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Abstract This paper deals with adhesive frictionless normal contact between one elastic flat
solid and one stiff solid with rough surface. After computation of the equilibrium solution of
the energy minimization principle and respecting the contact constraints, we aim at studying the
stability of this equilibrium solution. This study of stability implies solving an eigenvalue problem
with inequality constraints. To achieve this goal, we propose a proximal algorithm which enables
qualifying the solution as stable or unstable and that gives the instability modes. This method
has a low computational cost since no linear system inversion is required and is also suitable for
parallel implementation. Illustrations are given for the Hertzian contact and for rough contact.
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1 Introduction

Both natural and manufactured surfaces, even if they appear flat from a macroscopic viewpoint,
are actually composed of many asperities. The size of those asperities depends on the material
and on the way the surface was created or manufactured and usually covers many scales. Indeed,
rough surfaces are often modeled as self-affine surfaces with a rich spectrum of wavelengths [26].
Contact mechanics of rough surfaces aims at accounting for the complex interactions between
these asperities. Applications are numerous and include friction, wear, or the thermal or electrical
conductivity of an interface.
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Because of the multiscale nature of the rough surfaces, it is necessary to introduce the relevant
physics at the micro scale. Indeed, at the small scale, adhesion is not negligible and may strongly
change the morphology of contact clusters or global contact area with consequences on leakage
properties for example. Note that one of the consequences of the adhesive behaviour is the
possibility of unstable solutions illustrated by snap-back instabilities. It is a major challenge
for the micro-electromechanical systems (MEMS) and nano-electromechanical systems (NEMS).
This is one of the reason why adhesive contact between rough surfaces has been addressed. In the
1970’s, adhesion was first introduced into the classical Hertz contact. In [24,21,12], the authors
consider one unique spherical asperity or flat-ended sphere in [25]. The analytical approach
enables to perfom a complete study : from the computation of the equilibrium solution to the
stability of those solutions. In order to describe more realistic roughnesses, periodic sinusoidal
roughness [18] or multi-asperity adhesive contact problems have been studied [33]. More recently,
adhesive contact was investiagted in the case of a rough punch with a main curvature and
additional roughness (through power-law graded material in [17], using the small scale topography
of the punch in [22] or combining it with multi-asperity [40]). Once again, the analytical approach
enables deriving the complete study up to the hysteresis cycles. Unfortunately, those geometries
rely on spherical periodicity and they imply separation of length scales, which is not verified for
many rough surfaces [26].

Using tools to generate large rough surfaces, numerical simulations offer the possibility to
compute the solution of adhesive contact without neglecting elastic interactions on a represen-
tative roughness. These computations can be performed with the Boundary Element Method
(BEM)[1–3] and the Green’s Function Molecular Dynamics method (GFMD) [27,32].

As mentioned earlier, the consequence of adhesive behavior is the possible existence of un-
stable equilibrium solutions. Indeed, adhesion is known to conduct to snap-back instabilities.
This question is often disregarded in publications based on numerical simulations that focus on
obtaining an equilibrium solution, which may already be difficult. Nonetheless some publications
[24,4,25,27,30] study stability issues in the case of the Maugis-Dugdale [24] model for adhesion.
This model considers constant adhesion force so that the adhesive zone can be seen as a cohesive
zone. However, those studies are limited to simple profiles of surface (one indenter) for which
analytical solutions are available, which eases the stability analysis.

The objective of this article is the stability analysis of equilibrium solutions for adhesive
frictionless normal contact between rough surfaces. We consider one elastic flat semi infinite
solid and one rigid rough semi infinite solid. Using integral formulation [34], the contact problem
is written only at the surface of the elastic solid. The equilibrium solution is computed using
a FFT-based BEM algorithm [36]. In this article, we will not consider plasticity nor friction.
Indeed, although those phenomena are expected to take place in rough contact, including them
in the model would involve adding new non-linearities and bring major difficulties to the problem.

Stability analysis usually consists in studying perturbations around an equilibrium solution
[29]. In presence of contact, difficulty arises since all perturbations are not admissible because
some part of the surfaces being in contact. Indeed, perturbations leading to inter-penetration
must not be considered. As a consequence, the stability analysis in case of contact can be formu-
lated as a cone-constrained eigenvalue problem [37,9,35,20,10,11]. Exploiting algorithms used in
optimization, we propose a systematic approach to study the stability of an equilibrium solution
in presence of contact. This approach is independent from the adhesive potential and from the
geometry of the surface. It enables qualifying the solution as stable or unstable. Moreover, in
case the solution is unstable, the computed eigenvectors give the instability modes. One of the
advantage is that this method does not require to solve any additional contact elastic problem
or linear system: it is composed only of local operations which can be easily done in parallel.
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Fig. 1: A sketch of two solids coming into contact (2d view).

The paper is organized as follows. The definition of adhesive frictionless normal contact me-
chanical problem with periodic surfaces and the numerical method used to solve it are described
in Section 2. In Section 3, we detail the stability criterion in case of contact and propose an
algorithm computing the smaller eigenvalue of the constrained system. Finally, in Section 4, we
give several numerical illustrations.

2 Adhesive normal contact with BEM

We study the frictionless normal contact between two homogeneous semi-infinite solids: one flat
elastic isotropic deformable solid (under small displacements hypothesis) of Young’s modulus E
and Poisson’s ratio ν and one rigid (infinitely stiff) rough surface with the height profile h defined
by xÑ x3 “ hpxq.

On Figure 1, we give a sketch of two solids of size L : one rigid rough surface with the height
profile hpxq “ hpx1, x2q and a flat elastic surface whose vertical displacement is denoted by upxq.
The origin of the system of axes can be chosen arbitrary since both solids are semi infinite in the
third direction. On this sketch, both h and u are negative.

2.1 Continuous problem

Integral formulation (see [3] or more generally [16,13] with elastoplastic behaviour) enables
rewriting the three dimensional contact problem set on the semi infinite solid only at the normal
surface S of this solid. It is attractive from a computational viewpoint since it reduces the di-
mension of the problem. Once this problem is solved, the surface quantities, such as the surface
displacement or the pressure, can be used to determine the state of the bulk below the surface.
Indeed, both strain and stresses in the volume can be computed as a post-processing step.

The elastic behavior is described through a convolution product with a kernel defined from a
fundamental solution. More precisely, the link between normal displacement upxq and the normal
pressure ppxq at the surface is:

upxq “

ż

S

Kpx´ x1qppxqdx1 (1)

If we use the Boussinesq’s fundamental solution [19], Kpxq is the surface deflection at the point of
coordinate x produced by a concentrated normal load of unit magnitude, applied on the surface
at the origin p0, 0q. In this paper, we decide to use the Westergaard’s solution [39] that connects
pressure to displacements in Fourier’s space thanks to influence coefficients (see section 2.2).
In any case, the elastic energy density welpuq “ ppuqu{2 is a quadratic function of the surface
displacement u and ppuq “ dwel{du.



4 Valentine Rey, Jeremy Bleyer

We note g the so-called gap, which is the distance between the two surfaces and which is
defined by:

gpxq “ upxq ´ hpxq (2)

The condition of non interpenetration between the two solids imposes that:

@x, gpxq ě 0 (3)

The prescribed loading is given in terms of the mean value of the gap:

1

mespSq

ż

S

pupxq ´ hpxqqdS “ g0 (4)

When adhesion is considered, the potential energy Ep contains an additional contribution of
adhesive energy Eadh in addition to the elastic energy Eel:

Ep “ Eelas ` Eadh “

ż

S

welpupxqqdS `

ż

S

fpgpxqqdS (5)

where the adhesive energy density fpgq is a function of the distance g between the two surfaces.
It is defined only for positive values of g and it is assumed to be at least twice differentiable on
its domain of definition so that the associated second derivative is well defined when performing
the stability analysis.

The displacement field u is the solution of the minimization problem:

u “ argmin
uPA

Eppuq (6)

where A is the space of admissible displacement fields characterized by:

u P Aô @x, upxq ´ hpxq ě 0 and
1

mespSq

ż

S

pupxq ´ hpxqqdS “ g0 (7)

Let us define the Lagrangian of the system:

Lpu, µq “
ż

S

pwelpuq ` fpgqqdS ´

ż

S

µpu´ hqdS “ Eppuq ´

ż

S

µpu´ hqdS (8)

where µ is the positive Lagrange multiplier associated to the contact constraint: µ ě 0. The
stationarity of the Lagrangian reads:

BL
Bu
pu, µq “

dwel
du

`
df

du
´ µ “ p`

df

du
´ µ “ 0 (9)

Therefore, the Lagrange multiplier is equal to the sum of the elastic (p) and adhesive (df{du)
forces. Orthogonality for adhesive contact reads:

@x,

$

’

&

’

%

´

ppxq ` df
du

¯

gpxq “ 0

ppxq ` df
du ě 0

gpxq ě 0

(10)

We can give a mechanical interpretation of the first equality, which is the orthogonality between
the constraint and the associated Lagrange multiplier. On the contact zone (g “ 0), the total
force is strictly positive (the sum of adhesive forces and elastic forces is a compressive force). On
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Fig. 2: Grid used for the discretization of the contact problem on the square surface Ω “ r0;Lsˆ
r0;Ls

the non contact zone (g ą 0), the total force is null (balance of elastic and adhesive forces).

Let us call equilibrium solution a critical point of the problem (6). Without adhesion, the
total energy is equal to the elasticity energy Eelas, which is a convex function of the surface
displacement so that the critical point is unique and is the global minimizer of the problem.
However, in presence of adhesion, the total energy usually becomes non-convex and a critical
point is not necessarily a global, let alone a local, minimizer but may also characterize a saddle
point which corresponds to an unstable equilibrium position as discussed in Section 3.

2.2 Discretized problem

Instead of a semi infinite surface, we consider a square surface of length L with periodic boundary
conditions (PBC). Those PBC ensure that the height profile is such that hp0, xq “ hpL, xq,
hpx, 0q “ hpx, Lq for all x “ 0, l..L. On Figure 1, one can observe that the rough profile is
periodic in the sense that hp0q “ hpLq. One can easily define the finite size continuous problem
derived from (6). To solve this problem, the square surface Ω “ r0;Ls ˆ r0;Ls is discretized
as a uniform grid with discretization length l. We aim at solving the discrete problem on the

N “ n2 “
`

L
l

˘2
grid points (collocation) using BEM [3], as illustrated on Figure 2.

We will denote by bold font u the vector collecting the N nodal values of the normal surface
displacement u and p the vector collecting the N nodal values of the associated normal pressure.
The scalar ui is the value of the vertical displacement at the grid node i. We denote by e the
vector with all components equal to 1.

The convolution product (1) is computed in Fourier’s space. Therefore, one can compute the
displacement u from the pressure p:

u “ FFT-1pWFFTppqq (11)

where FFT is the 2D Fast Fourier Transform, FFT-1 is the Backward 2D Fast Fourier Trans-
form, and W is a diagonal N ˆN matrix that contains the influence coefficients for the reference
Westergaard solution [39]. These constant coefficients depend on the discrete set of frequencies
admissible for the chosen discretization and on the Young’s modulus E (see [38] for their expres-
sions). In W, the coefficient associated to the 0-frequency is 0. Indeed, the displacement of the
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surface is only known up to a rigid-body motion. It is possible to obtain a pressure p with mean
value 0 from the displacement u using the equality:

p “ FFT-1pW´1 FFTpuqq “ Ku (12)

where K is the corresponding linear operator which is a dense matrix. The obtained pressure is
such that its mean is 0 because the coefficient of W´1 associated to the 0-mode is 0.

We define the gap vector g “ u´ h and the admissible space as:

u P Aô @i P t1, . . . , Nu , gi ě 0 and
1

N

N
ÿ

i“1

gi “
1

N
eTg “ g0 (13)

The discretized problem reads:

Find u P A minimizing Eppuq (14)

where:

Eppuq “
1

2
uTKu`

N
ÿ

i“1

fpgiq (15)

Using a conjugate gradient algorithm with projections [36], we can compute an equilibrium
solution of problem (14). Both displacement and pressure fields are periodic. In the context of
adhesive contact, the potential energy to minimize is not convex so that several local minimizers
may exist. Therefore, it is possible to reach different equilibrium solutions depending on the
initialization of the descent algorithm.

3 Stability analysis

Characterizing the stability of an equilibrium position is important to assess the reliability of
the computed solution since an unstable solution will be sensitive to small imperfections. In
the case of adhesive contact, it can be expected that equilibrium positions will be stable if
adhesion effects are negligible with respect to elasticity (e.g. low surface energy/very short range
interaction). However, as the surfaces become closer and closer, adhesive effects become more
important and may lead to snap-on/snap-off types of instabilities, that is sudden contact (resp.
sudden detachment) of part of the elastic surface. The proposed stability analysis will aim at
determining if a computed equilibrium solution is stable and, if not, will exhibit the associated
instability mode.

3.1 Stability analysis with normal contact

We recall here the results obtained in [5] regarding the stability of elastic bodies in normal contact
applied to the present problem. Let us first define the set V0 of virtual velocity fields δv which
are periodic and with zero mean value:

V0 “

"

δv periodic and

ż

S

δvpxqdS “ 0

*

(16)

Usually, in the absence of contact constraints, the stability analysis of conservative system
around an equilibrium position requires to study the sign of the total energy second derivative
(Lejeune-Dirichlet criterion [29]) for a set of kinematically admissible perturbations δv P V0:
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δv ¨
B2Ep
Bu2

pueq, λq ¨ δv ą 0 @δv P V0 ñ stable equilibrium (17)

where ueq is the equilibrium configuration we aim at studying and λ a loading parameter that is
fixed (for instance the average gap g0).

In case of contact, the stability study is more difficult since we need to take into account the
contact constraints. In the case of frictionless contact with a rigid surface, the contact reactions do
not create mechanical work. As a consequence, the space of admissible perturbations is modified
by adding the contact constraint [5]. The new set of kinematically admissible perturbations is:

V `0 “ tδv P V0 and such that δvpxq ě 0 @x P Icu (18)

where Ic Ă Ω is the contact zone in the equilibrium configuration:

x P Ic ô ueqpxq ´ hpxq “ 0 (19)

This new set ensures that perturbations do not create interpenetration. At equilibrium, the as-
sociated Lagrange multiplier µeq is therefore such that µeqpxq ě 0 for x P Ic and µeqpxq “ 0
otherwise.

The directional derivative of the Lagrangian around the equilibrium position pueq, µeqq for an
admissible perturbation direction δv is given by:

dL
dt
pueq ` tδv, µeq, λq

ˇ

ˇ

ˇ

ˇ

t“0

“
BL
Bu
pueq, µeq, λq ¨ δv (20)

which gives the optimality condition (9) characterizing the equilibrium position when equating
this derivative with zero. The second directional derivative is then given by:

d2L
dt2

pueq ` tδv, µeq, λq

ˇ

ˇ

ˇ

ˇ

t“0

“ δv ¨
B2L
Bu2

pueq, µeq, λq ¨ δv “ δv ¨
B2Ep
Bu2

pueq, λq ¨ δv @δv P V `0 (21)

Now, since Lpuptq, µeqq ď Epuptqq with uptq “ ueq ` tδv for all t ě 0, a local minimum of the
energy at equilibrium is ensured if the previous second derivative is positive for all admissible
perturbations. The stability criterion then reads:

δv ¨
B2Ep
Bu2

pueq, λq ¨ δv ą 0 @δv P V `0 ñ stable equilibrium (22)

The objective of the present work is to qualify the equilibrium solution obtained by the
contact algorithm as either stable or unstable using the previous criterion. To do so, a first
approach would be to compute the smallest eigenvalue of the energy second derivative around
the equilibrium solution. If the associated eigenvector satisfies the contact constraints imposed
by V `0 , the stability of the equilibrium solution can be directly deduced from the sign of the
eigenvalue. However, if this eigenvector does not belong to V `0 , conclusion on the stability of the
equilibrium position is not possible. In this case, one has to compute the minimum eigenvalue
of the energy second derivative under the constraint that the eigenvector has to belong to V `0 .
This eigenvalue can be obtained as the solution to the following constrained Rayleigh-quotient
problem:
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λmin “ min
δv

1
2δv ¨

B2Ep
Bu2

pueq, λq ¨ δv

s.t. }δv} “ 1
δv P V `0

(23)

In case of adhesion, the second derivative of the potential energy is the sum of the elastic-
ity stiffness operator K and the second derivative of the adhesive potential D, which may be

negative: A “
B
2Ep

Bu2 “
B
2Eelas

Bu2 `
B
2Eadh

Bu2 “ K ` D. We point out that K does not depend on
the equilibrium solution whereas D does. Expliciting the constraints of periodicity, zero average
value and positivity over the contact region for the admissible perturbation direction δv, the
previous problem becomes:

λmin “ min
δv

1
2δv ¨A ¨ δv

s.t. }δv} “ 1
δv periodic
ş

S
δvpxqdS “ 0

δvpxq ě 0 @x P Ic

(24)

The previous problem is a non-standard eigenvalue problem since the last inequality con-
straints cannot be tackled by standard eigenvalue solvers. Although this is not the purpose of
this work, we point out that this problem can be formulated as an eigenvalue analysis of a non-
linear operator and that many interesting properties of eigenvalues of linear operators are lost
when dealing with non-linear operators. In particular, the set of eigenvalues is not necessarily
discrete, or even countable, and it is not obvious how to orthogonalize eigenvectors.

Before discussing algorithmic issues for solving the previous problem, we first present the
discrete version of the eigenvalue problem. The stability analysis in case of contact implies the
computation of the minimal eigenvalue of the operator A “ K`D under unilateral constraints
xi ě 0 for i P Ic where Ic is the contact zone defined from the equilibrium discrete solution ueq

of problem (14) by:
i P Ic ô ueqi ´ hi “ 0 (25)

and where x denotes a potential perturbation. We denote by C “ tx such that xi ě 0 for i P Icu
the cone of unilateral constraints. We aim at solving the following eigenvalue problem:

λmin “ min
x

1
2x

TAx

s.t. }x} “ 1
eTx “ 0
x P C

(26)

where the constraint eTx “ 0 imposes null mean value for the eigenvector (periodicity is imposed
by construction of operator A, see section 2.2).

3.2 Proximal algorithm for solving the constrained-eigenvalue problem

In the presence of contact, the associated eigenvalue problem (22) falls within the class of cone-
constrained eigenvalue problems [37,35,20,11]. Determining all the possible solutions to such
problems is challenging, although it is possible to enumerate all of them by solving 2nc stan-
dard eigenvalue problems followed by the verification of the corresponding constraints where nc
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is the number of contact constraints [11]. However, such a method cannot be used in practice
because of the exponential growth of the number of systems to solve as a function of nc. It has
been shown that cone-constrained eigenvalue problems can be formulated as mixed non-linear
complementarity problems [9,8,20] for which various algorithms can be used such as non-smooth
Newton or interior-point methods. However, these different approaches usually require to solve,
at least, one linear system at each iteration which is too expensive in the present case because
the linear system matrix A is dense. An alternative approach is to formulate the solution of the
constrained eigenvalue problem as the minimization of the Rayleigh quotient over the constrained
space [10,11] as in (26). Gradient descent-like algorithms can therefore be used to find a solution
of the constrained eigenvalue problem. In particular, such methods do not necessarily need to
solve linear systems.

Our proposed algorithm belongs to this last category and fits, more generally, in the frame-
work of proximal algorithms [6,31], now widely used in the signal processing community. It bears
similarities with the scaling and projection algorithm proposed in [11] and the projected steepest
ascent of [35] since it also involves projection steps and scaling factors. Since the proposed ap-
proach relies on the use of proximal algorithms which have many variants, it is possible that the
algorithms of [35,11] could also be formulated in this framework. One main difference of the pro-
posed approach is its ability to tackle additional constraint such as the linear constraint eTx “ 0
imposing a zero average. Finally, let us also mention that the use of proximal algorithms provides
a natural extension to more complicated nonlinear constraints defining the cone C if projection
operations can be efficiently computed. For instance, a similar approach has been proposed in
[14] for the computation of eigenvalues of singular operators that appear in plasticity. Contrary
to our method, this approach imposes to solve a linear system at each iteration.

The approach we propose can be considered as an operator-splitting method which is usually
used for optimizing the sum of convex functions. Problem (26) is then transformed into an
unconstrained problem aiming at minimizing the sum of four functions F `G1 `G2 `H where
F “ 1t}x}“1u is the indicator of the unit sphere, G1 “ 1C and G2 “ 1teTx“0u are the indicators

of the cone C and the hyperplane eTx “ 0 and finally Hpxq “ 1
2x

TAx. G1, G2 are convex and
H is convex and differentiable.

The primal-dual proximal algorithm, developed in [7], enables minimizing the sum of these
four functions, in case F is convex, by taking advantage of the regularity of H:

xn`1 “ proxτF
`

xn ´ τ∇Hpxnq ´ τσpy1
n ` y2

nq
˘

(27)

yin`1 “ yin ` 2xn`1 ´ xn ´ proxGi{σpy
i
n ` 2xn`1 ´ xnq i “ 1, 2 (28)

where the proximal operator of a function f is defined by

proxf pxq “ arg min
y

fpyq `
1

2
}x´ y}2 (29)

The previous algorithm converges to the global minimizer of F ` G1 ` G2 `H if 1
τ ´ σ ě β{2

where β is the Lipschitz’s constant of ∇H.

We propose to extend this algorithm to the case where F “ 1t}x}“1u is non convex. Here, since
F,G1 and G2 are indicator functions, the proximal operators reduce to projection operators. The
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iterations then read:

x̃n`1 “ xn ´ τAxn ´ τσpy
1
n ` y2

nq (30)

xn`1 “ x̃n`1{}x̃n`1} (31)

y1
n`1 “ y1

n ` 2xn`1 ´ xn ´ ProjCpy
1
n ` 2xn`1 ´ xnq (32)

y2
n`1 “ y2

n ` 2xn`1 ´ xn ´ ProjteTx“0upy
2
n ` 2xn`1 ´ xnq (33)

By writing yn “ y1
n and zn such that y2

n “ zne, we obtain:

x̃n`1 “ xn ´ τAxn ´ τσpyn ` zneq (34)

xn`1 “ x̃n`1{}x̃n`1} (35)

yn`1 “ xyn ` 2xn`1 ´ xny
Ic
´ (36)

zn`1 “ zn `
1

N
eTp2xn`1 ´ xnq (37)

where we set xxyIc´ “

#

xi for xi ď 0 and i P Ic

0 otherwise
.

Although there is no proof of convergence when F is not convex, numerical tests show that for
parameters τ , σ verifying 1

τ ´ σ ě β{2, the algorithm does converge to the smallest eigenvalue
of A in case Ic “ H and to an admissible solution x P C in case Ic ‰ H. This will be illustrated
in Subsection 4.1
It is worth noting that the proposed algorithm requires only matrix-vector product with operator
A and local operations which can be easily parallelized.

We propose two complementary indicators for the convergence of the algorithm. ε defined by:

ε “ |eTx| (38)

and η defined as

η “
|zn ´ zn´1|

|zn|
(39)

The final proximal algorithm is presented in Algorithm 1. The algorithm will stop when the
eigenvalue zn stagnates and when the condition eTxn “ 0 is verified to a given tolerance.

Algorithm 1: Proximal algorithm

Initialize n “ 0, xn “ e, yn “ 0, zn “ 1 ;
while ε ě tol and η ě tol do

Compute x̃n`1 “ xn ´ τAxn ´ τσpyn ` zneq ;
Normalize the eigenvector xn`1 “ x̃n`1{}x̃n`1} ;

Compute yn`1 “ xyn ` 2xn`1 ´ xny
Ic
´ ;

Compute the eigenvalue zn`1 “ zn `
1
N
eTp2xn`1 ´ xnq ;

Compute residual ε “ |eTxn| ;

Compute η “
|zn´zn´1|

|zn|
;

Set n “ n` 1 ;

end

The choice of the scalar β has a influence on the speed of convergence of the algorithm.
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4 Numerical assessments

First, we illustrate the proximal algorithm on the simple example of Hertzian contact. The
computations are done on a coarse grid to ease the visualization of eigenvectors. We show that
the instability modes depend on the geometry of the indenter. Then, we consider rough contact
with three different potentials and observe different conclusions on stability depending on the
potential.

4.1 Adhesive Hertzian contact: influence of the curvature of the indenter

The profile of the rigid rough surface is made of one asperity of parabolic shape:

hprq “ ´
r2

2R
(40)

with R “ 2L and r “

b

`

x´ L
2

˘2
`
`

x´ L
2

˘2
. The origin of the system of axis is chosen such

that it coincides with the top of the indenter. For this subsection, we consider the following
adhesive potential

Ead “ ´γ

ż

S

exp

ˆ

´g

ρ

˙

dS (41)

where γ is the surface energy and ρ the range of adhesion effects. This first potential models
short-range adhesion, which is supposed to give results close to the solution of Maugis [24]. Note
that the Maugis-Dugdale potential being not twice differentiable, the stability analysis cannot
be performed on it. The force due to adhesion and the operator D are:

BEad
Bu

“
γ

ρ
exp

ˆ

´gpxq

ρ

˙

D “
B2Ead
Bu2

“ ´
γ

ρ2
exp

ˆ

´gpxq

ρ

˙

(42)

We choose E “ 1, γ “ 10 and ρ “ 1L and make simulations on a grid of size 32ˆ32. Of course,
this discretization is coarse and solving the problem with finer discretization is possible but we
chose such a grid on this first example to ease the visualization of the instability mode.

First, we impose the mean value u0 “
1
N

N
ř

i“0

ui “ `1.302L. The equilibrium solution is such

that there is no contact, as illustrated on Figure 3a (the gap is everywhere strictly positive). We

used the proximal algorithm to compute the smallest eigenvalue. We chose τ “ 1{pβ, σ “ pβ{2

and pβ “
a

}A}1}A}8 ě }A}2 “ β. Let note that, in this case, since Ic “ ∅, the problem is
unconstrained so that traditional eigenvalue solver could be used. We obtain λmin “ ´7.3 10´6

and the eigenvector is illustrated on Figure 3b. We verified that this solution is also the one
found by a standard eigenvalue solver. We observe that adhesion tends to pull the elastic surface
towards the indenter.

Now we consider the equilibrium solution obtained for the imposed mean displacement u0 “
1.2L. The equilibrium solution, exhibiting a central contact zone, is illustrated on Figure 4a. We
used the proximal algorithm with the same values for τ and σ as for the previous case to compute
the smallest eigenvalue under constraints. The algorithm converges to λmin “ ´4.55 that seems
to be a multiple eigenvalue because of the problem symmetry. Since λmin is negative, we can
conclude that the equilibrium solution is not stable. The value of the eigenvector at y “ L

2 is
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Fig. 3: Hertz case: equilibrium solution for imposed displacement u0 “ `1.302L (solution without
contact) and instability mode associated to λmin “ ´7.3 10´6

represented on Figure 4b. We observe that this vector is periodic, of zero average and positive
in the contact zone, it is thus admissible with respect to V `0 . We also note that this vector is
associated to an instability of the points located at the contact zone boundary, where the gap
between the two surfaces is the smallest (but still strictly positive). Therefore, slight perturbation
of the applied load or imperfection would tend to make the two surfaces in contact at the contact
zone boundary.
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Fig. 4: Hertz case: equilibrium solution for imposed displacement u0 “ 1.2L (solution with a
contact zone) and instability mode associated to λmin “ ´4.55

In Figure 5, we give the evolution of the two quantities ε and η during the iterations of the
proximal algorithm for the two different imposed displacements: on Figure 5a for u0 “ 1.302L
(where the equilibrium solution leads to no contact) and on Figure 5b for u0 “ 1.2L.
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Fig. 5: Residuals η and ε versus iterations of the proximal algorithm for the two imposed dis-
placements u0 “ 1.302L and u0 “ 1.2L

4.2 Adhesive rough contact

In this subsection, we consider the adhesive normal contact with rough surface. After describing
the rough surface, we present results for three different potentials.

4.2.1 Description of the rough surface

As mentioned in the introduction, surface are rough and made of multiple asperities. Rough
surface is usually modeled as an isotropic Gaussian random field with mean zero and with
specified power spectral density (PSD), which is the Fourier transform of the auto-correlation
function [23].

In order to give the form of the PSD we will consider in this paper, we introduce the wave-
lengths: λs (shortest wavelength), λr (roll-off wavelength) and λl (largest wavelength). As a
consequence, we can defined the associated wave numbers: ks “

L
λs

, kr “
L
λr

and kl “
L
λl

.

The power spectral density of natural rough surfaces usually follows a self-affine behavior [23]
so that the PSD reads:

Φp|k|q “

$

’

&

’

%

C if kl ď |k| ď kr

C
´

|k|
kr

¯´2´H

if kr ď |k| ď ks

0 otherwise

(43)

where H is the Hurst exponent and C the roughness amplitude. |k| is the norm of the wave
vector:

|k| “
b

k2x ` k
2
y (44)

To construct periodic rough surfaces, we use a Fourier-based filtering algorithm [15]. We
used this filtering process to generate one 256ˆ256 rough surface with the following properties
L “ 1, kl “ 2, kr “ 2, ks “ 32, H “ 0.8. The width of the spectrum is quite small and may
not represent the self-affinity of the surface. Indeed, we chose to reduce the spectrum so that
obtaining a sufficient discretization for adhesive contact was possible with a grid 256ˆ256.

In figure 6, we give a representation of the rough surface. Since this surface corresponds to
one realization of the random Gaussian surface with defined cutoff wave numbers and Hurst
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exponent, one cannot conclude anything on the influence of the wavelengths on the mechanical
response. Indeed, such observations would require statistically converged results, that is to say
many surface realizations. As it is not the objective of this paper, we will only perform stability
analysis for this specific surface.
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Fig. 6: Heights of the rough surface

4.2.2 Stability analysis for three different potentials

Here we will consider three adhesive potentials that were studied in [28,27] and defined as follows:

Eadh1 “ ´γ

ż

S

exp

ˆ

´g

ρ

˙

dS (45)

Eadh2 “ ´γ

ż

S

exp

ˆ

´g2

2ρ2

˙

dS (46)

Eadh3 “ ´γ

ż

S

1

1` g2

ρ2

dS (47)

In Figure 7a, we give the graphical representation of those three potentials and in Figure 7b,
we plot the respective associated force, which is the gradient of the potential. The plots presented
on Figure 7 are presented for ρ “ 0.5L and γ “ 0.01. With the first potential Eadh1 the adhesion
forces are not zero when the distance between the two surfaces is zero. This is not the case for
the second and the third adhesive potentials Eadh2 and Eadh3. The third potential may represent
the long-range Van der Waals interactions.

For this computation, we choose E “ 1, γ “ 1 and ρ “ 0.1L and compute the equilibrium
solution with imposed mean value of displacement u0 “ 0.8L for the first potential, u0 “ 0.105L
for the second potential and u0 “ 0.65L for the third potential. The three adhesive potentials
lead to same relative contact area ac “ 0.23 but to different contact pattern, as evidenced by the
map of the binary gap between the two surfaces at the equilibrium configuration represented on
Figure 8.
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Fig. 7: Graphical representation of the three adhesive potentials and associated forces

Fig. 8: Equilibrium solution : gap obtained for the three adhesive potentials: black means contact,
white means no contact.

The stability analysis is then performed and the three eigenvectors associated to the three
eigenvalues are represented on Figure 9. We verify that those eigenvectors are such that the non
interpenetration constraint (last inequality of (24) ) is verified.

With the stability analysis, we can conclude that the equilibrium solutions obtained with
adhesive potential 1 and 2 are unstable (the eigenvalues are negative). The associated eigenvector
are different. The equilibrium solution computed in the case of the Van de Waals potential is
stable since the eigenvalue is positive.

For the second computation, we choose E “ 1, γ “ 1 and ρ “ 0.1L and compute the
equilibrium solution with imposed mean value of displacement u0 “ 0.105L for all the potentials.
The three adhesive potentials lead different contact area, as evidenced by the map of the binary
gap between the two surfaces at the equilibrium configuration represented on Figure 10.

The stability analysis is then performed and the three eigenvectors associated to the three
eigenvalues are represented on Figure 11. We verify that those eigenvectors are such that the non
interpenetration constraint (last inequality of (24) ) is verified.

As for the previous case, only the third equilibrium solution (associated to the adhesive
potential Eadh,3 is stable and the instability modes are not similar for the two other potentials.
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Fig. 9: Eigenvectors corresponding to the smallest eigenvalue of the constrained eigenvalue prob-
lem for the three adhesive potentials.

Fig. 10: Equilibrium solution : gap obtained for the three adhesive potentials: black means con-
tact, white means no contact.
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Fig. 11: Eigenvectors corresponding to the smallest eigenvalue of the constrained eigenvalue
problem for the three adhesive potentials.

4.2.3 Stability analysis during detachment

As a final numerical example, we present the evolution of the equilibrium solution and its stability
from almost full contact to full detachment. We use the same rough surface, the adhesive potential
Eadh1 with parameters E “ 10´3, γ “ 10´2 and ρ “ 1.0L and impose mean values of the
displacement u0 from u0 “ 10´5L (which corresponds to almost full contact) to u0 “ p2 `
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10´5qL. To compute the equilibrium solution, we use the approach presented in [36] and choose
as initialization of the iterative solver the converged solution of the previous load. For each
equilibrium solution, we compute the percentage of area that is is contact, ac “

1
N

ř

iPIc

i and use

the proximal algorithm to compute the eigenvalue solution of problem (26).

On Figure 12a, we give the evolution of the mean value of the elastic pressure p0 “
1
N

N
ř

i“1

pi

versus the mean value of the applied displacement u0 for all the computed equilibrium solutions.
For each equilibrium solution, the stability analysis has been performed and the mark is full for
stable positions and empty for unstable solutions. Figure 12b gives the evolution of the contact
area ac “

1
N

ř

iPIc

i versus u0.
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Fig. 12: Mean elastic pressure p0 and contact zone ac versus imposed mean displacement u0 for
ρ “ 1L : stable positions are with full circle

Finally, we set ρ “ 0.1L and do the same unloading and stability study. On Figure 13a, we
give the evolution of the mean value of the elastic pressure p0 versus the applied displacement
u0 for all the computed equilibrium solutions and specify the stability with a full mark.

We observe that contrary to the previous case, only one equilibrium is unstable. This is due
to the ambivalent role of ρ on adhesion: on the one hand the range of adhesive interactions is
smaller, on the other hand, adhesive forces are larger at small distances. This explains why the
number of unstable configurations is smaller than for the previous case and also why the first
unstable configuration occurs at smaller u0 than for the previous case.

5 Conclusion

In this article, we propose a proximal algorithm that enables the systematic study of stability of
surfaces in presence of adhesion. This algorithm can be used for any type of surface (including
rough surfaces) and any twice differentiable adhesive potential. It computes the smallest eigen-
value and associated eigenvectors so that the equilibrium solution can be discriminated as stable
or unstable and in case of instability, the eigenvector show the associated mode. Future work will
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Fig. 13: Mean elastic pressure p0 and contact zone ac versus imposed mean displacement u0 for
ρ “ 0.1L : stable positions are with full circle

consist in studying loading/unloading curve by following a path of stable equilibrium solutions
and expose the hysteresis effect induced by adhesion. It is important to point out that the present
work does not resolve the question of following a sequence of stable solutions along a loading
path. Continuation methods or stochastic gradient descent may be appropriate candidates for
achieving this objective.
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27. Müser, M.H.: Single-asperity contact mechanics with positive and negative work of adhesion: Influence of

finite-range interactions and a continuum description for the squeeze-out of wetting fluids. Beilstein Journal
of Nanotechnology 5, 419–437 (2014)
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