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aLaboratoire Navier, UMR 8205, École des Ponts ParisTech, IFSTTAR, CNRS,
Champs-sur-Marne, France

bSchool of Petroleum Engineering, University of New South Wales, Sydney, Australia
cCSIRO Mineral Resources Flagship, North Ryde, NSW 2113, Australia

Abstract

In this paper, we study the phenomenon of localization of deformation in

fault gouges during seismic slip. This process is of key importance to understand

frictional heating and energy budget during an earthquake. A infinite layer of

fault gouge is modeled as a Cosserat continuum taking into account Thermo-

Hydro-Mechanical (THM) couplings. The theoretical aspects of the problem

are presented in the companion paper (Rattez et al., 2017a), together with a

linear stability analysis to determine the conditions of localization and estimate

the shear band thickness. In this Part II of the study, we investigate the post-

bifurcation evolution of the system by integrating the full system of non linear

equations using Finite Elements.

The problem is formulated in the framework of Cosserat theory. It en-

ables to introduce information about the microstructure of the material in the

constitutive equations and to regularize the mathematical problem in the post-

localization regime. We emphasize the influence of the microstructure and of the

softening law on the material response and the strain localization process. The
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weakening effect of pore fluid thermal pressurization induced by shear heating

is examined and quantified. It enhances the weakening process and contributes

to the narrowing of shear band thickness. Comparisons with the linear analysis

exhibit that when the perturbed field of shear deformation dominates, the esti-

mation of the shear band thickness obtained from linear stability analysis differs

from the one obtained from the finite element computations, demonstrating the

importance of post-localization numerical simulations.

Keywords: Cosserat continuum, Finite Element model,

Thermo-Hydro-Mechanical couplings, Strain localization, Fault

mechanics

1. Introduction

Field observations of fault zones show that, during seismic slip, shear de-

formation is localized in a very thin zone of finite thickness, which is called

Principal Slip Zone (PSZ) (see Sibson (2003), Rempe et al. (2017), Rattez et al.

(2017a) for a detailed discussion). This phenomenon is favored by weakening5

of the gouge material and it is enhanced by multi-physical couplings (Sulem

and Stefanou, 2016). Determining the size of the localized zone is a key is-

sue for understanding the role of the different mechanisms and their impact on

earthquakes (Kanamori and Brodsky, 2004).

The thickness of the localization zone was investigated using Linear Stability10

Analysis (LSA) in the companion paper (Rattez et al., 2017a). This analytical

approach allowed to explore qualitatively the influence of various (bifurcation)

parameters of the gouge layer, such as the grain size, the hardening modulus, the

friction and dilatancy angles, the thermal pressurization coefficient, the normal

stress, the porosity and the permeability.15

However, the aforementioned investigation is based on Linear Stability Anal-

ysis that has two drawbacks (see also Chambon et al. (2004)). The first one is

the linearization of the system of equations, which regarding mechanics does not

distinguish between loading and unloading conditions. The second one is that
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the linearization is performed on a reference state that does not evolve with20

deformation. These are strong assumptions for studying the post-bifurcation

behavior of a non-linear system. This is why, in the present paper, the full

system of non-linear equations (see Part 1) is integrated numerically, using a

novel three-dimensional (3D) Finite Element (FE) code, which accounts for a

general, 3D Cosserat continuum formulation with Thermo-Hydro-Mechanical25

(THM) couplings. An elasto-plastic constitutive model that accounts for the

progressive softening of the material and the grain size is implemented in the

numerical code.

This numerical tool allows to point out the limitations of the LSA presented

in the companion paper and offers a more accurate description of the evolution30

of the thickness of the localization zone. Moreover, it enables to investigate

the full stress-strain response of a fault gouge, and explore its dependency on

various parameters such the grain size and the applied shear rate. The precise

evaluation of the stress-strain response of the fault zone under THM couplings

is of key importance for studying earthquake nucleation as the softening rate35

controls the transition from aseismic to seismic slip (Tse and Rice, 1986, Scholz,

2002).

It is worth emphasizing that computing the evolution of strain localization

is a challenging task due to the difficulties that arise when dealing with soft-

ening behavior. It entails a loss of ellipticity of the governing equations in the40

classical continuum theory framework (de Borst et al., 1993, Vardoulakis and

Sulem, 1995). The boundary value problem becomes mathematically ill-posed

(Vardoulakis, 1986) and the results of classical finite element computations ex-

hibit a mesh dependency (as deformations localize in a band of thickness equal

to the finite element size). Moreover, mesh refinement leads towards zero en-45

ergy dissipation, which is nonphysical. However, the Cosserat FE formulation

followed herein does not suffer from the above issues as it possesses a material

parameter with dimension of length which regularizes the numerical problem

(see also de Borst (1991), Godio et al. (2016), Stefanou et al. (2017)).

Besides Cosserat, different methods have been developed to address the50
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problem of mesh dependency: viscoplastcity (but only under dynamic load-

ing conditions) (Needleman, 1988), non-local continua (Pijaudier and Bazant,

1987), gradient plasticity (Vardoulakis and Aifantis, 1991) and continua with mi-

crostructure (Papanastasiou and Vardoulakis, 1992, Collin et al., 2006), among

others. As these methods are not based on the same assumptions, the choice55

of one or another depends on the physical mechanisms that the modeler wants

to describe (Papanastasiou and Zervos, 2016) (see de Borst et al. (1993) for a

detailed comparison). For instance, if non-negligible rate dependency is experi-

mentally observed for a given material, visco-plasticity is the natural framework.

For granular materials such as fault gouge, Cosserat continuum (a special case60

of continua with microstructure (Germain, 1973) appears to be the most ap-

propriate framework (Papanastasiou and Zervos, 2016) (see also the companion

paper (Rattez et al., 2017a)).

Several studies have focused on the validation of an elasto-plastic Cosserat

continuum against experimental results comparing the size of the shear band for65

biaxial tests (Mühlhaus and Vardoulakis, 1987, Alsaleh, 2004) or other geome-

tries (Tejchman, 2008). Some authors have also developed strategies to calibrate

the parameters of the model using a series of cyclic triaxial and compression bi-

axial tests (Ehlers and Scholz, 2007) or a combination of micro-CT images and

macroscopic stress-strain response for a single triaxial test (Wang et al., 2016).70

This paper is organized as follows. Section 2 describes the finite element for-

mulation of a three dimensional (3D) Cosserat continuum with Thermo-Hydro-

Mechanical couplings as well as the the numerical implementation of the con-

stitutive model presented in the companion paper (Rattez et al., 2017a). The

formulation is kept general in order to allow various applications in geomechan-75

ics. In Section 3, the particular problem of an infinite sheared layer without

THM couplings is presented. The limitations of the classical Cauchy continuum

are discussed and the advantages of the Cosserat continuum are emphasized for

modeling the behavior of a fault gouge. The influence of the main constitutive

parameters and of the size of the microstructure on the stress-strain diagram80

and on strain localization evolution is examined. In Section 4, the THM cou-
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plings are introduced and their impact on the overall behavior of a fault gouge

is investigated. The role of thermal pressurization is highlighted. Finally, in

Section 5, the numerically obtained shear band thickness is compared to the

results of the LSA presented in the companion paper (Rattez et al., 2017a).85

2. Governing Equations and numerical implementation

The governing equations of a Cosserat continuum under THM couplings are

derived from the linear and angular momentum balance equations, the mass

and the energy balance equations (for more details, see Sections 3 and 4 in the

companion paper). They are then completed with the necessary constitutive90

equations, i.e. a three dimensional elasto-plastic constitutive law considering

a Drucker-Prager yield surface extended for Cosserat continua with a single

plastic multiplier (Godio et al., 2016).

2.1. Formulation of a Cosserat continuum model and balance laws

Let us consider a fluid saturated Cosserat medium that occupies a domain95

with volume Ω and is delimited by a boundary ∂Ω. Each material point possesses

six degrees of freedom, i.e. three translations ui and three rotations ωci . For the

strain rate tensor, γ̇ij , and the curvature rate tensor, κ̇ij , a decomposition into

an elastic, a plastic and a thermal part is assumed:

γ̇ij = γ̇eij + γ̇pij + γ̇thij and κ̇ij = κ̇eij + κ̇pij (2.1)

Thermal strain rates are written as: γ̇thij = αṪ δij where α is the coefficient of100

thermal expansion and T the temperature. The stress tensor τij is in general

non-symmetric and is split into a symmetric σij and a antisymmetric part τ[ij].

similarly, the deformation tensor γij is decomposed into a symmetric εij and an

antisymmetric γ[ij] part. A couple-stress tensor µij is introduced, which is dual

in energy with the curvature tensor κij .105

5



The momentum balance equations for each point inside Ω can be written as

follows:

τij,j = 0 (2.2)

µij,j − eijk τjk = 0 (2.3)

where eijk is the Levi-Civita symbol. Inertia terms, volumetric forces and mo-

ments are neglected herein.

The boundary is partitioned into two parts, depending on the type of bound-

ary conditions applied, ∂Ω = ∂ΩU + ∂ΩΣ. Neumann boundary conditions are

applied on ∂ΩΣ:

τijnj = tdi

µijnj = md
i (2.4)

where tdi and md
i are the prescribed traction and moment vectors on ∂ΩΣ re-

spectively. The field nj denotes the unit normal vector at any point of the

boundary of the domain ∂Ω. Dirichlet boundary conditions can be prescribed

on the boundary ∂ΩU :

ui = udi

ωci = ωcdi (2.5)

where udi and ωcdi are the prescribed displacement and rotation vectors on ∂ΩU

respectively.

By assuming that all the plastic work is converted into heat and that the

heat flux is expressed through Fourier’s law, we obtain the following diffusion

equation for the temperature T in Ω (Stefanou et al., 2017):

ρC(
∂T

∂t
− cthT,ii) = σij ε̇

p
ij + τ[ij]γ̇

p
[ij] + µij κ̇

p
ij (2.6)

where cth is the thermal diffusivity and ρC is the specific heat per unit volume110

of the material.
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The diffusion equation for the pore pressure, p, is obtained from the fluid

mass balance equation in Ω:

∂p

∂t
= chy p,ii + Λ

∂T

∂t
− 1

β∗
∂εv
∂t

(2.7)

where chy is the hydraulic diffusivity, Λ = λ∗

β∗ is the thermal pressurization

coefficient, λ∗ = nλf +(1−n)λs, with λf the fluid thermal expansion coefficient,

λs the solid thermal expansion coefficient, β∗ = nβf + (1 − n)βs, with βf the

fluid compressibility and βs the compressibility of the solid phase (Rattez et al.,115

2017a).

In the right hand side of Eq. 2.7, the source term for thermal pressurization

of the pore fluid is controled by the coefficient Λ. Thermal pressurization of

the pore fluid is a weakening mechanism for the shear stress that can enhance

strain localization.120

Assuming a Drucker-Prager yield surface and plastic potential, the elasto-

plastic incremental generalized stress-strain relationships are written as follows:

τ̇ ′ij = Cepijkl γ̇kl +Dep
ijkl κ̇kl + Eepijkl Ṫ δkl

µ̇ij = Mep
ijkl κ̇kl + Lepijkl γ̇kl +Nep

ijkl Ṫ δkl (2.8)

where Cepijkl, D
ep
ijkl, E

ep
ijkl, M

ep
ijkl, N

ep
ijkl and Lepijkl are fourth-order constitutive

tensors derived in the companion paper (Rattez et al., 2017a). τ ′ij is the Terza-

ghi effective stress tensor linked to the total stress tensor by τ ′ij = τij + p δij125

(compression negative). For the sake of simplicity, incompressible solid skeleton

is assumed here. However, a formulation for compressible solid skeleton within

the frame of Biot theory of poromechanics (Rice, 1975) is straightforward to

extend to Cosserat continua but exceeds the scope of the present work.

2.2. Finite element implementation and validation130

The full system of equations 2.2-2.1 is integrated numerically. A displacement-

rotation-temperature-pore pressure incremental finite element formulation is

used. The integration in time is implicit using the backward Euler method,
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which is implemented in Redback (Poulet et al., 2016), a module of the Finite

Element framework MOOSE (Gaston et al., 2009).135

The weak form of the linear and angular momentum balance equations

Eqs.2.2-2.3 is written Godio et al. (2015) using Green’s identity:

−
∫

Ω

τijψi,jdΩ +

∫
∂ΩΣ

τijnjψidS = 0 (2.9)

−
∫

Ω

µijψi,jdΩ +

∫
∂ΩΣ

µijnjψidS −
∫

Ω

εijkτjkψidΩ = 0 (2.10)

The energy and fluid mass balance equations are also written in their weak

forms:

∫
Ω

ṗψdΩ + chy(

∫
Ω

p,iψ,idΩ−
∫
∂Ω

p,iniψdS)− Λ

∫
Ω

ṪψdΩ +
1

β∗

∫
Ω

ε̇vψdΩ = 0

(2.11)∫
Ω

ṪψdΩ + cth(

∫
Ω

T,iψ,idΩ−
∫
∂Ω

T,iniψdS)− 1

ρC

∫
Ω

(τij γ̇
p
ij + µij κ̇

p
ij)ψ,idΩ = 0

(2.12)

where ψ and ψi are the test functions. chy, cth, ρC, β∗ and Λ are considered140

constant herein.

Linear Lagrange test functions are chosen for all the fields and full integration

is performed. An alternative choice would be to use quadratic functions with

reduced integration to improve the rate of mesh convergence (Godio et al., 2015),

but they are not used here for simplicity. Nevertheless, mesh convergence is145

verified in all the analyses presented in this paper (see Section 3.1).

In order to validate the Finite Element implementation and all the couplings,

a systematic procedure was followed. In particular, the implementation of each

term for Eqs. 2.9-2.12 is verified through appropriate unit tests and comparisons

with analytical solutions described in (Rattez et al., 2017b).150
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3. Simple shear of a layer without THM couplings

In this section, we present the problem of localization of deformation in a

sheared layer by considering a geometry and parameters that are consistent

with a gouge in a fault core. Only the mechanical equations for an elasto-

plastic Cosserat continuum are considered (without couplings). The results155

are compared to the ones already published (de Borst, 1991, Tejchman, 2008,

Godio et al., 2016). The methodology for the evaluation of the shear band

thickness is presented. Emphasis is given to describing the influence of the

internal length and different softening laws on the localization and the response

of the material. These results and investigations are then used as a reference to160

study the influence of the Thermo-Hydro Mechanical couplings (Section 4).

3.1. Problem statement and mesh convergence

The fault core is modeled as an infinite layer of height h subjected to shear

under constant velocity V and normal stress τn, as shown in Fig. 1. The values

of the different parameters are chosen to represent a fault gouge at a seismogenic165

depth of 7km, which is a typical centroidal depth for crustal faults. Furthermore,

as this set of parameters was used in previous studies, we can compare our

results to foregoing works on the subject and complement them (Rice, 2006,

Sulem et al., 2011, Platt et al., 2014). The rotations are imposed at the upper

and lower boundaries (ωc3 = 0) as it entails the development of a single band in170

the middle of the layer and facilitates the comparisons of stress-strain diagrams

as explained in Appendix B.

The Drucker-Prager yield criterion is generalized for Cosserat continua, as in

Rattez et al. (2017a) with a friction coefficient which evolves with plastic shear

deformation:175

F = τ + µ.σ′ − c (3.1)

where σ′ =
τ ′kk
3 , c is the cohesion and τ is the generalized second invariant of
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Figure 1: Infinite layer of a fault material under shear. Notations and boundary conditions.

the deviatoric stress tensor, defined by:

τ =

√
h1 sij sij + h2 sij sji +

1

R2
(h3mijmij + h4mijmji) (3.2)

where sij , mij are the deviatoric parts of the stress and couple-stress tensors

respectively. The hardening coefficient hs defines the evolution of the friction

coefficient with the accumulated plastic shear strain:

hs =
dµ

dγp
(3.3)

and is linked to the hardening modulus Hs by the equation Hs = hsσ
′.

The coefficients in the stress invariant are h1 = h3 = 2
3 and h2 = h4 =

−1
6 and R is the internal length of the Cosserat continuum as in (Sulem and

Vardoulakis, 1990). The generalized plastic strain rate invariant is defined as:

γ̇p =
√
g1 ė

p
ij ė

p
ij + g2 ė

p
ij ė

p
ji +R2(g3 k̇

p
ij k̇

p
ij + g4 k̇

p
ij k̇

p
ji) (3.4)

where eij and kij are the deviatoric parts of the strain and curvature tensors

respectively and g1 = g3 = 8
5 , g2 = g4 = 2

5 . In (Mühlhaus, 1986, Mühlhaus

and Vardoulakis, 1987, Sulem and Vardoulakis, 1990), these coefficients were

calculated based on micromechanical considerations. An example of calculation180

for one set of invarants is presented in Appendix B of the companion paper

(Rattez et al., 2017a). The influence of the invariants’ expression on the stress-
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strain graph is shown in Fig. 5 and the values of the different sets of coefficients

are recalled in Table 1.

2D model 3D model

Static model {hi} = {3/4,−1/4, 1, 0} {hi} = {2/3,−1/6, 2/3,−1/6}

{gi} = {3/2, 1/2, 1, 0} {gi} = {8/5, 2/5, 8/5, 2/5}

Kinematic model {hi} = {3/8, 1/8, 1/4, 0} {hi} = {2/5, 1/10, 2/5, 1/10}

{gi} = {3,−1, 4, 0} {gi} = {8/3,−2/3, 8/3,−2/3}

Table 1: Values for the coefficients of the stress and strain generalized deviatoric second

invariants for a Cosserat continuum from Mühlhaus (1986), Mühlhaus and Vardoulakis (1987),

Sulem and Vardoulakis (1990), Unterreiner (1994)

In this purely mechanical example, a linear softening rule is chosen to illus-185

trate strain localization. In the numerical examples, h=1 mm, the cohesion of

the material is chosen equal to c = 100 kPa and a linear softening rule with a

hardening coefficient equal to hs = −0.5.

The elastic parameters of the material are K = 20000 MPa, G = 10000

MPa and Gc = 5000 MPa. The internal length of the Cosserat continuum190

is chosen to be R = 10µm, which is an average grain size for highly finely

granulated (ultra-cataclastic) fault core (Chester and Chester, 1998, Rice and

Cocco, 2007). An initial isotropic state of stress is applied to the layer, such

that σ = −133.33MPa. The values of the parameters are summarized in Table

2.195

Mesh convergence is first investigated for the considered Cosserat model. A

3D geometry is considered with periodic boundary conditions for the lateral

sides of the specimen, which results in a 1D problem equivalent to the problem

presented in Fig. 1. A regular mesh with hexahedric elements is chosen with a

single element in directions x1 and x3, and a range of 40 to 240 elements in the200

vertical direction x2. Given the periodic boundary conditions and the choice of

the shape functions, the invariance in the x1 and x3 directions is guaranteed. In

Fig. 2, the shear stress τ12 at the top of the layer is plotted versus the normalized
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parameters values units parameters values units

K 20× 103 MPa µ 0.5

G 10× 103 MPa β 0

Gc 5× 103 MPa c 100 kPa

R 10 µm hs -0.5

Table 2: Numerical values of the mechanical parameters of a deep rock gouge from Sulem

et al. (2011), Rice (2006)

horizontal displacement at the top. As expected, the plastic regime is reached

for τ12 = µσ and followed by a softening behavior. The results for 160 and205

240 elements in the vertical direction exhibit no clear difference, indicating a

mesh-convergence.
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Figure 2: Stress-strain diagram obtained for an elasto-plastic infinite sheared layer modeled

as a Cosserat continuum for different numbers of elements in the vertical direction

In Fig. 3, the Cosserat rotation ωc3 is plotted on the deformed mesh with

80 elements in the vertical direction (not finer, for a clearer visualization) at

the last timestep. The magnitude of the rotations is higher inside the zone of210

localized deformations as observed experimentally for granular materials (Hall

et al., 2010).
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Figure 3: Cosserat rotation with 80 elements in the vertical direction for τ12 = 48MPa

In Fig. 4, the total shear strain γ12 is plotted along the height of the layer for

different space discretizations and a shear stress τ12 = 48MPa. This graph shows

that when the mesh is fine enough, the shear band thickness is indeed mesh-215

independent which is a key feature of the Cosserat model. The deformation

profile is almost identical for 80 and 160 elements. The profile for 240 elements

is not represented in this graph as it coincides with the one obtained with the

mesh of 160 elements.
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γ120.30
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Figure 4: Mesh-independency of the shear strain profile for τ12 = 48 MPa
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Figure 5: Stress-strain graph for converged meshes computed with different values of the stress

and strain generalized invariants (see Table 1)

3.2. Comparison with classical Cauchy continuum220

The results obtained using a classical Cauchy continuum are retrieved in the

particular case of Gc → 0, and R → 0, as explained in Iordache and William

(1998). In Fig. 6, the shear stress is plotted as a function of the normalized

horizontal displacement at the top.

This diagram shows the dependency of the softening branch on the mesh size.225

As expected, the plastic deformations localize in a single hexahedric element

(see Fig. 7) and the smaller the mesh size is, the steeper the softening branch

becomes. Note that the shear band is not located in the middle of the layer. As

no imperfection is introduced to restrict its position, it appears “randomly” in

the system due to numerical approximations.230

This mesh-dependency of the load-displacement diagram has a consequence

on energy dissipation. To investigate this effect, we calculate for different dis-

cretizations of the layer the plastic part of the mechanical energy, Ep, and the

elastic part, Ee, both with a Cosserat and a Cauchy continuum. The elastic

energy is evaluated by considering an unloading for τ12 = 48MPa. Elastic and235

plastic parts of the mechanical energy are shown in Fig. 8.

The energy partition is computed for different numbers of elements (Fig. 9).

14



●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●●●●●●●■

■

■

■

■

■

■
■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■

■
■
■
■

■
■
■

■
■

■
■

■
■

■
■

■
■

■
■

■
■

■
■

■
■

■
■■◆

◆

◆

◆

◆

◆

◆◆◆◆
◆
◆
◆
◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆
◆▲

▲

▲

▲

▲

▲

▲

▲

▲

▲

▲
▲
▲▲

● ny=10

■ ny=15

◆ ny=50

▲ ny=100

0.02 0.04 0.06 0.08

u1
h

10

20

30

40

50

60

τ12 (MPa)

Figure 6: Stress-strain diagram obtained for an elasto-plastic infinite sheared layer modeled

as a classical Cauchy continuum for different numbers of elements in the vertical direction

Figure 7: shear strain plotted on the deformed mesh with 50 elements τ12 = 1 MPa with a

Cauchy continuum
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For the Cosserat formulation, the plastic part of the mechanical energy tends

to a constant value when the mesh size is small enough, whereas for a Cauchy

continuum, the plastic energy tends to the total mechanical energy at peak.240

This is due to the fact that the softening branch gets steeper while increasing

the number of elements. To complete the analysis of the Cauchy continuum with

more elements an arc-length algorithm is necessary. It enables us to capture a

“snap-back” behavior and the plastic energy will tend to zero (de Borst, 1991).

This mesh-dependency of the energy dissipated by the system leads to un-245

physical results. It is even more problematic when Thermo-Mechanical cou-

plings are incorporated in the model because the amount of heat produced is

calculated from the plastic dissipation (Eq. 2.6).

●
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ny

2

4

6

8

Energy (MJ)

Figure 9: Computed dissipation as a function of the number of elements in the vertical

direction (ny) for a Cosserat continuum and a Cauchy continuum

3.3. Evaluation of the shear band thickness and sensitivity analysis

As stated in the companion paper (Rattez et al., 2017a), the shear band250

thickness is a key parameter for assessing the energy dissipation when localiza-

tion occurs. In order to compare the results of the linear stability analysis with

the numerical simulations, we need to define a measure of this thickness.

For defining this measure we refer to the profile of the plastic strain rate

17



invariant, γ̇p(x2) (cf. Platt et al. (2014)). This a convenient proxy not only255

for the evaluation of the shear band thickness, as explained below, but also for

comparing numerical results with experimental ones that are obtained by Digital

Image Correlation (Hall et al., 2010) (γ̇(x2) ≈ γ̇p(x2) inside the shear band).

Furthermore, it provides a better representation of the localization process at

a given time, unlike the plastic strain invariant, γp, or the Cosserat rotation,260

ωci , whose distributions strongly depend on the stress path and history of the

system.

Inside the shear band the computed plastic shear strain increment can be

interpolated accurately by a cosine function, whose wavelength is defined here

as the thickness of the localization zone:265

γ̇p(x2) ≈ B.χ[Y−λ2 ;Y+λ
2 ](x2).[cos(2π

(x2 − Y )

λ
) + 1] (3.5)

where B is half of the maximum plastic strain rate, Y is the position of the

center, λ is the wavelength of the cosine function and χ[Y−λ2 ;Y+λ
2 ](x2) is a

rectangular function defined by:

χ[Y−λ2 ;Y+λ
2 ](x2) =

1 if x2 ∈ [Y − λ
2 ;Y + λ

2 ]

0 otherwise

(3.6)

Notice, that this definition of the thickness of the localization zone allows a

clear link with the results of the Linear Stability Analysis performed in (Rattez270

et al., 2017a). More details and arguments on the choice of this definition as

well as comparisons with alternative ones found in the literature are given in

Appendix A.

A key parameter to determine the localization of deformation and used as

a bifurcation parameter in linear stability analyses is the softening modulus275

Hs (Rudnicki and Rice, 1975, Issen and Rudnicki, 2000). Thus, we investigate

numerically its effect in the following. The load-displacement diagram depicted

in Fig. 10 shows as expected that the higher (in absolute value) the softening

modulus is, the steeper the stress-displacement response becomes.
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Figure 10: Effect of the hardening coefficient on the load-displacement diagram

In Fig. 11, the total shear strain profile is plotted for different hardening280

values but for the same shear stress applied at the boundary of the layer (48

MPa). We observe that the shear strain profiles are mathematically similar and

in particular the higher the hardening is, the higher the maximum shear strain

gets. Note that, these profiles correspond to the same applied shear stress τ12

(48 MPa) and therefore to different displacement at the boundary. Less negative285

values of the softening coefficient correspond to larger applied displacement and

consequently to a larger maximum shear strain γ12 inside the localized zone. In

other words, the hardening plays a direct role in the evolution rate of localization

and determines the maximum total shear strain. However, the thickness of the

shear band described in Eqs. 3.5 and 3.6 is unchanged.290

The evolution of the shear band thickness in the post localization regime is

shown in Fig. 12. In all cases, the thickness decreases faster at the beginning

of the post-peak regime. For a more negative softening coefficient, and for

a same value of the shear displacement at the boundary u1

h , the shear stress

drop is stronger which results in a narrower shear band. Thus, the hardening295

modulus has an effect on the shear stress evolution, but not directly on the shear

band thickness. The different shear band thickness evolutions with increasing

deformation are due to the different evolutions of the shear stress (Fig. 12).
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Figure 11: Effect of the hardening coefficient on the shear strain γ12 profile for τ12 = 48MPa
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Figure 12: Effect of the hardening modulus on the shear band thickness evolution
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It is also interesting to explore how the internal length of the Cosserat model

affects the response of the system in terms of the stress-strain diagram, the300

shear band thickness evolution and the shear strain profile (Khoei et al., 2010,

Ebrahimian et al., 2012). In Fig. 13, the load-displacement diagrams for different

values of Cosserat internal length are plotted for a hardening coefficient hs =

−0.5. For lower values of the internal length, the softening branch of the stress-

displacement curve is steeper.305

●

●

●

●

●

●

●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●
●

●●
●

■

■

■

■

■

■

■

■
■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■

■
■
■
■
■
■
■■■■■■■■■■■■■

◆

◆

◆

◆

◆

◆

◆

◆
◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆

◆
◆
◆◆◆◆◆◆

▲

▲

▲

▲

▲

▲

▲

▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲
▲▲▲▲▲▲▲▲▲▲▲

▼

▼

▼

▼

▼

▼

▼

▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼

● R=8μm

■ R=10μm

◆ R=15μm

▲ R=20μm

▼ R=30μm

0.01 0.02 0.03 0.04 0.05 0.06 0.07

u1

h

10

20

30

40

50

60

70

τ12 (MPa)

Figure 13: Effect of the internal length on the stress-strain graph

In Fig. 14, the effect of the internal length on the shear band thickness

evolution is shown. For smaller internal length, shear band thickness decreases

faster with increasing strain.

As shown in Fig. 15, the distribution of the shear strain γ12 differs for dif-

ferent values of the internal length R. The value of the maximum is the same,310

but the profiles are different (unlike Fig. 12). For larger internal lengths, the

shear band thickness is larger, in agreement with previous studies (Mühlhaus

and Vardoulakis, 1987, Sharbati and Naghdabadi, 2006, Sulem et al., 2011).

Thus, the difference of the stress-displacement curves in the post-bifurcation

regime for different internal lengths is mainly due to different values of shear315

band thickness.
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Figure 14: Effect of the internal length on the shear band thickness evolution
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Figure 15: Effect of the internal length on the total shear strain profile for τ12 = 48MPa
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3.4. Exponential softening law to model granular flow

Experimental works on granular materials have shown that a granular medium

under shear evolves towards a steady state characterized by a constant friction

coefficient and zero dilatancy. In the frame of classical soil mechanics, this state

is called the critical state (Schofield and Wroth, 1968). Faults exhibit a simi-

lar behavior when sheared over sufficiently large distances (see Chambon et al.

(2002)). This behavior has to be integrated into the constitutive description

of the material in order to approximate the overall mechanical response of the

system. An exponential evolution of the friction coefficient is thus assumed,

which can be easily calibrated from experimental data (Mizoguchi et al., 2007,

Di Toro et al., 2011, Scuderi and Collettini, 2016). In Mizoguchi et al. (2007), Di

Toro et al. (2011), the authors have conducted shear experiments on simulated

fault gouges at seismic slip rate and they observed an exponential decay of the

friction coefficient due to various multi-physical mechanisms. For experiments

performed on dry materials, these authors suggest that friction softening can be

attributed to gel lubrication or nano-particles lubrication.

µ = µres(1 +
∆µ

µres
e−q/γe) (3.7)

q̇ = γ̇p (3.8)

where µres is the residual friction coefficient, ∆µ = µini − µres the variation of

the friction coefficient (µini is the initial friction coefficient), γe is a characteristic

slip weakening deformation and q is the hardening variable. Alternatively to the320

flow theory of plasticity that is used in the present paper, a Cosserat continuum

within the framework of hypoplasticity can be used to model granular materials

(Huang and Bauer, 2003, Tejchman, 2008).

In Fig. 16(a), the influence of the characteristic deformation γe is investi-

gated. The initial friction coefficient is 0.5 and the residual one is 0.3. As325

expected, the bigger the factor is, the steeper the softening branch becomes.

However, all the curves tend to the same asymptote around 43.73 MPa, a value

higher than µres.σ = 40MPa. The reason is that the yield surface is written in
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terms of the generalized stress invariant τ (see Eq. 3.1) and not of τ12. This

formulation is more general and efficient for geomaterials as it allows us to take330

into account the evolution of all the components of the stress and couple stress

tensors that are especially important under multi-physical couplings. An exam-

ple of the distribution of shear stresses τ12 and τ21 as well as the couple stress

µ32 is shown in Fig. 17 for a global deformation of the layer u1

h of 1.2 for the

case γe = 0.2 and µres = 0.3.335
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Figure 16: Effect of characteristic weakening deformation, γe, on: (a) the stress-strain dia-

gram, (b) the shear band thickness evolution (µres = 0.3).

In Fig. 16(b), the evolution of shear band thickness is plotted for different

values of the parameter γe. We observe that, at the beginning of the localization,

the shear band size decreases until a minimum that corresponds to the inflection

point of the softening branch. Then, it progressively increases towards a finite

value, which is independent of the γe value. Thus, this parameter only affects340

the evolution of the softening behavior and the evolution of the shear band

thickness but not their final values.

The stress-strain diagram for various values of the residual friction coefficient

is depicted in Fig. 18(a) for a given value of the characteristic weakening defor-

mation (γe = 1). In Fig. 18(b), the evolution of the shear band thickness with345

the deformation shows that the final value and also the minimum of the shear
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Figure 17: In the case of γe = 0.2 and µres = 0.3.(a) Profile of the stresses τ12 and τ21 (b)
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Figure 18: Effect of the residual friction, µres, on: (a) the stress-strain diagram, (b) the shear

band thickness evolution (γe = 1).
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band size are influenced by the residual friction and consequently by the total

shear stress drop. A larger stress drop is associated with a thinner localized

zone.
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Figure 19: Effect of the internal length, R, on: (a) the stress-strain diagram, (b) the shear

band thickness evolution (µres = 0.3 and γe = 0.2).

A single material length R is used in the present model to represent the350

size of the microstructure. Previous studies on sands with a narrow grain size

distribution showed a good agreement between the shear band size observed

experimentally and the results obtained with a Cosserat continuum taking R

equal to the mean grain size (Mühlhaus and Vardoulakis, 1987, Alsaleh, 2004).

However, as noted by Rice (2006), the distribution in gouge materials follows355

a fractal law and is much broader. Based on these observations, Sammis et al.

(1987) developed a communition model to explain the generation of fault gouges.

This theory is supported by experiments conducted in the laboratory (Steacy

and Sammis, 1991, An and Sammis, 1994). Therefore, the use of a single ma-

terial length (i.e. the mean grain size D50) to describe gouge materials is an360

open question. However, Rice (2006) argues that the cohesion between small

particles in an ultracataclasite layer would be much more important and could

lead to the clustering of small particles into aggregates. This effect would raise

the effective size of the microstructure to consider in the analysis (greater than
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D50). Moreover, the formation of vortex patterns linked to force chain bucklings365

in shear bands (Rognon et al., 2015, Tordesillas et al., 2016) imply the rotation

of a set of particles and would also lead to a larger effective internal length.

Therefore, a sensivity analysis on the parameter R is carried out to explore its

effect on the global softening response.

In Fig. 19, we observe the influence of the internal length on the stress-strain370

diagram (Fig. 19(a)) and the shear band thickness (Fig. 19(b)). The shear

stresses tend to the same values asymptotically. However, the final values of the

shear band thicknesses are different. The minimum and the residual values are

plotted in Fig. 20 and we observe a linear evolution for the two estimations. A

similar trend is found using hypoplastic model in the frame of Cosserat continua375

(Huang and Bauer, 2003).

In Rice (2006), the case of a principal slip zone observed in an exposure

of the Punchbowl fault (Chester et al., 2005) is presented. Inside the ultacat-

aclasite layer, a shear band with an apparent thickness of 100-300 µm seems

to have accommodated most of the slip. The mean grain size is estimated to380

be D50=1µm. Therefore, with the set of parameters chosen here, the internal

length appropriate to reproduce this pattern is one order of magnitude larger

than the mean grain size (Fig. 20 ).
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Figure 20: Evolution of the minimum and residual shear band thickness with the internal

length R.
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parameters values units parameters values units

K 20× 103 MPa µ 0.5

G 10× 103 MPa β 0

Gc 5× 103 MPa λ∗ 7.4× 10−5 /oC

R 10 µm ρC 2.8 MPa/oC

ρ 2500 kg/m3 cth 1 mm2/s

β∗ 8.2× 10−5 MPa−1 chy 12 mm2/s

n 0.04 αs 2.5× 10−5 /oC

Table 3: Numerical values for the parameters of a deep rock gouge from (Sulem et al., 2011,

Rice, 2006).

4. Effect of Thermo-Hydro-Mechanical couplings

In the section above, the results of a dry sheared layer modeled as a Cosserat385

continuum have been shown in terms of stress-strain response and evolution

of the shear band thickness. In this section, we consider a saturated layer

and explore the effect of pore pressure and temperature changes on the strain

localization process.

The numerical values for the parameters of the model refer to a saturated390

fault gouge at 7km depth, a centroidal depth for crustal faults (Rice, 2006,

Sulem et al., 2011). The mechanical conditions are the same as in Section 3 and

the values for all parameters are summarized in Table 3.

An homogeneous and isotropic initial state of total stress of -200 MPa and an

initial homogeneous pore pressure of 66.66 MPa is assumed. In terms of initial395

effective stresses, it corresponds to τ ′11 = τ ′22 = τ ′33 = −133.33MPa. A constant

velocity of 1m/s, in the range of values estimated for seismic slip (Sibson, 1973),

is applied at the top of the layer.

4.1. Influence of the various couplings

In this section, we highlight the effects and the importance of Thermo-400

Mechanical (TM), Hydro-Mechanical (HM) and Thermo-Hydro-Mechanical (THM)
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couplings on the overall behavior of the system. The geometry and boundary

conditions are kept the same as in the previous section. In Figs. 21 and 22, we

present the shear stress-strain response, for hs = −0.5 and hs = 0 respectively,

of the fault gouge by activating the various couplings. The response is juxta-405

posed with the response of the gouge without any couplings. We observe that a

clear difference is observed only when the thermal pressurization term (Eq. 2.7)

is activated, i.e. for the THM model. The system under HM couplings does

not show any difference compared to the purely mechanical one as no dilatancy

is considered. This assumption is common for fault gouges (Sleep et al., 2000),410

which have already experienced significant sliding. For more details on the ef-

fect of dilatancy, we refer to the companion paper (Rattez et al., 2017a) and

to (Rice, 1975, Vardoulakis, 1985, 1996, Garagash and Rudnicki, 2003, Benallal

and Comi, 2003).

Regarding the TM response, it barely differs from the mechanical one. The415

reason is that thermal expansion is restrained by the boundary conditions and

therefore it entails only a slight increase of the isotropic part of the stress tensor,

which in turn leads to a slight strengthening of the system.
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Figure 21: Effect of Thermo-Mechanical (TM) and Thermo-Hydro-Mechanical (THM) cou-

plings on the stress-strain diagram with linear softening law hs = −0.5 (R=10 µm).
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Figure 22: Effect of Thermo-Hydro-Mechanical (THM) couplings on the stress-strain diagram

assuming perfect plasticity (R=10 µm).

4.2. Effect of the thermal pressurization coefficient

Thermal pressurization is a weakening mechanism that has been largely stud-420

ied in the context of earthquakes in order to explain the reduction of fault

strength with slip (Sibson, 1973, Lachenbruch, 1980, Rempel and Rice, 2006).

This phenomenon is due to the discrepancy between thermal expansion coeffi-

cients of the solid matrix and pore fluids. Frictional heat induces a pore fluid

pressure increase that results in a decrease of the effective mean stress. This425

weakening mechanism is controlled by the thermal pressurization coefficient Λ.

In the following, we investigate the influence of the thermal pressurization co-

efficient, Λ, on the mechanical behaviour of the system. This coefficient depends

on many parameters, such as the nature of the material and of the pore fluid,

the stress state and the temperature among others. Previous studies have pro-430

posed a wide range of values for Λ. For instance in (Palciauskas and Domenico,

1982), the authors take a value of 0.59 MPa/oC for Kayenta sandstone, while

in (Lachenbruch, 1980), the value taken for an intact rock at great depth is 1.5

MPa/oC. For the analysis, presented in the companion paper, the thermal pres-

surization coefficient was considered equal to 0.9 MPa/oC for a fault at 7km435

depth. Of course, if Λ= 0 MPa/oC, the response coincides with that of the
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purely mechanical system, and the higher the thermal pressurization coefficient

is, the stronger the weakening becomes.

In Fig. 23, we focus on the evolution of pore pressure and temperature in

the middle of the shear band. The temperature evolution shows an exponential440

development and is slightly influenced by the value of the thermal pressuriza-

tion coefficient. For Λ=2 MPa/oC, the increase of temperature is faster than for

lower thermal pressurization coefficients, but the final value attained is lower as

the shear band width is decreasing faster and thus the maximum shear strain

reached is smaller. The pore pressure evolution is more affected than the tem-445

perature by the thermal pressurization, as it is acting as a source term in the

fluid mass balance equation. When the pore pressure increases, τ ′11 and τ ′33 and

τ ′22 decreases in the same way. It results in a decrease of the mean effective

normal stress and causes a weakening of the shear stress.
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Figure 23: Effect of the thermal pressurization coefficient for hs=-0.5 and an internal length

R=10 µm : Evolution of (a) the increase of pore pressure and (b) the increase of temperature,

in the middle of the layer.

4.3. Rate dependency induced by THM couplings450

As shown in Section 2, the mechanical constitutive law that is used in the

present paper is rate independent. This means that the constitutive behavior
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of the fault gouge is considered independent of the applied shear velocity at the

boundary of the system. However, this does not mean that the overall behavior

of the system remains rate-independent when THM couplings are activated due455

to thermal pressurization and diffusion. It is worth emphasizing that due to

the Cosserat formulation, which leads to a finite dissipation and thickness of

the localization zone (see Section 3), that the effect of rate dependency due to

THM couplings is possible to study.
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Figure 24: Effect of slip rate on the stress-strain diagram for perfect plasticity (hs = 0), and

an internal length R=10 µm

The effect of the imposed slip rate (between 100 µm/s and 1m/s) is shown460

in Fig. 24. Constant temperature and pore pressure are imposed at the top and

bottom boundaries. The hardening modulus is taken equal to zero (perfect plas-

ticity) in order to illustrate the effect of softening due to thermal pressurization.

Notice that for low velocities, no softening is observed as the effect of thermal

pressurization is negligible. On the contrary, for higher velocities that reach the465

co-seismic slip velocities the softening is significant. In Fig. 25, the evolution

of the shear band thickness is plotted. For high velocities, a more intense lo-

calization is observed. In particular, for slip velocity lower than 0.01 m/s, no

localization occurs. The reason is that due to the low shear velocity, temper-

ature and pore pressure increase rates are low, allowing diffusion to dominate,470

32



v=1m/s

v=0.1m/s

v=0.01m/s

0.0 0.1 0.2 0.3 0.4 0.5

u1

h
0.0

0.2

0.4

0.6

0.8

1.0
shear band width (mm)

Figure 25: Effect of slip rate on the shear band thickness for perfect plasticity (hs = 0 and

R=10 µm).

which inhibits localization. In other words the source term is counterbalanced

by diffusion, which leads eventually to a steady state (constant pressure and

temperature profiles).

During the nucleation of an earthquake, the slip accelerates to reach a max-

imum velocity of about 1m/s. The total slip required to reach that speed is in475

the order of a few millimeters (Segall and Rice, 2006). Therefore, Fig. 24 shows

that THM couplings can greatly affect the fault behavior during this phase (af-

ter a sufficient slip necessary for thermal pressurization to become significant).

Moreover, the slip along the fault is not homogeneous (Wald and Heaton, 1994)

and at the border of the slip patch, the displacements are much smaller than480

in the middle. The large difference of shear band thickness obtained in Fig. 25

can explain the heterogeneity of localization thickness observed along the same

fault as the slip is highly heterogeneous. For example, two drilling projects at

different locations in the Chelungpu fault found very different sizes of the local-

ization zone. Boullier et al. (2009) found a principal slip zone of 3-20mm thick,485

whereas Heermance et al. (2003) observed a PSZ 50-300 µm in the same range

as for the exhumed part of the Punchbowl fault.
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Figure 26: Effect of slip rate for perfect plasticity (hs = 0), and an internal length R=10 µm

on (a) the temperature increase profile (b) the pore pressure increase profile, at u1
h

= 0.5

4.4. Exponential softening law

The computations presented in Subsection 3.4 with an exponential softening

are performed again with the addition of the THM couplings. We present here490

the results for different values of the internal length. In Fig. 27, the stress-

displacement diagram is plotted. We observe that when THM couplings are

considered, the shear stress τ12 does not reach a plateau, but keeps decreasing,

as the heat produced by plastic dissipation continues to reduce the strength

due to thermal pressurization. Nevertheless, the mechanical and THM models495

follow the same decrease at the beginning of the softening and then diverge

with increasing shear deformation. As expected, thermal pressurization does

not play a significant role on the nucleation of the instability, but rather on the

evolution of the slip and on energy dissipation (Segall and Rice, 2006).

In Fig. 28, the evolution of the shear band thickness is investigated for the500

exponential softening. The THM couplings tend to make the band thinner and

have more effect on the residual thickness than on the minimum. We notice

that even though the shear stress does not reach a steady state, the width of

the band does. The minimum and the residual values for various internal lengths

are represented in Fig. 29, and we observe also a linear evolution for the two505
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Figure 27: Effect of THM couplings on the stress-strain diagram for an exponential hardening

(µres = 0.3 and γe = 0.2) and different internal lengths (R=10, 20 and 30 µm) considering a

slip rate of 1m/s.

estimations with THM couplings.

For R=10µm, we compare these minima and residual values of the shear

band width with the values obtained for perfect plasticity (Fig. 25). In both

cases, the shear rate applied is 1m/s. The evolution of the thickness is similar

as we first observe a decrease followed by an increase. Still, the values of the510

minimum and residual thickness are different. In the case of perfect plasticity,

the minimum value is 124 µm and the residual thickness is 128 µm (Fig. 25).

They are larger than the values obtained considering an exponential softening:

69 µm and 85 µm (Fig. 28). Thus, we can conclude that the localization process

also depends on the history of the loading.515

Finally, thermal pressurization does not greatly affect the shear band thick-

ness when the material softening alone is significant (Fig. 28). However, if the

mechanical behavior is perfectly plastic, no localization is observed unless THM

couplings are considered and, therefore, the thermal pressurization plays a cru-

cial role in the control of the size of the principal slip zone. In both cases, the520

internal length required to simulate a shear band thickness with a size in agree-

ment with observations of the Punchbowl fault (see Section 3.4) is one order
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Figure 28: Effect of THM couplings on the shear band thickness evolution for an exponential

hardening (µres = 0.3 and γe = 0.2) and different internal lengths (R=10, 20 and 30 µm).

of magnitude larger than the mean grain size and is closer to D70 (mesh size

corresponding to 70% of passing mass in sieve analysis). Note that most of

the existing laboratory experiments and DEM simulations have been performed525

with a relatively narrow grain size distribution. For this case, taking a Cosserat

length of the order of D50 is valid (see (Mühlhaus and Vardoulakis, 1987)). We

expect in the future to bring new experimental results on the effect of wider

grain size distribution on the shear band thickness.
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Figure 29: Effect of THM couplings on the evolution of the minimum shear band thickness

and the residual one with the internal length.
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5. Comparisons with results of the linear stability analysis530

Strain localization is seen as an instability of the inelastic macroscopic con-

stitutive laws. The initial homogeneous state becomes unstable (bifurcation),

which triggers the onset of localization (Rudnicki and Rice, 1975). Moreover, we

can assess the size of the localized zone by analyzing the dominant wavelength of

the perturbation modes. In (Rice et al., 2014), the system of equations presents535

a critical wavelength over which all perturbations are unstable. The band width

is estimated as half the value of the critical wavelength. In the companion paper

(Rattez et al., 2017a) (see also Sulem et al. (2011), Veveakis et al. (2013)), the

use of a Cosserat continuum with inertia terms enables us to have a stability

diagram (Lyapunov exponent (Lyapunov, 1992) plotted versus the wavelength540

of the perturbation) that does not present a vertical asymptote. Thus, the shear

band thickness is calculated from the value of the wavelength of the perturbation

that grows the fastest (the maximum of the Lyapunov exponent).

In this section, we will compare the values of the shear band thickness ob-

tained from the LSA and the one obtained from FEM computations. For that,545

at each time step of the numerical computation, we define an associated system

of a homogeneous state for which LSA is performed. This associated homo-

geneous system is assumed to be in a softening state obtained from the slope

of the numerical stress-strain (τ12 in function of u1/h) curve at the considered

time step. In this paper, a quasi-static analysis is conducted and therefore, no550

maximum in the LSA is observed in this case. Therefore, in the following, the

shear band thickness obtained in the LSA is evaluated as in Rice et al. (2014).

Moreover, the methodology of comparison, which is explained in detail in Ap-

pendix C, permits us to understand how the loss of homogeneity in the system

further influences the evolution of the localization process.555

5.1. Comparisons for mechanical simulations with linear softening

In this section, we compare the evolution of the shear band thickness ob-

tained numerically as described in 3.3 with the one predicted by the linear
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stability analysis for purely mechanical examples and considering a linear evo-

lution of the friction coefficient. The parameters chosen are defined in 3.1 and560

we study the effect of the internal length and the height of the layer on the

comparison.

In Fig. 30, we consider internal lengths ranging from 10 µm to 30 µm and

heights of the layer of 1 or 2 mm. For a height of 1mm andR=10µm (Fig. 30 (a)),

the thickness obtained at the initiation of the localization process is identical565

for the LSA and the finite element simulation as this state of the layer is the

closest to a homogeneous state of deformation as considered in the definition of

the associated system for which the linear analysis is applied. Nevertheless, for

R=20 and 30 µm and the same height (Fig. 30 (b) and (c)), we do not observe

the same behavior. This apparent discrepancy is due to the height of the layer570

which is not sufficiently large to have vanishing couple stresses in the profile.

The associated problem differs significantly from the original one in that case

and leads to different values of the shear band thickness. For a height of 2mm

(Fig. 30 (e) and (f)), this is no longer an issue and the size of the bands obtained

at the nucleation by LSA and FEM match.575

After the initiation of localization, the LSA tends to overestimate the thick-

ness of the shear band, as the state of deformation in the original system is no

longer homogeneous. Yet, the difference remains small and tends to decrease

as the height of the layer increases, but if the height gets too large, we face

convergence problems as the softening branch gets too steep. The tendency at580

the end of the numerical simulations to have a thickness that decreases to the

value of the internal length is also captured by the LSA.

38



LSA

FEM

0.000 0.005 0.010 0.015 0.020 0.025 0.030
0.0

0.2

0.4

0.6

0.8

1.0

u1

h

sh
ea
r
ba
nd
w
id
th
(m
m
)

R=10μm, h=1mm

LSA

FEM

0.000 0.005 0.010 0.015
0.0

0.5

1.0

1.5

2.0

u1

h

sh
ea
r
ba
nd
w
id
th
(m
m
)

R=10μm, h=2mm

LSA

FEM

0.00 0.01 0.02 0.03 0.04 0.05
0.0

0.2

0.4

0.6

0.8

1.0

u1

h

sh
ea
r
ba
nd
w
id
th
(m
m
)

R=20μm, h=1mm

LSA

FEM

0.000 0.005 0.010 0.015 0.020 0.025 0.030
0.0

0.5

1.0

1.5

2.0

u1

h

sh
ea
r
ba
nd
w
id
th
(m
m
)

R=20μm, h=2mm

LSA

FEM

0.00 0.02 0.04 0.06
0.0

0.2

0.4

0.6

0.8

1.0

u1

h

sh
ea
r
ba
nd
w
id
th
(m
m
)

R=30μm, h=1mm

LSA

FEM

0.00 0.01 0.02 0.03 0.04
0.0

0.5

1.0

1.5

2.0

u1

h

sh
ea
r
ba
nd
w
id
th
(m
m
)

R=30μm, h=2mm

(a)

(b)

(c)

(d)

(e)

(f)

Figure 30: Comparisons of the shear band thickness evolution for internal lengths between 10

and 30 µm and two heights of the layer h, 1 and 2 mm using a linear evolution of the friction

coefficient. 39



5.2. Comparisons for mechanical simulations with exponential hardening

The comparison between LSA and FEM is also made for the case of an

exponential hardening evolution in Fig. 31 . The parameters and the results of585

the simulations are presented in section 3.4. We consider here a residual friction

coefficient of 0.3 and a factor in the exponential γe of 0.2. As in the preceding

section, the analysis focuses on the effect of the internal length and of the height

of the layer.

For the initiation of localization, we observe that the thicknesses predicted by590

the LSA fit well the numerical ones for internal lengths of 10 and 20 µm (Fig. 30

(a), (b), (d) and (e)). It is not the case for R=30 µm as the distribution of couple

stress µ32 over the layer doesn’t reach a value close to zero at the boundary, even

for a height of 2 mm (Fig. 30 (c) and (f)). Note that in Fig. 31(d) (R=10µm

and h=2mm), the y-axis ranges from 0 to 1mm. Indeed, the numerical results595

exhibit the formation of two symmetrical shear bands at a quarter and three

quarters of the layer thickness. Therefore the comparison with LSA is performed

by considering only half of the layer (of thickness 1mm) in order to capture only

one band.

After the nucleation, the shear band size decrease is well captured by the600

LSA. But as the thickness approaches its minimum value, the two curves begin

to diverge significantly. The level of deformation is higher than the one cor-

responding to a linear softening of the friction coefficient, which explains this

apparent contradiction with the section above. Moreover, when the shear stress

tends to the residual value, the hardening modulus tends to zero. Thus, the605

shear band thickness obtained by the linear analysis grows indefinitely.

5.3. Comparisons for THM simulations

The comparison of LSA and FEM results is then performed for the system

of the infinite sheared layer considering Thermo-Hydro-Mechanical couplings

with the set of parameters described in Table 3. Only one example for a linear610

evolution of the friction coefficient and one example for the exponential law are

presented here.
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Figure 31: Comparisons of the shear band thickness evolution for internal lengths between 10

and 30 µm and two heights of the layer h, 1 and 2 mm using an exponential evolution of the

friction coefficient. 41



In Fig. 32, the evolution of the shear band size is plotted for an internal

length of 10 µm, a height of 1 mm and a hardening coefficient hs=-0.5 assuming

linear softening. The conclusions of section 5.1 remain the same.615

In Fig. 33, the evolution of the shear band thickness for an internal length

of 10 µm, a height of 1 mm for an exponential softening with µres=0.3 and

γe=0.2 is shown. The initiation and the decrease of the shear band thickness at

the beginning of the localization process are well captured by the LSA. When

the deformation increases, the two lines diverge as it is observed for the purely620

mechanical system (Fig. 31). However, unlike the mechanical system, when the

shear stress converges to a residual value and the hardening modulus tends to

zero, the linear analysis tends to a finite value in the THM system because the

bifurcation is obtained for a positive hardening modulus (Rattez et al., 2017a).

This value of the final shear band thickness obtained by the LSA is larger than625

the height of the layer and one order of magnitude larger than the residual

thickness obtained numerically.
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Figure 32: Comparison of LSA and FEM results for the shear band thickness evolution for the

THM model assuming an internal length R = 10µm, a height of 1 mm, a hardening coefficient

hs = −0.5 and using a linear evolution of the friction coefficient.
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Figure 33: Comparison of LSA and FEM results for the shear band thickness evolution for

the THM model assuming an internal length R = 10µm, a height of 1 mm and using an

exponential evolution of the friction coefficient (µres = 0.3 and γe = 0.2).

6. Conclusions

In the present paper, a general three-dimensional Cosserat Finite Element

formulation with THM couplings is presented and implemented in a parallel630

finite element code. This code enables the investigation of the role of the mi-

crostructure and THM couplings on the stability and evolution of various ge-

omechanical systems. However, even though the presentation and formulation

of the aforementioned model is general, we focus mainly on the behavior of

faults. In particular, we study numerically the evolution of the localization635

zone thickness in a fault gouge and its stress-strain response, which is of major

importance regarding earthquake nucleation and energy budget during seismic

slip.

Following the mathematical model presented in the companion paper, the

various THM couplings that take place during co-seismic slip are considered.640

As far as the mechanical behavior of the gouge is concerned, an elasto-plastic

Cosserat continuum is used. This is a framework of choice when the size of the

microstructure plays a fundamental role in the physics of the system (see Part
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I), as it is the case with faults. The dependency of both the shear band thickness

and the stress-strain response on various parameters is explored. More specif-645

ically, the influence of the size of the microstructure, the hardening evolution,

the thermal pressurization coefficient and the slip rate is studied in details.

The comparison of the shear band thicknesses obtained from the linear sta-

bility analysis and the finite element simulations has shown that the obtained

values are comparable as long as the effects of the induced perturbation of the650

initial homogeneous state are small enough. It highlights the importance of the

induced heterogeneities in the progressive localization process and the relevance

to use numerical simulations for quantitative results when studying strain lo-

calization. Moreover, the numerical simulations provide additional fundamental

information not only on the stress-strain response, but also on the temperature655

and pore pressure evolution.

Regarding the role of the grain size, the numerical analyses corroborate the

analytical findings of Part I. Indeed, numerical analyses show that the evolution

of the thickness of the localization zone depends on the size of the grains of

the fault core. The larger the grains are the larger the shear band thickness660

is. Moreover, using an appropriate softening law for fault core materials, it is

shown that the final, residual thickness of the localization zone is proportional

to the grain size. Considering the example of the Punchbowl fault, D70 seems

to be more appropriate as internal length for gouge materials presenting a very

broad grain size distribution.665

Numerical analyses also allow the investigation of the stress-strain response

of the system and its dependence on the size of the microstructure. The smaller

the grain size is in our model, the steeper the softening branch becomes. This

relationship has a direct effect on earthquake nucleation and on the transition

from aseismic to seismic slip (Scholz, 2002). This is not a surprising result (cf.670

the experiments of Marone and Kilgore (1993) on the influence of grain size on

the critical slip distance), but this influence is investigated here systematically

based on a physical model that can account for the size of the microstructure.

The ability of the Cosserat continuum to provide localization zone of finite
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thickness (contrary to the Cauchy continuum, cf. Section 3.2) makes it possible675

to examine the influence of the hardening modulus evolution on the shear band

thickness. Different softening laws are used, including an exponential softening

of the friction coefficient, which is adequate for modeling the mechanical behav-

ior of fault gouges and can be calibrated based on experimental data. Hard-

ening (softening) modulus encapsulates and upscales various micromechanical680

phenomena and, together with the intrinsic Cosserat lengths, affects the stress-

strain response. However, the roles of the hardening modulus and grain size

are distinct. It is shown that the hardening modulus controls only the slope of

the softening branch, while the grain size controls the localization thickness and

thus affects the slope of the softening branch.685

Another important factor, whose role was explored in detail in the compan-

ion paper, is thermal pressurization. This destabilizing mechanism is practically

negligible at the nucleation phase of seismic slip and its effect is rather noticed

during rapid co-seismic slip, where temperature increases significantly due to

friction. The magnitude of this phenomenon is described through the, so-called,690

thermal pressurization coefficient, which expresses the increase of pore pressure

in the gouge due to temperature increase. The numerical analyses confirm and

extend the qualitative findings presented in Part I. Under high shearing defor-

mation rates, it is shown that the thermal pressurization coefficient has a direct

impact on the post peak evolution of the stress-strain response. Increased soft-695

ening is observed for higher values of the aforementioned coefficient leading to

more localized deformation. The effect of thermal pressurization is pronounced

even when no-hardening/softening is considered, showing the significance of the

mechanism in modeling and energy budget during seismic slip.

A substantial result exhibited in this paper is that both the softening, post-700

peak behavior and the shear band thickness depend on the applied velocity,

showing thus rate dependency despite assuming a rate-independent constitutive

description of the material. Thermal pressurization is again the central mech-

anism for this apparent rate-dependent behavior. In particular, the applied

velocity controls the local dissipation rate due to friction and consequently the705
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pore pressure increase rate. The pore pressure increase rate is controlled in par-

allel by the thermal and pore-pressure diffusion mechanisms, which introduce a

characteristic time scale. Under high velocities the characteristic diffusion rate

is small in comparison to the dissipation rate, which has as a result a more

localized profile of deformation and a steeper post-peak softening branch. How-710

ever, under low velocities, the diffusion mechanisms dominate, leading to a quasi

homogeneous deformation profile without significant global softening if perfect

plasticity is assumed for the fault gouge.

In this study, we focused on the role of the most prominent Thermo-Hydro-

Mechanical couplings related seismic slip (see also Viesca and Garagash (2015)).715

Yet, the present model can be extended to account for other weakening processes

observed in fault zones, such as grain cataclasis and chemical reactions, among

others. The former can be modeled by adequately varying the internal length of

the Cosserat model (Bauer, 2016) and the latter by adding additional terms to

the constitutive description of the Cosserat material and the mass and energy720

balance equations (Sulem and Famin, 2009, Brantut and Sulem, 2012, Veveakis

et al., 2013, Platt et al., 2015). Such extensions will provide in future work

finer descriptions of important mechanisms that take place at different time

and length scales and give valuable results regarding seismic slip and energy

dissipation.725
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Appendix A. Determination of the shear band thickness

In this paper, the plastic strain rate distribution in the layer, γ̇p(x2), is

chosen to evaluate the shear band thickness, like previous numerical as it enables
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to follow the instantaneous evolution of the system (Platt et al., 2014, Hall

et al., 2010). The function used to interpolate this field and determine from its995

expression the thickness is a Cosine function. However, it is not the only choice

and previous authors have used a Gaussian shape approximation of the strain

rate profile (Andrews, 2002, Noda et al., 2009, Garagash, 2012, Platt et al.,

2014, Rempel and Rice, 2006) at each time step:

γ̇p(x2) ≈ A√
2πD

e−
1
2 (
x2−Y
D )2

(A.1)

where A is the amplitude of the maximum plastic strain rate, D is the standard1000

deviation of the Gaussian distribution and Y is the position of the center. From

the fitting of γ̇p(x2) with this Gaussian shape function, we define the shear band

thickness as twice the full width at half maximum 2
√

2ln(2)D.

The trigonometric interpolating function used in the paper is defined by:

γ̇p(x2) ≈ B.χ[Y−λ2 ;Y+λ
2 ](x2).[cos(2π

(x2 − Y )

λ
) + 1] (A.2)

where B is twice the maximum plastic strain rate, Y is the position of the center,

λ is the wavelength of the cosine function and χ[Y−λ2 ;Y+λ
2 ](x2) is a rectangular1005

function defined by:

χ[Y−λ2 ;Y+λ
2 ](x2) =

1 if x2 ∈ [Y − λ
2 ;Y + λ

2 ]

0 otherwise

(A.3)

As stated in the paper, the wavelength of the cosine function is interpreted

directly as the shear band thickness and allows a clearer link with results of the

LSA (Rattez et al., 2017a).

In Fig. A.34, we notice that the interpolation by the two different functions1010

are very similar. To evaluate the goodness of the fit, we determine the adjusted

coefficient of determination at each time step in the plastic regime. The mean

value over the full localization process of this coefficient for the Gaussian fit is

0.983, whereas the mean value for the cosine fit is 0.995.

In Fig. A.35, the shear band width evaluated by both approximations is1015

shown for the example of Section 3.1, with a mesh of 80 elements. Furthermore,
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Figure A.34: Interpolation of γ̇p(x2) with a Gaussian and a cosine functions for τ12 = 48 MPa

in the example presented in Section 3.1

we have plotted the size of the plastic zone (the zone defined by F = 0, see

Eq. 3.1). All curves exhibit the same tendency: a progressive decrease of the

size of the band with accumulated slip. In the paper, the shear band thickness is

computed using the Cosine function, as the adjusted coefficient of determination1020

is better.
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Figure A.35: Interpolation of γ̇p(x2) with a Gaussian and a Cosine function for τ12 = 48MPa

in the example presented in Section 3.1
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Appendix B. Influence of the boundary conditions

The above numerical results are obtained by imposing zero rotations at the

upper and lower boundaries of the layer. This type of boundary condition leads

to the formation of a boundary layer in the elastic regime at the top and bottom1025

edges. Consequently, no imperfection in the plastic regime is needed to trigger

the localization (de Borst, 1991, Ebrahimian et al., 2012). Moreover, it makes

the comparison between the different computations easier as the shear band

always develops in the middle, where the rotations can freely develop (Fig. 3).

In Fig. B.36, we present the results of computations imposing a zero moment1030

boundary condition (µ32 = 0) at the top and bottom of the layer. These results

are compared with the ones obtained when zero Cosserat rotation is imposed

at the boundary ωc3 = 0. The influence of the position of an imperfection is

explored by inserting notches in the geometry. We observe that without any

imperfection, numerical errors are sufficient to trigger the localization, which1035

occurs a bit later (in terms of deformation) as compared to the case with zero

rotation imposed at the boundary. The position of the shear band is determined

by numerical approximations and in general is not located in the middle of the

layer (Fig. B.37 (a)). The form of the softening branch in the post localization

regime looks the same as only one band develops. To overcome this issue, a1040

notch of 10µm in the middle and at one quarter of the layer is introduced to

trigger the localization from the beginning of the softening branch and at the

location of the notch (de Borst, 1991).

In the example with a notch at one quarter of the layer and zero moment

boundary conditions, the shear band develops at the upper boundary (Fig. B.371045

(c)). The notch provokes the initiation of the shear band, but the band migrates

then to the upper boundary. Thus, only half a band dissipates the energy of

the system. This explains why the softening branch gets much steeper.

Nevertheless if we put a notch in the middle, a band appears at the location

of the notch and remains there, but we also observe the emergence of two half1050

bands at the top and bottom boundaries (Fig. B.37 (b)). As two full bands
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Figure B.36: Effect of the Boundary conditions on the stress-strain diagram

in total dissipate the plastic energy in this case, the softening branch is less

steep. Appearence of multiple shear bands is acceptable as the solution of

the underlying non-linear mathematical problem is not unique, as explained in

Chambon et al. (2001). The authors in this paper have developed a random1055

initialization of the directional searching algorithm to observe different possible

solution of a problem in post-localization. As shown in Besuelle et al. (2006) for

the case of biaxial loading, different patterns of localized solutions for the same

problem are obtained after a random initialization, showing solutions with 1, 2

or 3 bands.1060
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Figure B.37: Cosserat rotations, ωc
3, plotted on the deformed mesh for τ12 = 48MPa of each

simulation with µ32 = 0 imposed at the top and bottom of the layer and for: (a) no notch (b)

a notch in the middle of the layer (c) a notch at the quarter of the layer.

Appendix C. Methodology to compare LSA and FEM shear band

thickness

The methodology to assess the shear band thickness performing a Linear

Stability Analysis (LSA) is widely developed in the companion paper (Rattez

et al., 2017a). In this section, we briefly describe the main results and explain1065

how it is applied in order to compare with the numerical results described in

Section 3.3.

The bifurcation parameter used for the Lyapunov stability analysis in the

companion paper is the hardening modulus. For a value of this modulus, the

study of the stability diagram enables to obtain an evaluation of the shear1070

band thickness. The way this modulus develops during shearing is calculated

from a stress-strain diagram obtained either from an experiment or a numerical

simulation. Thus, the first step for the comparison consists in assessing the

hardening modulus evolution for each numerical simulations.
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In order to determine the hardening modulus evolution to insert in the LSA,1075

some preliminary calculations are performed for compatibility of the homoge-

neous associated system for which the LSA is applied. The LSA in the compan-

ion paper is performed considering boundary conditions for the perturbation

to the layer defined as µ32 = 0. In other words, the linear stability analysis is

valid for a geometry that has no Cosserat effects at its boundary. To fulfill this1080

condition, the evolution of profiles for the shear stresses τ12, τ21 and the couple

stresses µ32 are plotted (see Fig. C.38). From these profiles, we can extract of

value of the effective height h∗ used to calculate the deformation. h∗ is defined

as the minimum distance between the points for which µ32 is less than 0.1% of

the maximum absolute value.1085
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Figure C.38: Profile of shear stresses τ12, τ21 and couple stress µ32 for hs=-0.5, R = 10µm

at the last time step to illustrate the effective height for the calculation of the plastic strain.

The global deformation for the associated system is then calculated using

the formula γ∗12 =
u1(h−h

∗
2 )−u1(h+h∗

2 )

h∗ . The elastic part of the deformation is

retrieved by γ∗e12 = τ12

G . The plastic part of the shear deformation is calculated

by γ∗p12 = γ∗12 − γ∗e12 and is equal to the generalized plastic shear strain γ∗p with

the assumptions of small perturbations from the homogeneous state (Cauchy1090

continuum). Furthermore, outside of the shear band, where Cosserat effects are

negligible (τ12 ≈ τ21 and µ32 ≈ 0), the generalized shear stress τ is equal to the
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shear stress τ12. We can therefore plot the τ − γp diagram and from the slope

of this diagram obtain an effective hardening modulus that can be used for the

LSA (see Fig. C.39).1095

τ

γp

Hs

Figure C.39: Schematic diagram of the shear stress invariant versus plastic shear strain in-

variant showing the geometric interpretation of the hardening modulus Hs

In order to evaluate the shear band thickness in the companion paper from

the linear stability analysis, THM couplings and inertia terms are considered.

But these assumptions are not fulfilled for all numerical simulations. When only

THM couplings are taken into account(but not the inertia), the stability dia-

gram presents a asymptote instead of a maximum and the shear band thickness1100

is the wavelength associated with the position of this asymptote (see Fig. C.40).

If inertia terms are considered for the purely mechanical system, there is a max-

imum in the stability diagram. Without inertia, it is not possible to perform

a LSA for this system as no temporal terms remain in the equations. There-

fore, the diagram is plotted with inertia terms, and the values of the minimum1105

unstable wavelength λmin and the wavelength of fastest propagation λmax are

extracted (see Figs. C.41 and C.42).
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Figure C.40: Example of stability diagram for a THM example neglecting inertia terms show-

ing an asymptote for λ=0.6mm (Hs = −25 MPa).
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Figure C.41: Example of stability diagram for an isothermal, drained example considering

inertia terms showing the wavelength selection (Hs = −200 MPa).
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Figure C.42: Example of wavelengths selection evolution with hardening for an isothermal,

drained example considering inertia terms.
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