
HAL Id: hal-01736465
https://enpc.hal.science/hal-01736465v1

Submitted on 17 Mar 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Phase-field modeling of anisotropic brittle fracture
including several damage mechanisms

Jeremy Bleyer, Roberto Alessi

To cite this version:
Jeremy Bleyer, Roberto Alessi. Phase-field modeling of anisotropic brittle fracture including several
damage mechanisms. Computer Methods in Applied Mechanics and Engineering, 2018, 336, pp.213–
236. �10.1016/j.cma.2018.03.012�. �hal-01736465�

https://enpc.hal.science/hal-01736465v1
https://hal.archives-ouvertes.fr


Phase-field modeling of anisotropic brittle fracture including several

damage mechanisms

Jeremy Bleyera,∗, Roberto Alessib

aEcole des Ponts ParisTech, Laboratoire Navier UMR 8205 (ENPC-IFSTTAR-CNRS)
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00184 Roma, ITALY

Abstract

The present paper aims at modeling complex fracture phenomena where different damaging
mechanisms are involved. For this purpose, the standard one-variable phase-field/gradient
damage model, able to regularize Griffith’s isotropic brittle fracture problem, is extended to
describe different degradation mechanisms through several distinct damage variables. Asso-
ciating with each damage variable a different dissipated fracture energy, the coupling between
all mechanisms is achieved through the degradation of the elastic stiffness. The framework
is very general and can be tailored to many situations where different fracture mechanisms
are present as well as to model anisotropic fracture phenomena. In this first work, after a
general presentation of the model, the attention is focused on a specific paradigmatic case,
namely the brittle fracture problem of a 2D homogeneous orthotropic medium with two
different damaging mechanisms with respect to the two orthogonal directions. Illustrative
numerical applications consider propagation in mode I and II as well as kinking of cracks as
a result of a transition between the two fracture mechanisms. It is shown that the proposed
model and numerical implementation compares well with theoretical and experimental re-
sults, allowing to reproduce specific features of crack propagation in anisotropic materials
whereas standard models using one damage variable seem unable to do so.
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1. Introduction

Phase-field models of fracture have emerged as an alternative way of modeling crack
propagation using a smeared representation of the crack topology. These models have been
devised as a mathematical regularization of the variational approach to brittle fracture de-
veloped by Francfort and Marigo [1] which is based on the energetic competition between
an elastic potential energy and the fracture dissipation, that is the work needed to create
fracture surfaces, through a minimum principle. They share a conceptual resemblance with
Ginzburg-Landau formulations [2, 3] of phase transitions and can also be interpreted as
damage gradient models [4, 5] in which the dissipated energy density contains a regulariz-
ing damage gradient term associated with a regularizing internal length scale. The main
advantage of such models is that no ad hoc crack propagation criterion needs to be intro-
duced (contrary to XFEM approaches for instance) so that the crack evolution is based
solely on energetic arguments. These approaches have been successfully applied to problems
involving hydraulic fracture in porous media [6, 7], heterogeneous materials [8–11], ductile
behaviors [12–15], finite deformation [16–18], thermal loading [19], fracture and debonding
of thin films [20, 21], fatigue effects [22], etc. In addition to their versatility enabling their
extension to many physical contexts, the predictions of such models have been validated
against theoretical and experimental predictions of crack nucleation around notches [23],
crack propagation in mixed-mode loading [24], cohesive fracture [25, 26], etc. They have
also been shown to reproduce complex behaviors of crack propagation in a dynamic setting
which have remained elusive for many other numerical methods, in particular the branching
of a single crack into multiple cracks [27–29], for which a simple energetic criterion has been
proposed [30], the existence of a limiting speed below the Rayleigh wave speed [30], the
occurrence of a microbranching instability inherent to 3D effects [31, 32], etc.

As regards anisotropy, some works sometimes refer to the way elasticity is recovered in
compression, for which different models have been developed, see for instance [29] for an
extensive discussion on this subject. In order to avoid any confusion, we will refer to this
aspect as tension/compression asymmetry instead of anisotropy.

An anisotropic fracture energy has already been proposed in the context of anisotropic
media [33–35] and, more specifically, in the specific case of polycrystals [36, 37]. In all these
models, anisotropy in the fracture energy has been introduced by enriching the quadratic
gradient term with a constitutive fourth order tensor penalizing fracture interfaces in dif-
ferent directions, and eventually including higher-order gradient terms of the phase-field
variable. Such an approach has not only the unwilling feature that the localization band
width strongly depends on the crack orientation but is also mechanically arguable. In [38],
an ad hoc modification of the phase-field formulation was proposed in order to simulate the
anisotropy of mixed mode propagation in rocks, however, the generality of the proposed
procedure does not seem obvious.

Most of these works focused essentially on the anisotropy of the fracture energy only.
In the present work, we aim at tackling materials which also exhibit anisotropic elastic
properties in addition to the fracture energy. More specifically, we consider a general setting
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in which the material anisotropy is due to both anisotropic elastic properties and distinct
damage mechanisms, which are probably impossible to be captured with only one phase-
field variable. Typical examples of such situations may involve fiber-reinforced composites,
wooden materials, masonry, etc.

A literature review of existing constitutive models accounting for fracture properties of
such anisotropic materials would be out of scope in this paper. Let us just mention a few
works, among many others concerning fiber-reinforced composites, which proposed damage
continuum mechanics models at the mesoscopic ply level [39–42]. Phase-field models have
also been used to simulate the unidimensional behavior of hybrid laminates, including a
competition between fracture of both layers and debonding of the adhesive interface [43].

Finally, let us mention that the following work is restricted to the case of brittle materials
in which fracture is the only source of energy dissipation, excluding plasticity for instance.
Nevertheless, any additional rate-independent, or even rate-dependent, phenomenon can be
easily embedded in this variational setting.

Notation: Throughout this paper, the following notations will be used. Italic plain
symbols correspond to scalar quantities. Vectors and second-order tensors are denoted by
italic boldface symbols, e.g. u for the displacement and ε for the strain. Fourth-order
tensors are denoted by blackboard bold letters, e.g. C for the elasticity tensor and I for
the fourth-order identity tensor. Normal boldface characters will correspond to engineering
notations of second-order (resp. fourth-order) tensors in the form of vectors (resp. matrices).
The inner product of second order tensors is denoted by a double dot ε : ε = εijεji. An
underline symbol denotes a list, e.g. d = (di)i=1,...,n for a list of scalar damage variables.
Time-dependence of variables will in general be omitted to ease the presentation whereas
derivative with respect to the time variable will be denoted by a dot e.g. u̇ for the velocity.

2. Phase-field approach to brittle fracture including several damage mechanisms

The aim of the present paper is to model brittle crack propagation in continuum media
in which fracture originates from several distinct degradation mechanisms. The proposed
approach can either be constructed directly from thermodynamics assumptions using damage
internal variables or, as hereafter done, as an extension of a variational gradient damage
model inspired by the variational approach to brittle fracture introduced by Francfort and
Marigo [1]. In this regard, we first postulate the total internal energy density of the model
and specify the state variables. Then, the variational problem is set and the governing
equations deduced. Finally, constitutive choices are discussed and a first example examined.

2.1. State variables and total internal material energy density

Let us first consider a generalization of damage gradient models used to model the
behavior of quasi-brittle materials [4, 44]. In the classical formulation, the total internal
material energy density, from now on called simply material energy density, is a state function
of the strain ε, one internal scalar damage variable and its gradient. This last dependence
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induces a non-locality in the model and serves as a regularization of the ill-posed character
of local damage models due to the underlying softening behavior. In the present model
generalization, the material energy density W , still a state function, depends upon the
strain, n different scalar damage variables di with i = 1, . . . , n and their respective gradients
∇di. Each damage variable is associated with a specific degradation mechanism and is
assumed to vary between 0 and 1, 0 meaning that the considered damage mechanism is not
activated and 1 corresponding to a fully degraded material for this specific mechanism. More
precisely, we assume that the material energy density, still given by the sum of an elastic
potential energy density and a state dependent dissipated energy density, can be written as
follows:

W (ε, d,∇d) = ψ(ε, d) + δ(d,∇d)

=
1

2
ε : C(d) : ε+

n∑
i=1

(
wi(di) + wi(1)`2

i∇di · ∇di
)

(1)

where the elasticity tensor C may depend on all damage variables d = (di)i=1,...,n. The
dissipated energy density δ, only due to the damaging mechanism, is written as a sum
of independent contributions to each damage variable, themselves composed of a local
term wi(di), hereafter also called damage dissipation function and a damage gradient term
wi(1)`2

i∇di · ∇di associated with a regularizing internal length scale `i. Note that with
our simplistic assumptions, the coupling between damage variables occurs only through the
degradation of the elastic stiffness. However, more complex interactions between elementary
damage mechanisms are possible to give rise to different constitutive behaviors.

2.2. Variational formulation

Let us now consider a time-dependent loading process characterized by time-dependent
surface forces F (t) prescribed on the part ∂ΩT of the boundary of the domain Ω and by time-
dependent displacements U(t) prescribed on the complementary part ∂Ωu of the boundary
(body forces are assumed to be zero for the sake of simplicity). At a given time t, the total
energy of the body is given by:

E(u, d; t) =

∫
Ω

W (∇su, d,∇d) dΩ−
∫
∂ΩT

F · u dS (2)

with u = U(t) on ∂Ωu, 0 ≤ di(x) ≤ 1 in Ω and where ∇s = (∇ + ∇T )/2 denotes the
symmetric part of the gradient operator.

Referring to the approach used in [45–47], evolution laws are derived from the following
fundamental principles:

• damage irreversibility : We assume that at every point in Ω, each damage variable is
an increasing function of time:

ḋi(x) ≥ 0 ∀x ∈ Ω, ∀i = 1, . . . , n (3)
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• stability condition: Let us consider the state (u, d) at time t and an admissible virtual
perturbation direction (δu, δd), that is, δu = 0 on ∂Ωu whereas δdi ≥ 0 if di < 1
and δdi = 0 if di = 1. The state is said to be locally directionally stable if, for any
admissible perturbation direction (δu, δd) satisfying the previous conditions, there
exists h̄ such that for all h ∈ [0; h̄] :

E(u+ h δu, d+ h δd; t) ≥ E(u, d; t) (4)

• energy balance: The energy balance principle is given as the following global condition:

dE
dt

(u, d) =

∫
∂ΩT

F · u̇ dS +

∫
Ωu

U̇ · σ · n dS (5)

By exploiting these general principles, the following evolution laws are deduced (see
Appendix A):

• equilibrium and natural boundary conditions:

divσ = 0 in Ω (6)

σ · n = F on ∂ΩT (7)

• damage evolution criterion and consistency equations: ∀i = 1, . . . , n and ∀x ∈ Ω

Yi = −∂diψ(u, d)−
(
w′i(di)− 2wi(1)`2

i∆di
)

(8)

Yi ≤ 0, ḋi ≥ 0, ḋiYi = 0 (9)

Note that the boundary conditions of the damage fields on ∂Ω naturally arise from
the variational formulation and are given by ∂di/∂n ≥ 0 and (∂di/∂n)ḋi = 0.

The obtained evolution equations are therefore similar to the case of only one damage vari-
able except that a coupling between all damage mechanisms is introduced by the elastic
part ∂diψ(u, d). The conditions Yi ≤ 0 must therefore be simultaneously satisfied in the
damage evolution problem. The issue of true stability and non-uniqueness of solutions for
the evolution problem are obviously still present in this framework and we refer to [48] for
more details on the matter.

2.3. Constitutive choices and link to brittle fracture

Many models can be considered by making specific choices for the damage-dependent
elastic stiffness tensor C(d) and the damage dissipation function wi(di). The choice of C(d)
will be discussed in section 3 in the specific setting of an orthotropic material model.

Considering the damage dissipation function, a quadratic model wi(d) = kd2 is widely
used in the literature because of the original established link of phase-field models with
brittle fracture [49]. However, one disadvantage of such a model is that there is no pure
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elastic phase since damage starts to evolve as soon as the material is loaded. On the
contrary, among a broad class of phase-field models regularizing the brittle fracture problem
[50], a linear dependence wi(d) = kd allows to recover an explicit elastic phase. Taking
advantage of the aforementioned link, the unspecified constant k can be chosen, depending
on the model, as a function of the fracture energy Gc, that is the energy dissipated within
a fully developed damage localization, and the internal length scale ` so that localized one-
dimensional solutions dissipate exactly Gc [44]. For the quadratic and linear models, the
damage dissipation functions are given, respectively, by:

wi(d) =
Gi

c

2`
d2 (10)

wi(d) =
3Gi

c

8`
d (11)

Because of the existence of a purely elastic phase, we retained the linear model (11) for
all mechanisms in the subsequent simulations (see also [23] for arguments supporting such
a choice). Note that, in the standard approach with one damage variable, the choice of
Gc and ` induces the existence of a maximal uniaxial stress. The internal length can then
either be viewed as a purely numerical regularizing parameter if one aims at modeling a
nominally brittle material or as a material parameter which can be related to a critical
stress for quasi-brittle materials [23]. More refined models also exist in which the critical
stress can be chosen independently from Gc and ` [51].

The total dissipated energy is given by the sum of the energy dissipated by each damage
mechanisms, namely

∆(d,∇d) =

∫
Ω

δ(d,∇d) dΩ =
n∑
i=1

Gi
c

∫
Ω

γi(di,∇di) dΩ (12)

where the damage density functions γi are traditionally taken in the phase-field literature
(up to a possible renormalization of `i) as:

γi(di,∇di) =
1

2`i

(
d2
i + `2

i∇di · ∇di
)

(13)

for an underlying quadratic damage model according to (10), or

γi(di,∇di) =
3

8`i

(
di + `2

i∇di · ∇di
)

(14)

for an underlying linear damage model according to (11). For each of these choices it
is possible to interpret Gi

cγi(di,∇di) as the fracture energy density of the corresponding
mechanism and which is exactly its contribution to the total fracture energy density δ(d,∇d)
introduced in the damage gradient model. Under a more theoretical point of view, many
questions still need to be answered. For instance, the existence of a Γ-convergence result, as
the internal length scales `i go to zero, of the present proposed phase-field model towards a
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well-defined discontinuity model with sharp fracture interfaces is still an open question that
would deserve to be further investigated.

For simplicity, we will now consider a unique internal length scale `i = ` for all mecha-
nisms but different fracture energies Gi

c.

2.4. A first example: mode mixity

To conclude this section, let us give a first insight into a potential application of the
previously described framework in the case of materials exhibiting different mode I and mode
II fracture toughness (rocks for instance). Using different damage variables and associated
fracture energies, it is possible to distinguish between both failure mechanisms. A simple way
of achieving such a purpose is to split the strain energy between a spherical and deviatoric
part as follows:

ψ(ε, d1, d2) =
κ

2
(1− d1)2(tr ε)2 + µ(1− d2)2εd : εd (15)

and considering different fracture energies such that a mode I fracture energy density would
be associated with the first damage variable GI,cγ(d1,∇d1) and a mode II fracture energy
density with the second variable GII,cγ(d2,∇d2). Obviously this is not the only possible
choice and more complex models could be easily derived from this simple proposition.

3. Longitudinal/Transverse Damage (LTD) model for an orthotropic material

The previous framework is now applied to the specific case of a homogeneous orthotropic
medium. Such a material model can be considered, at the mesoscopic scale, as representative
of a unidirectional fiber-reinforced composite ply or of a wooden material for instance. We
wish to remark that our aim, in the present work, is not to accurately represent all the
complex constitutive behaviors of such materials but rather to capture, with a simple model,
specific features of crack propagation in anisotropic materials in terms of elastic and/or
fracture properties.

3.1. Description of the LTD model

As mentioned, we consider a brittle orthotropic material in plane stress conditions with
the principal direction, that is the strongest and stiffest direction, oriented along e1, making
an angle α with respect to the global frame direction ex, and the secondary or transverse
direction perpendicular to the principal direction, oriented along e2. The undamaged elastic
behavior is considered as orthotropic in the material frame (e1, e2). The model is built on
the distinction between two different damage mechanisms:

• The first one, Figure 1a, corresponds to failure when the material is loaded in tension
along the principal direction. This damage mechanism will be termed as longitudinal
damage and represented by the variable d1 and the associated fracture energy G1

c.
In case of a unidirectional fiber-reinforced composite ply, G1

c can be considered as
accounting for both fiber and matrix fracture energy contributions.
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• The second mechanism, Figure 1b, corresponds to failure when the material is loaded
in tension along the transverse direction. This damage mechanism will be termed
as transverse damage and represented by the variable d2 and the associated fracture
energy G2

c. In case of a unidirectional fiber-reinforced composite ply, G2
c can be con-

sidered as accounting only for the matrix fracture energy contribution.

We will further assume that damage in shear is driven by both variables although it may be
possible to include a third damage mechanism specifically for shear damage (see section 2.4).

(a)

(b)

Figure 1: Longitudinal (a) and transverse (b) damage mechanisms of the LTD model. Left: sharp cracks in
an orthotropic material (dashed lines indicate material orthotropy direction), right: damage localizations.

More specifically, we assume that the damage-dependent elasticity tensor is given by:

C(d) = D(d) : C0 : D(d) (16)

where C0 is the elasticity tensor of the sound material and D(d) is a symmetric fourth-
order damage tensor. With respect to the frame (e1, e2) and taking advantage of the Voigt
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notation, the elasticity tensor C0 and the damage tensor D(d) are respectively represented
by:

C0 =

C11 C12 0
C12 C22 0
0 0 C66


D(d) =

1− d1 0 0
0 1− d2 0

0 0
√

(1− d1)(1− d2)


so that the symmetric damage-dependent elasticity tensor C(d) is given by:

C(d) = D(d) C0 D(d)

=

 (1− d1)2C11 (1− d1)(1− d2)C12 0
(1− d1)(1− d2)C12 (1− d2)2C22 0

0 0 (1− d1)(1− d2)C66

 (17)

It is expected that if a crack appears aligned along the secondary direction, it will be rep-
resented by the longitudinal damage variable d1 = 1 so that σ11 = σ12 = 0 on the crack
surface (Figure 1a). On the contrary, if a crack appears along the principal direction, it
is expected to be represented by the transverse damage d2 = 1 so that σ22 = σ12 = 0
(Figure 1b). In both cases, the fully degraded material will still be able to sustain uniaxial
stress along the crack direction contrary to an isotropic damage model. If d1 = d2 = d, we
obtain C(d) = (1− d)2C0, recovering a standard isotropic damage model and the standard
phase-field formulation when C0 is isotropic1.

The contribution of both mechanisms to the total fracture energy reads:

δ(d,∇d) = G1
cγ(d1,∇d1) +G2

cγ(d2,∇d2) (18)

with γ(d,∇d) being given by the linear damage model (14). The Longitudinal/Transverse
Damage model characterized by (16) and (18) will be further referenced as the LTD model.

3.2. Damage evolution laws

The total energy density for the LTD model is hence given by:

W (ε, d1, d2) =
1

2
εTC(d1, d2)ε+

3G1
c

8`

(
d1 + `2∇d1 · ∇d1

)
+

3G2
c

8`

(
d2 + `2∇d2 · ∇d2

)
(19)

1ignoring, at this stage, considerations regarding tension/compression asymmetry.
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with C(d1, d2) given by (17) and with the vector of strain components ε =
{
ε11 ε22 2ε12

}T

in the material frame. Introducing the following partial derivatives:

C,1(d1, d2) = −∂C(d1, d2)

∂d1

=

2(1− d1)C11 (1− d2)C12 0
(1− d2)C12 0 0

0 0 (1− d2)C66

 (20)

C,2(d1, d2) = −∂C(d1, d2)

∂d2

=

 0 (1− d1)C12 0
(1− d1)C12 2(1− d2)C22 0

0 0 (1− d1)C66

 (21)

the damage evolution laws (8)-(9) of the LTD model are given by:
Y1 ≤ 0

ḋ1 ≥ 0

ḋ1Y1 = 0

with Y1 = −∂d1W =
1

2
εTC,1(d1, d2)ε− 3G1

c

8`

(
1− 2`2∆d1

)
(22)


Y2 ≤ 0

ḋ2 ≥ 0

ḋ2Y2 = 0

with Y2 = −∂d2W =
1

2
εTC,2(d1, d2)ε− 3G2

c

8`

(
1− 2`2∆d2

)
(23)

3.3. Comparison of LTD model with a Standard Damage (SD) model

In the following, the previous LTD model will be compared to a Standard Damage
model (SD). More specifically the SD model considers only one scalar damage variable d
with C(d) = (1− d)2C0 (hence, it corresponds to the LTD model for which d1 = d2 = d in
(17)) and a total fracture energy Gc associated with a fracture energy density given by:

δ(d,∇d) = Gc γ(d,∇d) (24)

Note that this single-parameter damage model is isotropic with respect to the fracture energy
whereas it is still anisotropic due to the elastic stiffness anisotropy. Besides, even in the case
when equal fracture toughnesses are considered for the LTD model, namely G1

c = G2
c = Gc,

both models are expected to behave differently due to the possible independent evolution
of d1 and d2 in the LTD model (22)-(23). Such differences will be further illustrated in
section 5. The evolution damage law for this model then reads:

Y ≤ 0

ḋ ≥ 0

ḋ Y = 0

with Y =
1

2
(1− d)εTC0ε− 3Gc

8`

(
1− 2`2∆d

)
(25)

The SD model can also be modified to consider an anisotropic fracture energy (with
G1
c 6= G2

c) by including an anisotropic gradient term as follows:

δ(d,∇d) =
3G1

c

8`

(
d+ `2∇d ·B · ∇d

)
(26)
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where B = e1 ⊗ e1 + χe2 ⊗ e2 is an anisotropic tensor and χ = G2
c/G

1
c. This type of

fracture energy anisotropy has already been considered in other works [35, 37]. It ensures
that for a crack propagating perpendicularly to the principal direction, i.e. ∇d is along e1,
the fracture energy is G1

c, whereas for a crack propagating along the principal direction, i.e.
∇d is along e2, the fracture energy is χG1

c = G2
c. One drawback of such an approach is that,

for cracks parallel to the principal direction, the regularized length is `, whereas, along the
secondary direction, it becomes

√
χ`. In addition, it is still not clear what such a gradient

energy contribution does physically represent.

3.4. Advanced aspects

Similarly to standard phase-field approaches, the elastic energy density (16) will be
modified by first introducing a small residual stiffness kres for quasi-static simulations in
order to avoid non-invertible stiffness when reaching a fully damaged state. To this end, the
tensor D(d) in (16) is replaced by D̃(d) = (1−kres)D(d)+kresI where kres is typically ≈ 10−6.

Secondly, tension/compression asymmetry can also be introduced to avoid damage evo-
lution in compression. If different ways of distinguishing between tension and compression
exist for isotropic models [29, 52], the situation is here clearer due to the preferential direc-
tion induced by the material orthotropic directions. The elastic energy density can therefore
be split depending on the positive/negative part of the longitudinal ε11 or transverse strain
ε22 as follows:

ψ(ε, d) =
1

2
(ε+)TD̃(d) C0 D̃(d)ε+ +

1

2
(ε−)TC0ε− (27)

where

ε+ =


〈ε11〉+
〈ε22〉+
2ε12

 , ε− =


〈ε11〉−
〈ε22〉−

0

 (28)

and 〈?〉± = (? ± | ? |)/2 denotes the positive/negative part of ?. Splitted strain projection
operators can also be easily adapted from [10] to avoid the non-linearity of the previous
decomposition.

3.5. Finite element discretization and numerical aspects

The finite element discretization relies on the FEniCS finite element library [53, 54],
linear interpolation has been chosen for the displacement and damage fields. The damage
evolution problem (9) is solved using the TAO bound-constrained optimization solver [55]
integrated into the PETSc library [56]. The solution strategy follows an incremental energy
minimization scheme [49, 57, 58]. More specifically, as regards the resolution of a given load
increment, the alternate minimization algorithm is adopted and a convergence criterion given
by (Ek+1 − Ek)/Ek < tol where Ek is the total energy computed at iteration k is used. In
particular, no path-following scheme is used so that snap-back of unstable solutions is not
captured. Mesh sizes have been taken sufficiently smaller than ` to resolve the regularization
length scale (typically 4 to 5 elements for `). The numerical code used in this work is available
at https://doi.org/10.5281/zenodo.1188970 [59].
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Elastic properties Fracture properties

E1 E2 ν12 µ12 G1
c/` G2

c/`

15 or 150 GPa 10 GPa 0.25 5 GPa 1 kPa 1 kPa

Table 1: Material properties of the phase-field model

4. Uniaxial tension test solutions

4.1. Homogeneous solutions

In this subsection, homogeneous solutions are investigated in the case of a uniaxial tensile
stress state oriented along direction ex. For illustrative purposes, material parameters are
given in Table 1 and Gc = G1

c = G2
c.

Considering an initially undamaged material and a uniaxial stress state σ = σex ⊗ ex ex-

pressed in the material reference frame by σ = σqα with qα = σ
{

cos2 α sin2 α − cosα sinα
}T

,
the evolution criterion of the SD model (25), assuming a homogeneous solution, reduces to:

Y = S(α)σ2 − 3Gc/(8`) ≤ 0 ⇒ σ ≤ σc =

√
3Gc

8`S(α)
(29)

where S(α) = qT
αS0qα is the uniaxial compliance of the sound material in direction ex and

with S0 = (C0)−1 being the full undamaged compliance tensor.

Similarly, for the LTD model, (22)-(23) reduce to:

Y1 =
1

2
εTC,1(0, 0)ε− 3G1

c

8`
≤ 0 (30)

Y2 =
1

2
εTC,2(0, 0)ε− 3G2

c

8`
≤ 0 (31)

Again, with σ = σqα = C0ε, we have:{
S1(α)σ2 ≤ 3G1

c/(8`)

S2(α)σ2 ≤ 3G2
c/(8`)

⇒ σ ≤ σc = min

{√
3G1

c

8`S1(α)
;

√
3G2

c

8`S2(α)

}
(32)

with the partial uniaxial compliances Si(α) = 1
2
qT
αS0C,i(0, 0)S0qα of the sound material.

The critical stresses given by the LTD model are higher than those of the SD model
(Figure 2a) due to the independent activation of either the principal criterion Y1 = 0 (in
blue) or the secondary criterion Y2 = 0 (in orange). The same behavior for a large orthotropy
ratio (E1/E2 = 15), typical of fiber-reinforced composites, is observed in Figure 2b, however
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the transition angle between activation of the principal criterion and the secondary criterion
is smaller (around 27◦ in this case compared to approximately 42◦ for a smaller orthotropy
ratio). Figure 3 represents the evolution of 2D elastic domains for biaxial stress states (zero
shear σxy = 0) in the case of the principal direction oriented at α = 45◦ for E1/E2 = 15.
Depending on the evolution of each damage variable, the elastic domain changes its size and
shape in a rather complex manner.

(a) E1 = 15 GPa (b) E1 = 150 GPa

Figure 2: Uniaxial elastic domain as a function of principal orthotropic direction orientation α for both LTD
and SD models depending on the level of orthotropy

4.2. Localized solutions

In this subsection, the occurrence of localized solutions is investigated for the case of a
thin elongated bar under uniform tension. Standard phase-field models for isotropic media
are known to exhibit a solution in which damage localizes on a narrow band orthogonal to
the loading direction when the bar is sufficiently long [4]. Because we aim at investigating the
influence of a principal direction misalignment with respect to the loading direction, the bar
in tension has been modeled as a 2D domain of length L = 1 m and width W = 0.02 m for a
regularization length of ` = 2 mm. The bar has been taken as sufficiently long so that homo-
geneous solutions are not stable and a slightly smaller section is introduced in the middle of
the sample to induce damage localization around this point. Elastic properties are those of
section 4.1 whereas fracture energy is taken for now as isotropic of value G1

c = G2
c = 200 N/m.

The resolution of this problem using the LTD model for varying orientations α with
respect to the horizontal tensile direction yielded a localized band with varying orientation
(Figure 4a). More precisely, for orientations close to the horizontal direction, the longitudi-
nal damage variable d1 is activated (d2 remaining to zero) and the localized band inclination
θ follows the secondary direction α + 90◦. Conversely, for larger values of α, the transverse
damage variable d2 is activated and the localized band aligns with the principal direction.
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(a) Evolution for increasing longitudinal damage
d1 and d2 = 0

(b) Evolution for increasing transverse damage
d2 and d1 = 0

Figure 3: Elastic domains for biaxial loadings (σxy = 0) and for different increasing damaging states d1 or
d2 with α = 45◦ as fibers orientation.

The transition angle between both situations is in very good agreement with the transition
found from the critical uniaxial stress of Figure 2, that is around 42◦ for E1 = 15 GPa and
around 27◦ for E1 = 150 GPa. For the SD model, inclination of the localized band is weakly
dependent on the principal orientation as it varies smoothly between 90◦ and 110◦. Finally,
it seems that the localized band is wider for off-axis principal orientations, inducing an arti-
ficial overestimation of the dissipated energy [45]. This effect disappears for vanishing mesh
sizes.

As initially designed, the LTD model hence yields, for uniaxial tensile loading, localized
damage bands that align either with the principal direction or with the secondary direction
depending on the inclination of the tensile direction. The transition between both regimes
is dictated by the threshold obtained from the uniaxial critical stress computation (32). It
is interesting to notice that localized solutions are very different between the LTD and SD
models due to the very different damage evolution equations (22)-(23) and (25).

When considering an anisotropic fracture energy, e.g. with G1
c much larger than G2

c, the
overall behavior is the same except that the transition occurs for much smaller angles. Hence,
as expected, cracks tend to localize parallel to the principal direction for small misalignment
with respect to the horizontal direction, meaning that transverse cracks are energetically
more favorable than longitudinal cracks. In the case of isotropic elastic properties but
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Figure 4: Orientation θ of the localized band for uniaxial tension as a function of material orientation
with the LTD model: a localized band for the longitudinal damage variable d1 appears at θ = α + 90◦

(filled symbols) for low inclination α, localized band for the transverse damage variable d2 appear at θ = α
(open symbols) for larger inclinations. Inclination of the localized band in the SD model (triangles) shows
a completely different dependence on α.

different fracture energies, a similar behavior is observed but with larger transition angles.
Table 2 summarizes the observed transition angles for different ratios of fracture energies in
both cases.
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G1
c/G

2
c Orthotropic elasticity Isotropic elasticity

1 27◦ 47◦

5 13◦ 24◦

20 5◦ 13◦

Table 2: Approximate transition angles between longitudinal damage and transverse damage for uniaxial
tension with the LTD model. Orthotropic elasticity corresponds to parameters of Table 1 with E1 = 150 GPa
and isotropic elasticity to E = 150 GPa and ν = 0.25.

5. Illustrative applications of the model with numerical simulations

5.1. Mode I loading

We first investigate the case of a precracked domain loaded in tension by an imposed
vertical displacement U (Figure 5). The square plate dimension is taken as L = 1 m whereas
the regularization length is ` = 10 mm, unless otherwise stated. Other material properties
are those of Table 1 with E1 = 150 GPa.

Figure 5: Geometry of the mode I problem and boundary conditions

This problem has first been solved using the LTD model for varying principal direction
orientations. In each case, an unstable crack propagation after a first elastic stage has been
observed. The resulting crack paths are represented in Figure 6. Except for α = 90◦, all con-
figurations lead to a transverse crack only (d1 = 0 everywhere except close to the notch tip).
It can be observed that the crack is horizontal for α = 0◦ as expected whereas for off-axis
principal direction orientations the crack path follows more or less the principal direction.
Crack orientation is found to be around 23◦ for α = 30◦ and around 47◦ for α = 60◦. For
the case α = 90◦, a horizontal longitudinal crack is obtained. Contrary to what has been
obtained for uniaxial tension test, the profile of the localized damage band is similar for
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all crack orientations and agrees with the analytical profile of standard phase-field models.
When inspecting the failure mechanism, separation occurs in a direction normal to the crack
direction (the top part is free to slide horizontally), so that failure indeed occurs in mode
I. Interestingly, no situation was found in which both damage variables evolved simultane-
ously, a sudden transition from transverse cracking to longitudinal cracking occurred for a
fibers orientation angle of approximately 78◦, with transverse (resp. longitudinal) cracking
occurring for α < 78◦ (resp. α ≥ 78◦), see Figure 7.

This problem has also been solved using the SD model for which crack paths have been
represented in Figure 8. Remarkably, the crack path are completely different from those
predicted by the LTD model, testifying the deep differences of the damage criteria associated
with each model. In particular, the dependence of the crack orientation on the principal
orientation is much weaker for the SD model compared to the LTD model. It can be observed
that, for all cases, unstable crack propagation occurs at a later stage for the LTD model
than for the SD model. This difference between both models is especially important for a
principal direction which is neither parallel nor perpendicular to the precrack. Interestingly,
the LTD model predicts a larger critical displacement for α = 30◦ than α = 0◦ contrary to
the SD model which predicts a decreasing critical displacement as function of α (Figure 9).
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Figure 6: Crack path for mode I loading with the LTD model for different principal orthotropic direction
orientations α. Transverse cracks (damage variable d2) are shown in blue, longitudinal cracks (damage
variable d1) are shown in red.
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Figure 7: Transition from transverse cracking to longitudinal cracking around the critical angle
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Figure 8: Crack path for mode I loading with the SD model for varying principal orthotropic direction
orientation α
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Figure 9: Traction-displacement curves for mode I loading with varying principal orthotropic direction
orientation α. Solid lines correspond to the LTD model, dashed lines to the SD model.
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5.2. Mode II loading

The same problem in which a positive displacement U is prescribed on the top surface
along the x-direction (uy being free) is now considered (Figure 10). In isotropic materials,
the crack is supposed to kink at an angle of approximately−75◦ so as to restore (more or less)
a mode I loading, see [24, 60] for a discussion on different criteria predicting crack orientation
and the relation with respect to standard phase field models. In anisotropic materials, crack
orientation is obviously strongly influenced by the principal direction orientation, as already
illustrated in the previous section. Figure 11 represents the different crack paths obtained
with the LTD model for the mode II loading and different principal directions.

Figure 10: Geometry of the mode II problem and boundary conditions.

Figure 11: Crack path of the LTD model for the mode II loading with varying principal orthotropic direction
orientation
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In particular, the case of α = 0◦ shows that the crack is able to propagate horizontally
along the preferential principal direction, after a first small initial deviation. Contrary to
the case of isotropic materials, a pure mode II propagation is therefore possible for such
materials. Indeed, the principle of local symmetry (PLS), stating that a crack propagates
in a direction such as to be in pure mode I i.e. KII = 0, does not hold for orthotropic
materials [60, 61]. Once again, the SD model is unable to reproduce such a behavior (see
Figure 12-center) since the crack propagates with an angle of approximately −30◦.

Figure 12: Crack path of the SD model for the mode II loading with varying principal orthotropic direction
orientation

For α = ±45◦, the LTD model predicts a crack at −45◦ for which the mode I compo-
nent is much more important then the mode II component, contrary to what happens in
the case of a horizontal crack propagation. However, depending on α, the damage mode is
either a transverse or a longitudinal crack. For the SD model, cracks propagate at a smaller
angle and tend to curve during propagation contrary to the LTD model for which the crack
orientation remains fixed during the propagation. Finally, in each cases, crack onset is char-
acterized by a first unstable regime during which cracks jump abruptly to a finite length and
are then followed by a stable propagation phase when increasing the applied displacement.
This behavior is illustrated by the load-displacement curves obtained with the LTD model
(Figure 13a) as well as by the evolution of the total crack length (Figure 13b). The SD
model exhibits a similar behavior.

In both mode I and II examples, identical fracture energies were considered for both
mechanisms. The picture obviously changes for different fracture energies, especially re-
garding transition between both mechanisms. This situation will now be examined in the
next examples.
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Figure 13: Evolution of macroscopic quantities for the mode II loading with varying principal orthotropic
direction orientations (LTD model). Crack propagation is first characterized by an initial unstable phase
corresponding to a finite-sized crack jump followed by a stable propagation phase.

5.3. Crack kinking for α = 90◦

By means of matched asymptotic expansions, Leguillon [62] determined the stress inten-
sity factors (SIF) of a kinked crack in an anisotropic medium. For a crack loaded in pure
mode I, the stress intensity factors K∗I , K

∗
II in the kinked configuration for an infinitesimal

kink length read as:
K∗I = F11(ϕ, α)KI, K∗II = F21(ϕ, α)KI (33)

where KI is the mode I SIF before the kink and Fij are functions depending on the kink angle
ϕ and the orthotropy direction α as well as the relative elasticity moduli for a orthotropic
medium. The corresponding energy release rate is then given by:

G = A11(ϕ, α)K2
I (34)

where A11 is obtained from the Fij functions.

Assuming an anisotropic fracture energy, a kinked crack will have to satisfy the follow-
ing extension of Griffith’s criterion, G = Gc(ϕ). Therefore, the kink angle ϕ satisfies the
following minimum principle:

Gc(ϕ)

A11(ϕ, α)
≤ Gc(φ)

A11(φ, α)
∀φ ∈ [−π; π] (35)

Considering a situation of a mode I crack perpendicular to the fiber direction i.e. α = π/2
(see Figure 14) and a material for which all directions except α and α+π/2 are energetically
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Figure 14: Crack kinking problem with α = π/2. Depending on the ratio between vertical and horizontal
fracture energies G2

c/G
1
c , a mode I crack may either continue as a mode I crack or kink at ±90◦. The domain

is 1 m × 1 m.

penalized in the anisotropic fracture energy Gc(φ), a mode I crack will be able to kink at
±π/2 if the following criterion is met:

Gc(π/2)

A11(π/2, π/2)
≤ Gc(0)

A11(0, π/2)
(36)

Material parameters of [62] are E1 = 142.1 GPa, E2 = 12.4 GPa, µ12 = 2.425 GPa and
ν12 = 0.531 for which A11(π/2, π/2)/A11(0, π/2) ≈ 0.09 so that the previous kinking crite-
rion reads in this case as Gc(π/2)/Gc(0) = G2

c/G
1
c ≤ 0.09.

In order to assess the validity of the proposed phase-field approach for orthotropic ma-
terials, the same mode I problem as in subsection 5.1 has been considered using these new
elastic constants and with varying values of the fracture energy ratio χ = G2

c/G
1
c. As pre-

dicted by (36), mode I cracks perpendicular to the fibers are observed for high values of
χ, whereas symmetric kinking of transverse cracks at ±90◦ is observed for sufficiently low
values of χ (see Figure 15). More precisely, the transition between these two regimes is
observed for χ between 0.1 and 0.105. It is slightly larger than the critical value of χc = 0.09
estimated by Leguillon. However, by reducing the value of the regularization length `, the
transition level converges to the analytical value (see Table 3). This example clearly shows
that the proposed LTD model is able to reproduce very well non trivial results of fracture
mechanics in orthotropic materials.

The same problem has also been investigated with the SD model including an anisotropic
fracture energy (26). Remarkably, irrespective of the value of χ, this model leads always to
a mode I crack propagation. No crack kinking has been observed, even for very small values
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Figure 15: Crack path of the LTD model (` = 10 mm) for the kinking problem for varying values of
χ = G2

c/G
1
c : left χ = 0.05, middle χ = 0.09, right χ = 0.11.

Regularization length Transition between kinking and mode I crack

` = 10 mm 0.1 ≤χc≤ 0.105

` = 7.5 mm 0.095 ≤χc≤ 0.1

` = 5 mm 0.09 ≤χc≤ 0.095

Table 3: Estimated transition threshold χc between 90◦ kinking (χ ≤ χc) and mode I cracks (χ ≥ χc)
for varying regularization lengths with the LTD model. These results agree very well with the analytical
estimate of χc ≈ 0.09.

of χ such as 0.01. Such a model is therefore unable to simulate this non trivial behavior of
cracks in orthotropic materials.

These results are further illustrated in Figure 16 which represents traction-displacement
curves for both LTD and SD models with varying values of χ. The LTD model predicts
an unstable mode I crack propagation for χ ≥ χc and a crack kinking of 90◦ with a stable
crack propagation for χ < χc. On the contrary, regardless the value of χ, the SD model
always predicts an unstable mode I crack. During the kinked crack propagation, only a
small amount of energy is dissipated, due to the low value of the G2

c fracture energy and the
smooth fracture evolution.

Finally, Leguillon also noticed that in the case of a positive T -stress, the kinked crack
propagates in an unstable manner, whereas for a negative T -stress, the kink propagates in
a stable manner. By adding an horizontal tensile or compressive load on the left boundary,
we were able to verify such a feature with the LTD model.
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5.4. Bending of a notched beam

This example considers the case of a beam of length 2 m and height 20 cm, containing
a prenotch of length 2.5 cm located on the bottom side at the middle of the beam. The
principal orthotropic direction is aligned along the horizontal direction and the beam is
loaded by an imposed displacement on its lateral sides combining extension and rotation:
u(t) = (−u0 +ω(t)y)ex on the left part and a symmetric displacement on the right part (see
Figure 17). The imposed extension u0 = 0.1 mm is kept fixed during the simulation and the
imposed rotation ω(t) is progressively increased until 0.002 rad. Elastic properties are those
of Table 1 with G2

c = 50 N/m, G1
c = 10G2

c = 500 N/m and ` = 5 mm.

Figure 17: Bending of a notched beam: geometry and loading conditions

For this problem, damage evolution is first characterized by a kinked transverse crack
propagating along the horizontal direction in accordance with the previous example (Figure
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(a) at ω = 0.001

(b) at ω = 0.002

Figure 18: Damage field evolution during bending of a notched beam

18a). This first delamination phase is stable and stops at a certain load level. At this
point, damage evolution is characterized by an unstable growth of a longitudinal crack
along the vertical direction (Figure 18b). It is worth noting that during this unstable phase,
the alternate minimization algorithm exhibits intermediate solutions in which both damage
variables evolve simultaneously. However, the final equilibrium solution found by this process
corresponds to an evolution of the longitudinal damage variable d1 only.

5.5. Open hole in tension

In this last example, we investigate the problem of a plate of length L = 80 mm and
width W = 18 mm containing a circular hole of radius R = 2.5 mm. The plate is made of
a unidirectional fiber-reinforced composite ply, with fibers making an angle α with respect
to the vertical direction (Figure 19). In [63, 64], the plate effective strength was determined
experimentally and compared to analytical or numerical predictions using coupled stress-
energy criteria in the Finite Fracture Mechanics (FFM) framework.

Figure 19: Plate with circular hole in tension

This problem has been simulated using our phase-field approach with both LTD and
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SD models. The regularization length for both models has been chosen as ` = 1.5 mm
corresponding to a uniaxial stress perpendicular to the fiber direction of 20.1 MPa for both
models, to be compared to the interlaminar strength of 20.25 MPa measured in [63]. It has
to be noted that, in this problem, the scale separation between the structural characteristic
length (e.g. W or R) and the regularization parameter ` is not verified since ` is of the order
of R. As a consequence, the interpretation of the damage gradient model as an approximate
representation of brittle fracture (12) does not hold in this case. However, it can still be
considered as a damage model and used to predict the strength of the considered structure.
The principal (fiber) toughness G1

c has been chosen as 10 times greater than the secondary
(matrix) toughness G2

c since no data was available and since only transverse cracking has
been observed experimentally.
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Figure 20: Comparison of effective strength predictions for the open hole problem: green triangles correspond
to FFM computations [64] and black diamonds to experimental measurements of [63].

The predicted effective tensile strength by both phase-field approaches are represented
in Figure 20 along with the FFM and experimental results. Although the SD model seems
to be in good agreement for low values of fibers orientation, it is clearly unable to reproduce
the increase of effective strength for an increasing fibers orientation. Conversely, the LTD
model predictions are in relatively good agreement with the experimental measurements and,
even more, with the FFM estimates. In particular, it reproduces the increase of effective
strength with increasing values of α, although it slightly overestimates the strength for the
largest value. This can be attributed to the fact that the model does not consider a different
mode II fracture energy from the mode I value. However, experiments showed that mode II
fracture energy is in fact smaller (Gc,II = 472 N/m) than the mode I value (Gc,I = 622 N/m).
A more refined model, for instance using a third damage variable associated with a shear
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failure mechanism, would be needed to represent this aspect which becomes important for
large inclination angles. Besides, it must also be noted that the computed crack paths are
not aligned with the fiber direction, contrary to experimental observations, but tend to be
somewhere in between the fiber and the vertical direction. This may be attributed to the
fact that the gradient term in the fracture energy is still isotropic and does not penalize any
crack direction, contrary to the SD model with anisotropic fracture energy. Therefore, a
more thorough analysis of the LTD model predictions remains to be done to decide whether
the gradient term should also be anisotropic.

6. Conclusions and perspectives

This work is a first attempt at extending the phase-field approach to the simulation
of anisotropic elastic brittle materials, such as, for instance, fiber-reinforced composites or
wooden materials. More precisely, we focused on crack propagation of an orthotropic elastic
medium in which two separate failure mechanisms are identified, namely longitudinal and
transverse failure. Both mechanisms are represented by a single damage or phase-field vari-
able and are associated with a corresponding fracture energy and, possibly, regularization
length. The standard phase-field approach has therefore been extended to a setting includ-
ing multiple damage mechanisms, each of them governed by its own, variationally derived,
evolution law and damage criterion. In this first work, illustrative numerical applications
have been dedicated only to a two-dimensional orthotropic material although the general
framework, discussed in section 2, can be easily tailored to other more complex situations
involving mechanisms with different fracture energy such as tension/compression damage,
mode mixity in anisotropic rocks, etc.

Illustrative applications have demonstrated that the proposed phase-field model with two
damage variables (LTD model) is a better candidate at representing the complex features of
crack propagation in orthotropic media than would be a model including only one variable
with an anisotropic fracture energy (SD model). More precisely, the LTD model is able to
reproduce analytical fracture mechanics predictions of transition to 90◦ kinking whereas the
SD model is completely unable to do so. Finally, critical stresses for open-hole specimen
in tension have been well reproduced using the LTD model compared to Finite Fracture
Mechanics and experimental results.

Nevertheless, a more thorough comparison of the model predictions with other material
models and experimental results is still needed. For instance, concerning unidirectional com-
posite materials, this task is quite challenging because of the complex phenomena involved
in the failure process, including plasticity in shearing conditions, fiber/matrix debonding
and dependence of the fracture energy on mode mixity as previously mentioned. For all
these reasons, the present work did not aim at simulating accurately all features of fracture
in composites or anisotropic materials, but, instead, providing a general framework upon
which more complex constitutive behaviors could be included in the future. For instance,
interfacial energetic contributions have already been considered in previous works using the
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phase-field approach [21, 43, 65, 66] and could be used to model debonding between fibers
and matrix at the unidirectional ply scale.

Secondly, on a more theoretical point of view, many questions still need to be answered
such as the possibility of proving a Γ-convergence result towards a well-defined discontinuity
model, the precise identification of crack orientation selection mechanisms [61] or stability of
kinked configurations [67]. Finally, it has recently been demonstrated in [23] that variational
phase-field models predict nucleation loads that smoothly vary from those predicted by a
strength criterion to those predicted by a toughness criterion depending on the level of the
stress singularity at notches, which is consistent with Leguillon’s coupled criterion of Finite
Fracture Mechanics. Although the open-hole example suggests that a similar result also
holds for our model, a more detailed analysis on this aspect would certainly be valuable.

Acknowledgement

J. Bleyer would like to thank Prof. D. Leguillon for fruitful discussions related to
this work. R. Alessi acknowledges the financial support of the MATHTECH-CNR-INdAM
project.

Appendix A. Derivation of the evolution laws

From (4), the following first-order directional stability condition is easily derived from a
vanishing h:

d

dh
E(u+ h δu, d+ h δd; t)

∣∣∣∣
h=0

≥ 0 ∀(δu, δd) admissible (A.1)

By making the expression of the total energy explicit through (1), we obtain:∫
Ω

σ : ∇sδu dΩ−
∫
∂ΩT

F · δu dS+

n∑
i=1

∫
Ω

(
∂diψ(∇su, d)δdi + w′i(di)δdi + wi(1)`2

i∇di · ∇δdi
)

dΩ ≥ 0

with σ = C(d) : ∇su.

The equilibrium (6) and natural boundary conditions (7) are then obtained by standard
arguments considering δdi = 0 for all i. Similarly, the damage evolution conditions (8)-(9)
are obtained by considering δu = 0, δdj = 0 for i 6= j and performing an integration by
parts on the gradient term.
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