noted that, without any reference to 

the limit analysis or yield design homogenization 

theory, some authors (Nielsen & Hoang, 2010) did 

make use of a strength criterion quite similar to (5), 

that is based on an intuitive additive decomposition 

of the total stress in reinforced concrete zones into 

stress components relating to the plain concrete and 

the reinforcements, each one complying with inde-

pendently specified strength conditions. 

3 MIXED MODELLING OF REINFORCED CON-
CRETE 

3.1 Limitation of the “mixed modelling” approach 

Referring to the frequently encountered situation 

where only a small number of differently oriented re-

inforcements are incorporated in the concrete struc-

ture (case of longitudinal reinforcements in deep 

beams for instance), the above mentioned homoge-

nization method is no more applicable and the so-

called “mixed modelling” approach should be advo-

cated. According to this approach, the reinforce-

ments are treated as 1D structural elements with a 

strength condition defined by (4) embedded in the 

concrete material modelled as a 3D continuum, the 

strength of which is specified by (2). 

Unfortunately, this 1D-3D “mixed modelling” 

approach faces a serious limitation concerning the 

establishment of equilibrium equations for such a 

composite system. Indeed, the equilibrium equation 

at any point of the reinforcing bar may be written as: 

1 1 1
d ( ) / d ( ) 0N x x p x          (8) 

where p represents the density of axial force exerted 

by the surrounding concrete material onto the rein-

forcing bar (Figure 4(a)). 
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Figure 4. Interaction forces between concrete and reinforce-
ment in the context of 1D-3D mixed modelling 

Now, the impossibility of connecting such a 1D 

distribution p of interaction forces with the three-

dimensional stress fields prevailing in the concrete 

material may be illustrated from the following sim-

ple reasoning. Considering a circular cylindrical 

“control surface” of radius  with its axis placed 

along the reinforcement, as shown in Figure 4(b), the 

interaction force density p may be obtained from ap-

plying along this surface a longitudinal shear stress 

 , the average value of which along the circle drawn 

on this surface at point x1, could be expressed as: 

1 1
( ) ( ) / 2x p x         (9) 

According to the latter equation, the shear stress 

which should be developed in the concrete along the 

control surface for applying a given value of interac-

tion force density p increases to infinity as the radius 

 tends to zero, so that the stress field in the concrete 

material would tend to infinity along the reinforce-

ment axis. Such a singularity could possibly be taken 

into account in the context of a linear elastic behav-

ior of the concrete, but definitely not as soon as 

yielding and failure of the latter is concerned, since 

in this case the yield strength condition (3) of the 



concrete would be systematically violated when ap-

proaching the 1D reinforcing bar.  

3.2 An extended homogenization model 

Of course, the only fully mechanically consistent and 

rigorous way of circumventing the above limitation, 

would be to model each reinforcing bar as a three-

dimensional volume body. But, on account of the 

small diameter of such bars along with the sharp 

contrast between the reinforcing steel and the sur-

rounding concrete in terms of strength properties, 

this would undoubtedly imply prohibitive computa-

tional costs, due for instance to the highly refined 

discretization required when employing finite ele-

ment techniques. 

An alternative approach for the finite element 

modelling of 1D steel inclusions in 3D concrete vol-

umes has been recently proposed by Vincent et al. 

(2017). Considering one individual 1D-inclusion 

embedded in a 3D-concrete block, a cylindrical vol-

ume of concrete with the inclusion placed along its 

axis is defined, as shown in Figure 5(a). The intui-

tive idea is to replace the composite cylindrical vol-

ume, thus obtained, by a homogenized cylinder, at 

any point of which the strength condition is defined 

by Eqs. (4) and (6), where s represents the side of the 

squared cross-section of the cylindrical volume. 
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Figure 5. Construction of a homogenized zone around an indi-
vidual inclusion 

The advantage of such a modelling procedure, is 
that the characteristic size of the homogenized zone 
(namely s) is significantly larger than the inclusion’s 
diameter, thus allowing for example a much easier 
finite element discretization of the reinforced con-
crete structure as a 3D-3D composite, since a re-
finement of the mesh around the inclusion is no 
more required for obtaining accurate and reliable 
predictions. Of course, the choice of s being arbi-
trary, it will be necessary to make sure that the re-
sults of the computations performed on the basis of 
this model, remain rather insensitive to the value of 
s, which has been checked in (Vincent et al., 2017).  

4 NUMERICAL LOWER BOUND APPROACH 

4.1 Statement of the yield design problem  

Assuming that the reinforced concrete structure un-
der consideration is subject to one single loading pa-
rameter Q, the ultimate or failure load value Q+ is 
defined, in the context of the yield design theory, as 
the maximum value of Q for which one can exhibit 
any stress field  : 

✓ statically admissible (S.A.) with Q, i.e. ver-

ifying the equilibrium equation at any point of 

the structure  

div ( ) ( ) 0, x F x x         (8) 

where F denotes the body force volume den-

sity (material specific weight for example), 

along with the continuity of the stress-vector 

across possible stress jump surfaces 

 ( ) . ( ) 0, x n x x         (10) 

as well as the stress boundary conditions asso-

ciated with the loading Q; 

✓ and complying with the strength conditions as-

signed to the plain concrete and reinforced con-

crete zones of the structure, respectively: 

( ( )) 0   

( ( )) 0 ,   

c c

rc rc c rc

F x x

F x x





  

     
 (11) 

where c (respectively rc) represents the part 

of the structure occupied by the plain concrete 

(resp. by the homogenized reinforced con-

crete).  

4.2 Finite element formulation and SDP problem 

Applying the lower bound static approach consists 
in considering S.A. stress fields depending either on 
a small number of parameters in an analytical ap-
proach, or on a large but finite number of stress vari-
ables in a numerical approach, such as the finite el-
ement method. According to the latter, the 
geometrical domain  occupied by the three-
dimensional structure is discretized into Ne tetrahe-
dral finite element e, with a linear variation of the 
stress field inside each element. It is to be noted that 
there are as many stress tensors attached to any geo-
metrical node of the mesh as there are tetrahedral el-
ements sharing this node as an apex. 

It can be shown (Vincent et al., 2017) that the fi-

nite element implementation of the lower bound stat-

ic approach of yield design finally reduces to the fol-

lowing convex optimization problem: 



 
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    
 

Max   
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  

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  (12) 

where    is a column-vector which collects all the 
nodal stress variables associated with the mesh dis-
cretization of the structure. 

Unlike the equilibrium conditions which involve 
the total stresses only, the strength criteria in the 
homogenized reinforced zones concern the partial 
stresses as shown by (5). While the condition relat-
ing to the reinforcement writes in the form of a sim-
ple linear constraint, the strength condition of the 
plain concrete defined by (3) involves the maximal 
and minimal principal stress components. The latter 
thus needs a specific treatment so that the optimiza-
tion problem (12) may be treated as a Semi-definite 
programming (SDP) optimization problem for which 
efficient algorithms are available. 

5 UPPER BOUND KINEMATIC APPROACH 

5.1 Principle of the approach 

The upper bound kinematic approach of yield design 
is based upon the dualization of the lower bound 
static one through the virtual work principle 
(Salençon, 2013). Thus, given any kinematically 
admissible (K.A.) velocity field U, the so-called 
maximum resisting work developed in such a field 
may be calculated as follows: 

( ) ( )d ( )d

      ( ; )d ( ; )d

c rc

c rc

c c rc rc

mr

c c rc rc

P U d d

n n
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 

 

   
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 

 V V
   (13) 

In the above expression, where d denotes the 
strain rate tensor and V  the velocity jump across the 
discontinuity surfaces the support functions , de-
fined as: 

 
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/ /

/ /

( ) sup : ; ( ) 0
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d d F
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have the following expressions: 
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for the plain concrete (the second support function 

relative to a discontinuity may be geometrically cal-

culated from Figure 2), and: 
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for the reinforced concrete. It is worth noting that, 

unlike for other criteria such as for instance the ten-

sion cut-off Mohr-Coulomb condition (1), the sup-

port functions (15) and (16) can be calculated for 

any velocity field and velocity jumps, without it be-

ing necessary to impose kinematic restrictions. 

Under these conditions, the yield design upper 

bound kinematic approach states that the ultimate 

load must satisfy the following inequality, valid for 

any K.A. velocity field U: 

( ) ( )
mr

Q q U P U         (17) 

where the left-hand member of the inequality is the 

virtual work of the ultimate load, thereby producing 

the following upper bound estimate: 

( ) / ( ),  for  ( ) 0ub

mr
Q Q P U q U q U      (18) 

5.2 Finite element implementation 

Similarly to what has been previously done for the 
lower bound static approach (section 4.2.), the rein-
forced structure  is discretized into Ne six-nodded 
tetrahedral finite element e, with a quadratic varia-
tion of the velocity field inside each element and ve-
locity jumps across the triangular facets separating 
any two adjacent elements. 

As shown in (17) the maximum resisting work is 
greater than the virtual work of the ultimate load. 
Thus, finding the best upper bound to the ultimate 
loading of the reinforced structure  can be ex-
pressed as the following minimization problem: 

 = Min ( ); ( ) 1  ub

mr
U

Q Q P U q U      (19) 

Denoting by  U  the column-vector collecting all 
the nodal values of the discretized velocity field, the 
above minimization problem can be rewritten as: 
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   (20) 

where     and d V  denoted the column-vectors col-
lecting all the nodal values of the strain rates and ve-
locity jumps associated with the velocity field. This 
minimization problem is also treated by means of 
Semi-definite programming (SDP). 

6 PRACTICAL CASE STUDY 

The presented numerical procedure for calculating 
the ultimate load capacity of 3D structures has been 
implemented. This section provides the example of a 
three-dimensional reinforced concrete structure for 



which the ultimate loading capacity is evaluated with 
a lower bound static approach and an upper bound 
kinematic approach. 

In order to illustrate the efficiency of the imple-

mented 3D yield design procedure, the ultimate bear-

ing capacity of a reinforced concrete bridge pier cap 

is evaluated.  

 

Figure 6. Reinforced concrete pier cap subject to bridge deck 
loading 

The bridge pier cap is modelled as a 3x3x1.5 m3 

parallelepipedic concrete block. The finite element 

lower bound static approach and the upper bound 

kinematic approach are performed on this structure 

subject to four vertical loads representing the action 

of the overlying bridge deck, as shown in Figure 6.  
These loadings are applied in the form of a uni-

form pressure applied on top of small rigid square 
pads of 0.7x 0.7 m2. The interaction with the under-
lying bridge pier is modelled by imposing a rigid 
connection on a 1.5x0.7 m2 rectangular area placed 
at the center of the bottom surface. 

The concrete block is made of a homogeneous 
plain concrete material, with = 40 MPa

c
f  and 

= 0.5 MPa
t

f . It is strengthened by four steel rebars 
of diameter equal to 3 cm, placed just below the 
loading pads as shown in Figure 6, with a uniaxial 
strength equal to = 400 MPas

y
f . According to the 

above described procedure, each of the four rebars is 
replaced by a homogenized volume of square cross 
section equal to s2=0.01 m2. 

First, a brief parametric study is carried out to il-
lustrate the convergence of the lower and upper 
bound approaches towards the exact ultimate load. 
For this purpose, different meshes with an increasing 
number of finite elements, have been generated. The 
results of the analysis are shown in Figure 7 which 
displays the variations of the lower and upper bound 
estimates as functions of the mesh refinement char-
acterized by the number of tetrahedral finite ele-
ments. 
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Figure 7. Convergence of the static and kinematic bounds with 

the increasing number of mesh elements 

It may be clearly seen in this figure that the upper 
and lower bounds are getting closer as the finite el-
ement mesh is refined, which that the evaluation of 
the ultimate load capacity of the structure is becom-
ing more and more accurate. Indeed, the difference 
between the upper and lower bounds can be inter-
preted as an error estimator of the result, since the 
yield design theory ensures that the exact result lies 
somewhere between the two bounds.  

It should be mentioned that the number of tetra-
hedral finite elements plotted on the horizontal axis 
corresponds to the kinematic mesh, the static mesh 
being eight times finer. As the interpolation degree is 
not the same (linear interpolation for the static ap-
proach versus quadratic interpolation for the kine-
matic approach), the static approach needs to be 
conducted on finer meshes to converge. 

As could be expected, the best results are ob-
tained with the finest meshes, where the structure is 
discretized in 3073 tetrahedral finite elements for the 
kinematic approach (24584 for the static approach). 
However, it is worth noting that the results converge 
quite rapidly since the relative error is already less 
than ten percent for kinematic meshes with 2300 el-
ements. 

 
Figure 8. Perspective view of the optimized principal compres-

sive stress field in the concrete 

 



 

Figure 9. Optimized stress field in the homogenized zone 

 
Figure 10. View of the optimized stress field in the whole pier 

cap 

Figure 8 represents the distribution of the princi-

pal stresses prevailing in the plain concrete material, 

while Figure 9 represents the principal tensile stress-

es in the (homogenized) reinforced zones. Both 

fields are superimposed in Figure 10. 

 

While the results of the static approach lead to an 

optimized stress field in the structure which is simi-

lar to what the strut and tie method could provide, 

the kinematic approach gives a clear failure mecha-

nism of the analyzed structure (besides giving an up-

per bound and thus, an error estimator of the result). 

The failure mechanism of the reinforced bridge pier 

cap is shown in Figure 11. 

 

Figure 11. View of the failure mechanism of the pier cap 

7 CONCLUSION 

A specifically dedicated finite element computer 
code has been set up aimed at producing rigorous 
lower bound and upper bound estimates for the ulti-
mate load bearing capacity of three-dimensional re-
inforced concrete structures. It relies upon two recent 
developments: the numerical formulation of the cor-
responding optimization problem using Semidefinite 
Programming, on the one hand, the adoption of a 
homogenization-based model for describing the me-
chanical behavior of individual reinforcing inclu-
sions embedded in a surrounding three-dimensional 
concrete matrix, on the other hand.  

The entire procedure may be further extended to 
other kinds of strength condition for the plain con-
crete material, such as the already mentioned tension 
cut-off Mohr-Coulomb criterion (1), which may 
prove more realistic for capturing the strength prop-
erties of concrete, notably under isotropic confining 
stresses. This will imply to take kinematic re-
strictions into account in the calculations of the sup-
port functions  and thus of the maximum resisting 
work  
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