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In this paper, we study the phenomenon of localization of deformation in fault gouges during seismic slip. This process is of key importance to understand frictional heating and energy budget during an earthquake. A infinite layer of fault gouge is modeled as a Cosserat continuum taking into account Thermo-Hydro-Mechanical (THM) couplings. The theoretical aspects of the problem

are presented in the companion paper (Rattez et al., 2017a), together with a linear stability analysis to determine the conditions of localization and estimate the shear band thickness. In this Part II of the study, we investigate the postbifurcation evolution of the system by integrating the full system of non linear equations using Finite Elements.

The problem is formulated in the framework of Cosserat theory. It enables to introduce information about the microstructure of the material in the constitutive equations and to regularize the mathematical problem in the postlocalization regime. We emphasize the influence of the microstructure and of the softening law on the material response and the strain localization process. The

Introduction

Field observations of fault zones show that, during seismic slip, shear deformation is localized in a very thin zone of finite thickness, which is called Principal Slip Zone (PSZ) (see [START_REF] Sibson | Thickness of the seismic slip zone[END_REF], [START_REF] Rempe | The effect of water on strain localization in calcite fault gouge sheared at seismic slip rates[END_REF], Rattez et al. (2017a) for a detailed discussion). This phenomenon is favored by weakening of the gouge material and it is enhanced by multi-physical couplings [START_REF] Sulem | Multiphysics couplings and strain localization in geomaterials[END_REF]. Determining the size of the localized zone is a key issue for understanding the role of the different mechanisms and their impact on earthquakes [START_REF] Kanamori | The physics of earthquakes[END_REF].

The thickness of the localization zone was investigated using Linear Stability Analysis (LSA) in the companion paper (Rattez et al., 2017a). This analytical approach allowed to explore qualitatively the influence of various (bifurcation) parameters of the gouge layer, such as the grain size, the hardening modulus, the friction and dilatancy angles, the thermal pressurization coefficient, the normal stress, the porosity and the permeability.

However, the aforementioned investigation is based on Linear Stability Analysis that has two drawbacks (see also [START_REF] Chambon | Loss of uniqueness and bifurcation vs instability: some remarks[END_REF]). The first one is the linearization of the system of equations, which regarding mechanics does not distinguish between loading and unloading conditions. The second one is that the linearization is performed on a reference state that does not evolve with deformation. These are strong assumptions for studying the post-bifurcation behavior of a non-linear system. This is why, in the present paper, the full system of non-linear equations (see Part 1) is integrated numerically, using a novel three-dimensional (3D) Finite Element (FE) code, which accounts for a general, 3D Cosserat continuum formulation with Thermo-Hydro-Mechanical (THM) couplings. An elasto-plastic constitutive model that accounts for the progressive softening of the material and the grain size is implemented in the numerical code. This numerical tool allows to point out the limitations of the LSA presented in the companion paper and offers a more accurate description of the evolution of the thickness of the localization zone. Moreover, it enables to investigate the full stress-strain response of a fault gouge, and explore its dependency on various parameters such the grain size and the applied shear rate. The precise evaluation of the stress-strain response of the fault zone under THM couplings is of key importance for studying earthquake nucleation as the softening rate controls the transition from aseismic to seismic slip [START_REF] Tse | Crustal earthquake instability in relation to the depth variation of frictional slip properties[END_REF]Rice, 1986, Scholz, 2002).

It is worth emphasizing that computing the evolution of strain localization is a challenging task due to the difficulties that arise when dealing with softening behavior. It entails a loss of ellipticity of the governing equations in the classical continuum theory framework (de Borst et al., 1993, Vardoulakis and[START_REF] Vardoulakis | Bifurcation Analysis in Geomechanics[END_REF]. The boundary value problem becomes mathematically ill-posed [START_REF] Vardoulakis | Dynamic stability analysis of undrained simple shear on water-saturated granular soils[END_REF] and the results of classical finite element computations exhibit a mesh dependency (as deformations localize in a band of thickness equal to the finite element size). Moreover, mesh refinement leads towards zero energy dissipation, which is nonphysical. However, the Cosserat FE formulation followed herein does not suffer from the above issues as it possesses a material parameter with dimension of length which regularizes the numerical problem (see also [START_REF] De Borst | Simulation of Strain Localization: a Reappraisal of the Cosserat Continuum[END_REF], [START_REF] Godio | Multisurface plasticity for Cosserat materials: Plate element implementation and validation[END_REF], [START_REF] Stefanou | Cosserat approach to localization in geomaterials[END_REF]).

Besides Cosserat, different methods have been developed to address the problem of mesh dependency: viscoplastcity (but only under dynamic loading conditions) [START_REF] Needleman | Material rate dependence and mesh sensitivity in localization problems[END_REF], non-local continua [START_REF] Pijaudier | Non local Damage Theory[END_REF], gradient plasticity [START_REF] Vardoulakis | A gradient flow theory of plasticity for granular materials[END_REF] and continua with microstructure (Papanastasiou andVardoulakis, 1992, Collin et al., 2006), among others. As these methods are not based on the same assumptions, the choice of one or another depends on the physical mechanisms that the modeler wants to describe [START_REF] Papanastasiou | Numerical modelling of strain localization[END_REF] (see [START_REF] De Borst | Fundamental Issues in Finite Element Analyses of Localization of Deformation[END_REF] for a detailed comparison). For instance, if non-negligible rate dependency is experimentally observed for a given material, visco-plasticity is the natural framework.

For granular materials such as fault gouge, Cosserat continuum (a special case of continua with microstructure [START_REF] Germain | La méthodes des puissances virtuelles en mécanique des milmieux continus -1. Théorie du second gradient[END_REF] appears to be the most appropriate framework [START_REF] Papanastasiou | Numerical modelling of strain localization[END_REF] (see also the companion paper (Rattez et al., 2017a)).

Several studies have focused on the validation of an elasto-plastic Cosserat continuum against experimental results comparing the size of the shear band for biaxial tests [START_REF] Mühlhaus | Scherfugenanalyse bei granularem Material im Rahmen der Cosserat-Theorie[END_REF]Vardoulakis, 1987, Alsaleh, 2004) or other geometries [START_REF] Tejchman | Shear Localization in Granular Bodies with Micro-Polar Hypoplasticity[END_REF]. Some authors have also developed strategies to calibrate the parameters of the model using a series of cyclic triaxial and compression biaxial tests [START_REF] Ehlers | An inverse algorithm for the identification and the sensitivity analysis of the parameters governing micropolar elasto-plastic granular material[END_REF] or a combination of micro-CT images and macroscopic stress-strain response for a single triaxial test [START_REF] Wang | Identifying Material Parameters for a Micro-Polar Plasticity Model Via X-Ray Micro-Computed Tomographic (Ct) Images: Lessons Learned From the Curve-Fitting Exercises[END_REF]. This paper is organized as follows. Section 2 describes the finite element formulation of a three dimensional (3D) Cosserat continuum with Thermo-Hydro-Mechanical couplings as well as the the numerical implementation of the constitutive model presented in the companion paper (Rattez et al., 2017a). The formulation is kept general in order to allow various applications in geomechanics. In Section 3, the particular problem of an infinite sheared layer without THM couplings is presented. The limitations of the classical Cauchy continuum are discussed and the advantages of the Cosserat continuum are emphasized for modeling the behavior of a fault gouge. The influence of the main constitutive parameters and of the size of the microstructure on the stress-strain diagram and on strain localization evolution is examined. In Section 4, the THM cou-plings are introduced and their impact on the overall behavior of a fault gouge is investigated. The role of thermal pressurization is highlighted. Finally, in Section 5, the numerically obtained shear band thickness is compared to the results of the LSA presented in the companion paper (Rattez et al., 2017a).

Governing Equations and numerical implementation

The governing equations of a Cosserat continuum under THM couplings are derived from the linear and angular momentum balance equations, the mass and the energy balance equations (for more details, see Sections 3 and 4 in the companion paper). They are then completed with the necessary constitutive equations, i.e. a three dimensional elasto-plastic constitutive law considering a Drucker-Prager yield surface extended for Cosserat continua with a single plastic multiplier [START_REF] Godio | Multisurface plasticity for Cosserat materials: Plate element implementation and validation[END_REF].

Formulation of a Cosserat continuum model and balance laws

Let us consider a fluid saturated Cosserat medium that occupies a domain with volume Ω and is delimited by a boundary ∂Ω. Each material point possesses six degrees of freedom, i.e. three translations u i and three rotations ω c i . For the strain rate tensor, γij , and the curvature rate tensor, κij , a decomposition into an elastic, a plastic and a thermal part is assumed:

γij = γe ij + γp ij + γth ij and κij = κe ij + κp ij (2.1)
Thermal strain rates are written as: γth ij = α Ṫ δ ij where α is the coefficient of thermal expansion and T the temperature. The stress tensor τ ij is in general non-symmetric and is split into a symmetric σ ij and a antisymmetric part τ

[ij] .
similarly, the deformation tensor γ ij is decomposed into a symmetric ε ij and an antisymmetric γ [ij] part. A couple-stress tensor µ ij is introduced, which is dual in energy with the curvature tensor κ ij .

The momentum balance equations for each point inside Ω can be written as follows:

τ ij,j = 0 (2.2) µ ij,j -e ijk τ jk = 0 (2.3)
where e ijk is the Levi-Civita symbol. Inertia terms, volumetric forces and moments are neglected herein.

The boundary is partitioned into two parts, depending on the type of boundary conditions applied, ∂Ω = ∂Ω U + ∂Ω Σ . Neumann boundary conditions are applied on ∂Ω Σ :

τ ij n j = t d i µ ij n j = m d i (2.4)
where t d i and m d i are the prescribed traction and moment vectors on ∂Ω Σ respectively. The field n j denotes the unit normal vector at any point of the boundary of the domain ∂Ω. Dirichlet boundary conditions can be prescribed on the boundary ∂Ω U :

u i = u d i ω c i = ω cd i (2.5)
where u d i and ω cd i are the prescribed displacement and rotation vectors on ∂Ω U respectively.

By assuming that all the plastic work is converted into heat and that the heat flux is expressed through Fourier's law, we obtain the following diffusion equation for the temperature T in Ω [START_REF] Stefanou | Cosserat approach to localization in geomaterials[END_REF]:

ρC( ∂T ∂t -c th T ,ii ) = σ ij εp ij + τ [ij] γp [ij] + µ ij κp ij (2.6)
where c th is the thermal diffusivity and ρC is the specific heat per unit volume 110 of the material.

The diffusion equation for the pore pressure, p, is obtained from the fluid mass balance equation in Ω:

∂p ∂t = c hy p ,ii + Λ ∂T ∂t - 1 β * ∂ε v ∂t (2.7)
where c hy is the hydraulic diffusivity, Λ = λ * β * is the thermal pressurization coefficient, λ * = nλ f +(1-n)λ s , with λ f the fluid thermal expansion coefficient,

λ s the solid thermal expansion coefficient, β * = nβ f + (1 -n)β s ,
with β f the fluid compressibility and β s the compressibility of the solid phase (Rattez et al., 2017a).

In the right hand side of Eq. 2.7, the source term for thermal pressurization of the pore fluid is controled by the coefficient Λ. Thermal pressurization of the pore fluid is a weakening mechanism for the shear stress that can enhance strain localization.

Assuming a Drucker-Prager yield surface and plastic potential, the elastoplastic incremental generalized stress-strain relationships are written as follows:

τ ij = C ep ijkl γkl + D ep ijkl κkl + E ep ijkl Ṫ δ kl μij = M ep ijkl κkl + L ep ijkl γkl + N ep ijkl Ṫ δ kl (2.8)
where

C ep ijkl , D ep ijkl , E ep ijkl , M ep ijkl , N ep
ijkl and L ep ijkl are fourth-order constitutive tensors derived in the companion paper (Rattez et al., 2017a). τ ij is the Terzaghi effective stress tensor linked to the total stress tensor by τ ij = τ ij + p δ ij (compression negative). For the sake of simplicity, incompressible solid skeleton is assumed here. However, a formulation for compressible solid skeleton within the frame of Biot theory of poromechanics [START_REF] Rice | On the stability of dilatant hardening for saturated rock masses[END_REF] is straightforward to extend to Cosserat continua but exceeds the scope of the present work.

Finite element implementation and validation

The full system of equations 2.2-2.1 is integrated numerically. A displacementrotation-temperature-pore pressure incremental finite element formulation is used. The integration in time is implicit using the backward Euler method, which is implemented in Redback [START_REF] Poulet | Multi-Physics Modelling of Fault Mechanics Using REDBACK: A Parallel Open-Source Simulator for Tightly Coupled Problems[END_REF], a module of the Finite Element framework MOOSE [START_REF] Gaston | MOOSE: A parallel computational framework for coupled systems of nonlinear equations[END_REF].

The weak form of the linear and angular momentum balance equations Eqs.2.2-2.3 is written [START_REF] Godio | Dynamic finite element formulation for Cosserat elastic plates[END_REF] using Green's identity:

- Ω τ ij ψ i,j dΩ + ∂ΩΣ τ ij n j ψ i dS = 0
(2.9)

- Ω µ ij ψ i,j dΩ + ∂ΩΣ µ ij n j ψ i dS - Ω ε ijk τ jk ψ i dΩ = 0 (2.10)
The energy and fluid mass balance equations are also written in their weak forms:

Ω ṗψdΩ + c hy ( Ω p ,i ψ ,i dΩ - ∂Ω p ,i n i ψdS) -Λ Ω Ṫ ψdΩ + 1 β * Ω εv ψdΩ = 0 (2.11) Ω Ṫ ψdΩ + c th ( Ω T ,i ψ ,i dΩ - ∂Ω T ,i n i ψdS) - 1 ρC Ω (τ ij γp ij + µ ij κp ij )ψ ,i dΩ = 0 (2.12)
where ψ and ψ i are the test functions. c hy , c th , ρC, β * and Λ are considered constant herein.

Linear Lagrange test functions are chosen for all the fields and full integration is performed. An alternative choice would be to use quadratic functions with reduced integration to improve the rate of mesh convergence [START_REF] Godio | Dynamic finite element formulation for Cosserat elastic plates[END_REF], but they are not used here for simplicity. Nevertheless, mesh convergence is verified in all the analyses presented in this paper (see Section 3.1).

In order to validate the Finite Element implementation and all the couplings, a systematic procedure was followed. In particular, the implementation of each term for Eqs. 2.9-2.12 is verified through appropriate unit tests and comparisons with analytical solutions described in (Rattez et al., 2017b).

Simple shear of a layer without THM couplings

In this section, we present the problem of localization of deformation in a sheared layer by considering a geometry and parameters that are consistent with a gouge in a fault core. Only the mechanical equations for an elastoplastic Cosserat continuum are considered (without couplings). The results are compared to the ones already published [START_REF] De Borst | Simulation of Strain Localization: a Reappraisal of the Cosserat Continuum[END_REF][START_REF] Tejchman | Shear Localization in Granular Bodies with Micro-Polar Hypoplasticity[END_REF][START_REF] Godio | Multisurface plasticity for Cosserat materials: Plate element implementation and validation[END_REF]. The methodology for the evaluation of the shear band thickness is presented. Emphasis is given to describing the influence of the internal length and different softening laws on the localization and the response of the material. These results and investigations are then used as a reference to study the influence of the Thermo-Hydro Mechanical couplings (Section 4).

Problem statement and mesh convergence

The fault core is modeled as an infinite layer of height h subjected to shear under constant velocity V and normal stress τ n , as shown in Fig. 1. The values of the different parameters are chosen to represent a fault gouge at a seismogenic depth of 7km, which is a typical centroidal depth for crustal faults. Furthermore, as this set of parameters was used in previous studies, we can compare our results to foregoing works on the subject and complement them [START_REF] Rice | Heating and weakening of faults during earthquake slip[END_REF][START_REF] Sulem | Stability analysis of undrained adiabatic shearing of a rock layer with Cosserat microstructure[END_REF], Platt et al., 2014). The rotations are imposed at the upper and lower boundaries (ω c 3 = 0) as it entails the development of a single band in the middle of the layer and facilitates the comparisons of stress-strain diagrams as explained in Appendix B.

The Drucker-Prager yield criterion is generalized for Cosserat continua, as in Rattez et al. (2017a) with a friction coefficient which evolves with plastic shear deformation:

F = τ + µ.σ -c (3.1)
where σ = τ kk 3 , c is the cohesion and τ is the generalized second invariant of the deviatoric stress tensor, defined by:

h 21 12 u 1 τ 22 = τ τ u 2 =0 u 2 u 1 =V.t u 1 =0 =0 -τ n 3 c
τ = h 1 s ij s ij + h 2 s ij s ji + 1 R 2 (h 3 m ij m ij + h 4 m ij m ji ) (3.2)
where s ij , m ij are the deviatoric parts of the stress and couple-stress tensors respectively. The hardening coefficient h s defines the evolution of the friction coefficient with the accumulated plastic shear strain:

h s = dµ dγ p (3.3)
and is linked to the hardening modulus H s by the equation H s = h s σ .

The coefficients in the stress invariant are

h 1 = h 3 = 2 3 and h 2 = h 4 = -1
6 and R is the internal length of the Cosserat continuum as in [START_REF] Sulem | Bifurcation analysis of the triaxial test on rock specimens. A theoretical model for shape and size effect[END_REF]. The generalized plastic strain rate invariant is defined as:

γp = g 1 ėp ij ėp ij + g 2 ėp ij ėp ji + R 2 (g 3 kp ij kp ij + g 4 kp ij kp ji ) (3.4)
where e ij and k ij are the deviatoric parts of the strain and curvature tensors respectively and g 1 = g 3 = 8 5 , g 2 = g 4 = 2 5 . In [START_REF] Mühlhaus | Scherfugenanalyse bei granularem Material im Rahmen der Cosserat-Theorie[END_REF][START_REF] Mühlhaus | The thickness of shear bands in granular materials[END_REF][START_REF] Sulem | Bifurcation analysis of the triaxial test on rock specimens. A theoretical model for shape and size effect[END_REF], these coefficients were calculated based on micromechanical considerations. An example of calculation 180 for one set of invarants is presented in Appendix B of the companion paper (Rattez et al., 2017a). The influence of the invariants' expression on the stress-strain graph is shown in Fig. 5 and the values of the different sets of coefficients are recalled in Table 1.

2D model 3D model

Static model [START_REF] Mühlhaus | Scherfugenanalyse bei granularem Material im Rahmen der Cosserat-Theorie[END_REF], [START_REF] Mühlhaus | The thickness of shear bands in granular materials[END_REF], [START_REF] Sulem | Bifurcation analysis of the triaxial test on rock specimens. A theoretical model for shape and size effect[END_REF], [START_REF] Unterreiner | Contribution à l'étude et à la modélisation numérique des sols cloués : application au calcul en déformation des ouvrages de soutènement[END_REF] In this purely mechanical example, a linear softening rule is chosen to illustrate strain localization. In the numerical examples, h=1 mm, the cohesion of the material is chosen equal to c = 100 kPa and a linear softening rule with a hardening coefficient equal to h s = -0.5.

{h i } = {3/4, -1/4, 1, 0} {h i } = {2/3, -1/6, 2/3, -1/6} {g i } = {3/2, 1/2, 1, 0} {g i } = {8/5, 2/5, 8/5, 2/5} Kinematic model {h i } = {3/8, 1/8, 1/4, 0} {h i } = {2/5, 1/10, 2/5, 1/10} {g i } = {3, -1, 4, 0} {g i } = {8/3, -2/3, 8/3, -2/3}
The elastic parameters of the material are K = 20000 MPa, G = 10000

MPa and G c = 5000 MPa. The internal length of the Cosserat continuum is chosen to be R = 10µm, which is an average grain size for highly finely granulated (ultra-cataclastic) fault core (Chester andChester, 1998, Rice and[START_REF] Rice | Tectonic Faults: Agents of Change on a Dynamic Earth[END_REF]). An initial isotropic state of stress is applied to the layer, such that σ = -133.33MPa. The values of the parameters are summarized in Table 2.

Mesh convergence is first investigated for the considered Cosserat model. A 3D geometry is considered with periodic boundary conditions for the lateral sides of the specimen, which results in a 1D problem equivalent to the problem presented in Fig. 1. A regular mesh with hexahedric elements is chosen with a single element in directions x 1 and x 3 , and a range of 40 to 240 elements in the vertical direction x 2 . Given the periodic boundary conditions and the choice of the shape functions, the invariance in the x 1 and x 3 directions is guaranteed. In 
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• n y =40 In Fig. 3, the Cosserat rotation ω c 3 is plotted on the deformed mesh with 80 elements in the vertical direction (not finer, for a clearer visualization) at the last timestep. The magnitude of the rotations is higher inside the zone of In Fig. 4, the total shear strain γ 12 is plotted along the height of the layer for different space discretizations and a shear stress τ 12 = 48MPa. This graph shows that when the mesh is fine enough, the shear band thickness is indeed mesh- 
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Comparison with classical Cauchy continuum

The results obtained using a classical Cauchy continuum are retrieved in the particular case of G c → 0, and R → 0, as explained in [START_REF] Iordache | Localized failure analysis in elastoplastic Cosserat continua[END_REF]. In Fig. 6, the shear stress is plotted as a function of the normalized horizontal displacement at the top.

This diagram shows the dependency of the softening branch on the mesh size.

As expected, the plastic deformations localize in a single hexahedric element (see Fig. 7) and the smaller the mesh size is, the steeper the softening branch becomes. Note that the shear band is not located in the middle of the layer. As no imperfection is introduced to restrict its position, it appears "randomly" in the system due to numerical approximations.

This mesh-dependency of the load-displacement diagram has a consequence on energy dissipation. To investigate this effect, we calculate for different discretizations of the layer the plastic part of the mechanical energy, E p , and the elastic part, E e , both with a Cosserat and a Cauchy continuum. The elastic energy is evaluated by considering an unloading for τ 12 = 48MPa. Elastic and plastic parts of the mechanical energy are shown in Fig. 8.

The energy partition is computed for different numbers of elements (Fig. 9). For the Cosserat formulation, the plastic part of the mechanical energy tends to a constant value when the mesh size is small enough, whereas for a Cauchy continuum, the plastic energy tends to the total mechanical energy at peak. This is due to the fact that the softening branch gets steeper while increasing the number of elements. To complete the analysis of the Cauchy continuum with more elements an arc-length algorithm is necessary. It enables us to capture a "snap-back" behavior and the plastic energy will tend to zero [START_REF] De Borst | Simulation of Strain Localization: a Reappraisal of the Cosserat Continuum[END_REF].
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This mesh-dependency of the energy dissipated by the system leads to unphysical results. It is even more problematic when Thermo-Mechanical couplings are incorporated in the model because the amount of heat produced is calculated from the plastic dissipation (Eq. 2.6). 
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Evaluation of the shear band thickness and sensitivity analysis

As stated in the companion paper (Rattez et al., 2017a), the shear band thickness is a key parameter for assessing the energy dissipation when localization occurs. In order to compare the results of the linear stability analysis with the numerical simulations, we need to define a measure of this thickness.

For defining this measure we refer to the profile of the plastic strain rate invariant, γp (x 2 ) (cf. [START_REF] Platt | Stability and localization of rapid shear in fluid-saturated fault gouge: 2. Localized zone width and strength evolution[END_REF]). This a convenient proxy not only for the evaluation of the shear band thickness, as explained below, but also for comparing numerical results with experimental ones that are obtained by Digital Image Correlation [START_REF] Hall | Discrete and continuum analysis of localised deformation in 49 sand using X-ray µCT and volumetric digital image correlation[END_REF] ( γ(x 2 ) ≈ γp (x 2 ) inside the shear band).

Furthermore, it provides a better representation of the localization process at a given time, unlike the plastic strain invariant, γ p , or the Cosserat rotation, ω c i , whose distributions strongly depend on the stress path and history of the system.

Inside the shear band the computed plastic shear strain increment can be interpolated accurately by a cosine function, whose wavelength is defined here as the thickness of the localization zone:

γp (x 2 ) ≈ B.χ [Y -λ 2 ;Y + λ 2 ] (x 2 ).[cos(2π (x 2 -Y ) λ ) + 1] (3.5)
where B is half of the maximum plastic strain rate, Y is the position of the center, λ is the wavelength of the cosine function and

χ [Y -λ 2 ;Y + λ 2 ] (x 2
) is a rectangular function defined by:

χ [Y -λ 2 ;Y + λ 2 ] (x 2 ) =      1 if x 2 ∈ [Y -λ 2 ; Y + λ 2 ] 0 otherwise (3.6)
Notice, that this definition of the thickness of the localization zone allows a clear link with the results of the Linear Stability Analysis performed in (Rattez et al., 2017a). More details and arguments on the choice of this definition as well as comparisons with alternative ones found in the literature are given in Appendix A.

A key parameter to determine the localization of deformation and used as a bifurcation parameter in linear stability analyses is the softening modulus H s (Rudnicki andRice, 1975, Issen and[START_REF] Issen | Conditions for compaction bands in porous rock[END_REF]. Thus, we investigate numerically its effect in the following. The load-displacement diagram depicted in Fig. 10 shows as expected that the higher (in absolute value) the softening modulus is, the steeper the stress-displacement response becomes.
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▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲▲ ▲▲ ▲▲ ▲▲ ▲▲ ▲▲ ▲▲ ▲▲ ▲▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ In Fig. 11, the total shear strain profile is plotted for different hardening values but for the same shear stress applied at the boundary of the layer ( 48MPa). We observe that the shear strain profiles are mathematically similar and in particular the higher the hardening is, the higher the maximum shear strain gets. Note that, these profiles correspond to the same applied shear stress τ 12 (48 MPa) and therefore to different displacement at the boundary. Less negative values of the softening coefficient correspond to larger applied displacement and consequently to a larger maximum shear strain γ 12 inside the localized zone. In other words, the hardening plays a direct role in the evolution rate of localization and determines the maximum total shear strain. However, the thickness of the shear band described in Eqs. 3.5 and 3.6 is unchanged.
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The evolution of the shear band thickness in the post localization regime is shown in Fig. 12. In all cases, the thickness decreases faster at the beginning of the post-peak regime. For a more negative softening coefficient, and for a same value of the shear displacement at the boundary u1 h , the shear stress drop is stronger which results in a narrower shear band. Thus, the hardening modulus has an effect on the shear stress evolution, but not directly on the shear band thickness. The different shear band thickness evolutions with increasing deformation are due to the different evolutions of the shear stress (Fig. 12). 
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◆ ◆ ◆ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲▲ ▲▲ ▲▲ ▲▲ ▲▲ ▲▲ ▲ ▲▲ ▲ ▲ ▲ ▲ It is also interesting to explore how the internal length of the Cosserat model affects the response of the system in terms of the stress-strain diagram, the shear band thickness evolution and the shear strain profile [START_REF] Khoei | 3D finite element modeling of shear band localization via the micro-polar Cosserat continuum theory[END_REF][START_REF] Ebrahimian | Modeling shear localization along granular soil-structure interfaces using elasto-plastic Cosserat continuum[END_REF]. In Fig. 13, the load-displacement diagrams for different values of Cosserat internal length are plotted for a hardening coefficient h s = -0.5. For lower values of the internal length, the softening branch of the stressdisplacement curve is steeper.
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As shown in Fig. 15, the distribution of the shear strain γ 12 differs for different values of the internal length R. The value of the maximum is the same, but the profiles are different (unlike Fig. 12). For larger internal lengths, the shear band thickness is larger, in agreement with previous studies [START_REF] Mühlhaus | The thickness of shear bands in granular materials[END_REF][START_REF] Sharbati | Computational aspects of the Cosserat finite element analysis of localization phenomena[END_REF][START_REF] Sulem | Stability analysis of undrained adiabatic shearing of a rock layer with Cosserat microstructure[END_REF].

Thus, the difference of the stress-displacement curves in the post-bifurcation regime for different internal lengths is mainly due to different values of shear band thickness.
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Exponential softening law to model granular flow

Experimental works on granular materials have shown that a granular medium under shear evolves towards a steady state characterized by a constant friction coefficient and zero dilatancy. In the frame of classical soil mechanics, this state is called the critical state [START_REF] Schofield | Critical State Soil Mechanics[END_REF]. Faults exhibit a similar behavior when sheared over sufficiently large distances (see [START_REF] Chambon | Laboratory gouge friction: Seismic-like slip weakening and secondary rate-and state-effects[END_REF]). This behavior has to be integrated into the constitutive description of the material in order to approximate the overall mechanical response of the system. An exponential evolution of the friction coefficient is thus assumed, which can be easily calibrated from experimental data [START_REF] Mizoguchi | Reconstruction of seismic faulting by high-velocity friction experiments: An example of the 1995 Kobe earthquake[END_REF][START_REF] Toro | Fault lubrication during earthquakes[END_REF][START_REF] Scuderi | The role of fluid pressure in induced vs. triggered seismicity: Insights from rock deformation experiments on carbonates[END_REF]. In [START_REF] Mizoguchi | Reconstruction of seismic faulting by high-velocity friction experiments: An example of the 1995 Kobe earthquake[END_REF], Di [START_REF] Toro | Fault lubrication during earthquakes[END_REF], the authors have conducted shear experiments on simulated fault gouges at seismic slip rate and they observed an exponential decay of the friction coefficient due to various multi-physical mechanisms. For experiments performed on dry materials, these authors suggest that friction softening can be attributed to gel lubrication or nano-particles lubrication.

µ = µ res (1 + ∆µ µ res e -q/γe ) (3.7) q = γp (3.8)
where µ res is the residual friction coefficient, ∆µ = µ ini -µ res the variation of the friction coefficient (µ ini is the initial friction coefficient), γ e is a characteristic slip weakening deformation and q is the hardening variable. Alternatively to the 320 flow theory of plasticity that is used in the present paper, a Cosserat continuum within the framework of hypoplasticity can be used to model granular materials [START_REF] Huang | Numerical investigations of shear localization in a micro-polar hypoplastic material[END_REF]Bauer, 2003, Tejchman, 2008).

In Fig. 16(a), the influence of the characteristic deformation γ e is investigated. The initial friction coefficient is 0.5 and the residual one is 0.3. As 325 expected, the bigger the factor is, the steeper the softening branch becomes.

However, all the curves tend to the same asymptote around 43.73 MPa, a value higher than µ res .σ = 40MPa. The reason is that the yield surface is written in terms of the generalized stress invariant τ (see Eq. 3.1) and not of τ 12 . This formulation is more general and efficient for geomaterials as it allows us to take 330 into account the evolution of all the components of the stress and couple stress tensors that are especially important under multi-physical couplings. An example of the distribution of shear stresses τ 12 and τ 21 as well as the couple stress µ 32 is shown in Fig. 17 for a global deformation of the layer u1 h of 1.2 for the case γ e = 0.2 and µ res = 0.3. In Fig. 16(b), the evolution of shear band thickness is plotted for different values of the parameter γ e . We observe that, at the beginning of the localization, the shear band size decreases until a minimum that corresponds to the inflection point of the softening branch. Then, it progressively increases towards a finite value, which is independent of the γ e value. Thus, this parameter only affects A single material length R is used in the present model to represent the 350 size of the microstructure. Previous studies on sands with a narrow grain size distribution showed a good agreement between the shear band size observed experimentally and the results obtained with a Cosserat continuum taking R equal to the mean grain size [START_REF] Mühlhaus | Scherfugenanalyse bei granularem Material im Rahmen der Cosserat-Theorie[END_REF]Vardoulakis, 1987, Alsaleh, 2004).

However, as noted by [START_REF] Rice | Heating and weakening of faults during earthquake slip[END_REF], the distribution in gouge materials follows This theory is supported by experiments conducted in the laboratory [START_REF] Steacy | An Automaton for Fractal Patterns of Fragmentation[END_REF][START_REF] Steacy | An Automaton for Fractal Patterns of Fragmentation[END_REF][START_REF] An | Particle size distribution of cataclastic fault materials from Southern California: A 3-D study[END_REF]. Therefore, the use of a single material length (i.e. the mean grain size D 50 ) to describe gouge materials is an 360 open question. However, [START_REF] Rice | Heating and weakening of faults during earthquake slip[END_REF] argues that the cohesion between small particles in an ultracataclasite layer would be much more important and could lead to the clustering of small particles into aggregates. This effect would raise the effective size of the microstructure to consider in the analysis (greater than D 50 ). Moreover, the formation of vortex patterns linked to force chain bucklings in shear bands [START_REF] Rognon | A circulation-based method for detecting vortices in granular materials[END_REF][START_REF] Tordesillas | Granular vortices: Identification, characterization and conditions for the localization of deformation[END_REF] imply the rotation of a set of particles and would also lead to a larger effective internal length.

Therefore, a sensivity analysis on the parameter R is carried out to explore its effect on the global softening response.

In Fig. 19, we observe the influence of the internal length on the stress-strain diagram (Fig. 19(a)) and the shear band thickness (Fig. 19(b)). The shear stresses tend to the same values asymptotically. However, the final values of the shear band thicknesses are different. The minimum and the residual values are plotted in Fig. 20 and we observe a linear evolution for the two estimations. A similar trend is found using hypoplastic model in the frame of Cosserat continua [START_REF] Huang | Numerical investigations of shear localization in a micro-polar hypoplastic material[END_REF].

In [START_REF] Rice | Heating and weakening of faults during earthquake slip[END_REF], the case of a principal slip zone observed in an exposure of the Punchbowl fault [START_REF] Chester | Fracture surface energy of the Punchbowl fault, San Andreas system[END_REF] is presented. Inside the ultacataclasite layer, a shear band with an apparent thickness of 100-300 µm seems to have accommodated most of the slip. The mean grain size is estimated to be D 50 =1µm. Therefore, with the set of parameters chosen here, the internal length appropriate to reproduce this pattern is one order of magnitude larger than the mean grain size (Fig. 20 ). [START_REF] Sulem | Stability analysis of undrained adiabatic shearing of a rock layer with Cosserat microstructure[END_REF][START_REF] Rice | Heating and weakening of faults during earthquake slip[END_REF].

Effect of Thermo-Hydro-Mechanical couplings

In the section above, the results of a dry sheared layer modeled as a Cosserat continuum have been shown in terms of stress-strain response and evolution of the shear band thickness. In this section, we consider a saturated layer and explore the effect of pore pressure and temperature changes on the strain localization process.

The numerical values for the parameters of the model refer to a saturated fault gouge at 7km depth, a centroidal depth for crustal faults [START_REF] Rice | Heating and weakening of faults during earthquake slip[END_REF][START_REF] Sulem | Stability analysis of undrained adiabatic shearing of a rock layer with Cosserat microstructure[END_REF]. The mechanical conditions are the same as in Section 3 and the values for all parameters are summarized in Table 3.

An homogeneous and isotropic initial state of total stress of -200 MPa and an initial homogeneous pore pressure of 66.66 MPa is assumed. In terms of initial effective stresses, it corresponds to τ 11 = τ 22 = τ 33 = -133.33MPa. A constant velocity of 1m/s, in the range of values estimated for seismic slip [START_REF] Sibson | Interactions between Temperature and Pore-Fluid Pressure during Earthquake Faulting and a Mechanism for Partial or Total Stress Relief[END_REF], is applied at the top of the layer.

Influence of the various couplings

In this section, we highlight the effects and the importance of Thermo-Mechanical (TM), Hydro-Mechanical (HM) and Thermo-Hydro-Mechanical (THM) couplings on the overall behavior of the system. The geometry and boundary conditions are kept the same as in the previous section. In Figs. 21 and22, we present the shear stress-strain response, for h s = -0.5 and h s = 0 respectively, of the fault gouge by activating the various couplings. The response is juxtaposed with the response of the gouge without any couplings. We observe that a clear difference is observed only when the thermal pressurization term (Eq. 2.7) is activated, i.e. for the THM model. The system under HM couplings does not show any difference compared to the purely mechanical one as no dilatancy is considered. This assumption is common for fault gouges [START_REF] Sleep | Physics of friction and strain rate localization in synthetic fault gouge[END_REF], which have already experienced significant sliding. For more details on the effect of dilatancy, we refer to the companion paper (Rattez et al., 2017a) and to [START_REF] Rice | On the stability of dilatant hardening for saturated rock masses[END_REF], Vardoulakis, 1985[START_REF] Vardoulakis | Deformation of water-saturated sand : I. uniform undrained deformation and shear banding[END_REF][START_REF] Garagash | Shear heating of a fluid-saturated slipweakening dilatant fault zone: 1. Limiting regimes[END_REF][START_REF] Benallal | Perturbation growth and localization in fluidsaturated inelastic porous media under quasi-static loadings[END_REF].

Regarding the TM response, it barely differs from the mechanical one. The reason is that thermal expansion is restrained by the boundary conditions and therefore it entails only a slight increase of the isotropic part of the stress tensor, which in turn leads to a slight strengthening of the system. 
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Effect of the thermal pressurization coefficient

Thermal pressurization is a weakening mechanism that has been largely studied in the context of earthquakes in order to explain the reduction of fault strength with slip [START_REF] Sibson | Interactions between Temperature and Pore-Fluid Pressure during Earthquake Faulting and a Mechanism for Partial or Total Stress Relief[END_REF][START_REF] Lachenbruch | Frictional Heating, Fluid Pressure, and the Resistance to Fault Motion[END_REF][START_REF] Rempel | Thermal pressurization and onset of melting in fault zones[END_REF].

This phenomenon is due to the discrepancy between thermal expansion coefficients of the solid matrix and pore fluids. Frictional heat induces a pore fluid pressure increase that results in a decrease of the effective mean stress. This weakening mechanism is controlled by the thermal pressurization coefficient Λ.

In the following, we investigate the influence of the thermal pressurization coefficient, Λ, on the mechanical behaviour of the system. This coefficient depends on many parameters, such as the nature of the material and of the pore fluid, the stress state and the temperature among others. Previous studies have proposed a wide range of values for Λ. For instance in [START_REF] Palciauskas | Characterization of Drained and Undrained Response of Thermally Loaded Repository Rocks[END_REF], the authors take a value of 0.59 MPa/ o C for Kayenta sandstone, while in [START_REF] Lachenbruch | Frictional Heating, Fluid Pressure, and the Resistance to Fault Motion[END_REF], the value taken for an intact rock at great depth is 1.5

MPa/ o C. For the analysis, presented in the companion paper, the thermal pressurization coefficient was considered equal to 0.9 MPa/ o C for a fault at 7km depth. Of course, if Λ= 0 MPa/ o C, the response coincides with that of the purely mechanical system, and the higher the thermal pressurization coefficient is, the stronger the weakening becomes.

In Fig. 23, we focus on the evolution of pore pressure and temperature in the middle of the shear band. The temperature evolution shows an exponential (a) (b)
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Rate dependency induced by THM couplings 450

As shown in Section 2, the mechanical constitutive law that is used in the present paper is rate independent. This means that the constitutive behavior of the fault gouge is considered independent of the applied shear velocity at the boundary of the system. However, this does not mean that the overall behavior of the system remains rate-independent when THM couplings are activated due to thermal pressurization and diffusion. It is worth emphasizing that due to the Cosserat formulation, which leads to a finite dissipation and thickness of the localization zone (see Section 3), that the effect of rate dependency due to THM couplings is possible to study. The effect of the imposed slip rate (between 100 µm/s and 1m/s) is shown in Fig. 24. Constant temperature and pore pressure are imposed at the top and bottom boundaries. The hardening modulus is taken equal to zero (perfect plasticity) in order to illustrate the effect of softening due to thermal pressurization.

Notice that for low velocities, no softening is observed as the effect of thermal pressurization is negligible. On the contrary, for higher velocities that reach the co-seismic slip velocities the softening is significant. In Fig. 25, the evolution of the shear band thickness is plotted. For high velocities, a more intense localization is observed. In particular, for slip velocity lower than 0.01 m/s, no localization occurs. The reason is that due to the low shear velocity, temperature and pore pressure increase rates are low, allowing diffusion to dominate, which inhibits localization. In other words the source term is counterbalanced by diffusion, which leads eventually to a steady state (constant pressure and temperature profiles).

During the nucleation of an earthquake, the slip accelerates to reach a maximum velocity of about 1m/s. The total slip required to reach that speed is in the order of a few millimeters [START_REF] Segall | Does shear heating of pore fluid contribute to earthquake nucleation?[END_REF]. Therefore, Fig. 24 shows that THM couplings can greatly affect the fault behavior during this phase (after a sufficient slip necessary for thermal pressurization to become significant).

Moreover, the slip along the fault is not homogeneous [START_REF] Wald | Spatial and Temporal Distribution of Slip for the 1992 Landers , California , Earthquake[END_REF] and at the border of the slip patch, the displacements are much smaller than in the middle. The large difference of shear band thickness obtained in Fig. 25 can explain the heterogeneity of localization thickness observed along the same fault as the slip is highly heterogeneous. For example, two drilling projects at different locations in the Chelungpu fault found very different sizes of the localization zone. [START_REF] Boullier | Microscale anatomy of the 1999 Chi-Chi earthquake fault zone[END_REF] found a principal slip zone of 3-20mm thick, whereas [START_REF] Heermance | Fault structure control on fault slip and ground motion during the 1999 rupture of the Chelungpu fault, Taiwan[END_REF] observed a PSZ 50-300 µm in the same range as for the exhumed part of the Punchbowl fault. 

Exponential softening law

The computations presented in Subsection 3.4 with an exponential softening are performed again with the addition of the THM couplings. We present here the results for different values of the internal length. In Fig. 27, the stressdisplacement diagram is plotted. We observe that when THM couplings are considered, the shear stress τ 12 does not reach a plateau, but keeps decreasing, as the heat produced by plastic dissipation continues to reduce the strength due to thermal pressurization. Nevertheless, the mechanical and THM models follow the same decrease at the beginning of the softening and then diverge with increasing shear deformation. As expected, thermal pressurization does not play a significant role on the nucleation of the instability, but rather on the evolution of the slip and on energy dissipation [START_REF] Segall | Does shear heating of pore fluid contribute to earthquake nucleation?[END_REF].

In Fig. 28, the evolution of the shear band thickness is investigated for the exponential softening. The THM couplings tend to make the band thinner and have more effect on the residual thickness than on the minimum. We notice that even though the shear stress does not reach a steady state, the width of the band does. The minimum and the residual values for various internal lengths are represented in Fig. 29, and we observe also a linear evolution for the two 

R=10μm

R=20μm R=30μm estimations with THM couplings.

For R=10µm, we compare these minima and residual values of the shear band width with the values obtained for perfect plasticity (Fig. 25). In both cases, the shear rate applied is 1m/s. The evolution of the thickness is similar as we first observe a decrease followed by an increase. Still, the values of the minimum and residual thickness are different. In the case of perfect plasticity, the minimum value is 124 µm and the residual thickness is 128 µm (Fig. 25).

They are larger than the values obtained considering an exponential softening:

69 µm and 85 µm (Fig. 28). Thus, we can conclude that the localization process also depends on the history of the loading.

Finally, thermal pressurization does not greatly affect the shear band thickness when the material softening alone is significant (Fig. 28). However, if the mechanical behavior is perfectly plastic, no localization is observed unless THM couplings are considered and, therefore, the thermal pressurization plays a crucial role in the control of the size of the principal slip zone. In both cases, the internal length required to simulate a shear band thickness with a size in agree- of magnitude larger than the mean grain size and is closer to D 70 (mesh size corresponding to 70% of passing mass in sieve analysis). Note that most of the existing laboratory experiments and DEM simulations have been performed

525 with a relatively narrow grain size distribution. For this case, taking a Cosserat length of the order of D 50 is valid (see [START_REF] Mühlhaus | The thickness of shear bands in granular materials[END_REF]). We expect in the future to bring new experimental results on the effect of wider grain size distribution on the shear band thickness. 

Comparisons with results of the linear stability analysis

Strain localization is seen as an instability of the inelastic macroscopic constitutive laws. The initial homogeneous state becomes unstable (bifurcation), which triggers the onset of localization [START_REF] Rudnicki | Conditions for the localization of deformation in pressure-sensitive dilatant materials[END_REF]. Moreover, we can assess the size of the localized zone by analyzing the dominant wavelength of the perturbation modes. In [START_REF] Rice | Stability and localization of rapid shear in fluid-saturated fault gouge: 1. Linearized stability analysis[END_REF], the system of equations presents a critical wavelength over which all perturbations are unstable. The band width is estimated as half the value of the critical wavelength. In the companion paper (Rattez et al., 2017a) (see also [START_REF] Sulem | Stability analysis of undrained adiabatic shearing of a rock layer with Cosserat microstructure[END_REF][START_REF] Veveakis | Failure in shear bands for granular materials: thermo-hydro-chemo-mechanical effects[END_REF]), the use of a Cosserat continuum with inertia terms enables us to have a stability diagram (Lyapunov exponent (Lyapunov, 1992) plotted versus the wavelength of the perturbation) that does not present a vertical asymptote. Thus, the shear band thickness is calculated from the value of the wavelength of the perturbation that grows the fastest (the maximum of the Lyapunov exponent).

In this section, we will compare the values of the shear band thickness obtained from the LSA and the one obtained from FEM computations. For that, at each time step of the numerical computation, we define an associated system of a homogeneous state for which LSA is performed. This associated homogeneous system is assumed to be in a softening state obtained from the slope of the numerical stress-strain (τ 12 in function of u 1 /h) curve at the considered time step. In this paper, a quasi-static analysis is conducted and therefore, no maximum in the LSA is observed in this case. Therefore, in the following, the shear band thickness obtained in the LSA is evaluated as in [START_REF] Rice | Stability and localization of rapid shear in fluid-saturated fault gouge: 1. Linearized stability analysis[END_REF].

Moreover, the methodology of comparison, which is explained in detail in Appendix C, permits us to understand how the loss of homogeneity in the system further influences the evolution of the localization process.

Comparisons for mechanical simulations with linear softening

In this section, we compare the evolution of the shear band thickness obtained numerically as described in 3.3 with the one predicted by the linear stability analysis for purely mechanical examples and considering a linear evolution of the friction coefficient. The parameters chosen are defined in 3.1 and we study the effect of the internal length and the height of the layer on the comparison.

In Fig. 30, we consider internal lengths ranging from 10 µm to 30 µm and heights of the layer of 1 or 2 mm. For a height of 1mm and R=10µm (Fig. 30 (a)), the thickness obtained at the initiation of the localization process is identical for the LSA and the finite element simulation as this state of the layer is the closest to a homogeneous state of deformation as considered in the definition of the associated system for which the linear analysis is applied. Nevertheless, for R=20 and 30 µm and the same height (Fig. 30 (b) and (c)), we do not observe the same behavior. This apparent discrepancy is due to the height of the layer which is not sufficiently large to have vanishing couple stresses in the profile.

The associated problem differs significantly from the original one in that case and leads to different values of the shear band thickness. For a height of 2mm (Fig. 30 (e) and (f)), this is no longer an issue and the size of the bands obtained at the nucleation by LSA and FEM match.

After the initiation of localization, the LSA tends to overestimate the thickness of the shear band, as the state of deformation in the original system is no longer homogeneous. Yet, the difference remains small and tends to decrease as the height of the layer increases, but if the height gets too large, we face convergence problems as the softening branch gets too steep. The tendency at the end of the numerical simulations to have a thickness that decreases to the value of the internal length is also captured by the LSA. In Fig. 32, the evolution of the shear band size is plotted for an internal length of 10 µm, a height of 1 mm and a hardening coefficient h s =-0.5 assuming linear softening. The conclusions of section 5.1 remain the same.

In Fig. 33, the evolution of the shear band thickness for an internal length of 10 µm, a height of 1 mm for an exponential softening with µ res =0.3 and γ e =0.2 is shown. The initiation and the decrease of the shear band thickness at the beginning of the localization process are well captured by the LSA. When the deformation increases, the two lines diverge as it is observed for the purely mechanical system (Fig. 31). However, unlike the mechanical system, when the shear stress converges to a residual value and the hardening modulus tends to zero, the linear analysis tends to a finite value in the THM system because the bifurcation is obtained for a positive hardening modulus (Rattez et al., 2017a). This value of the final shear band thickness obtained by the LSA is larger than the height of the layer and one order of magnitude larger than the residual thickness obtained numerically. 

Conclusions

In the present paper, a general three-dimensional Cosserat Finite Element formulation with THM couplings is presented and implemented in a parallel finite element code. This code enables the investigation of the role of the microstructure and THM couplings on the stability and evolution of various geomechanical systems. However, even though the presentation and formulation of the aforementioned model is general, we focus mainly on the behavior of faults. In particular, we study numerically the evolution of the localization zone thickness in a fault gouge and its stress-strain response, which is of major importance regarding earthquake nucleation and energy budget during seismic slip.

Following the mathematical model presented in the companion paper, the various THM couplings that take place during co-seismic slip are considered.

As far as the mechanical behavior of the gouge is concerned, an elasto-plastic Cosserat continuum is used. This is a framework of choice when the size of the microstructure plays a fundamental role in the physics of the system (see Part I), as it is the case with faults. The dependency of both the shear band thickness and the stress-strain response on various parameters is explored. More specifically, the influence of the size of the microstructure, the hardening evolution, the thermal pressurization coefficient and the slip rate is studied in details.

The comparison of the shear band thicknesses obtained from the linear stability analysis and the finite element simulations has shown that the obtained values are comparable as long as the effects of the induced perturbation of the initial homogeneous state are small enough. It highlights the importance of the induced heterogeneities in the progressive localization process and the relevance to use numerical simulations for quantitative results when studying strain localization. Moreover, the numerical simulations provide additional fundamental information not only on the stress-strain response, but also on the temperature and pore pressure evolution.

Regarding the role of the grain size, the numerical analyses corroborate the analytical findings of Part I. Indeed, numerical analyses show that the evolution of the thickness of the localization zone depends on the size of the grains of the fault core. The larger the grains are the larger the shear band thickness is. Moreover, using an appropriate softening law for fault core materials, it is shown that the final, residual thickness of the localization zone is proportional to the grain size. Considering the example of the Punchbowl fault, D 70 seems to be more appropriate as internal length for gouge materials presenting a very broad grain size distribution.

Numerical analyses also allow the investigation of the stress-strain response of the system and its dependence on the size of the microstructure. The smaller the grain size is in our model, the steeper the softening branch becomes. This relationship has a direct effect on earthquake nucleation and on the transition from aseismic to seismic slip [START_REF] Scholz | The mechanics of earthquakes and faulting, second edi Edition[END_REF]. This is not a surprising result (cf. the experiments of [START_REF] Marone | Scaling of the critical slip distance for seismic faulting with shear strain in fault zones[END_REF] on the influence of grain size on the critical slip distance), but this influence is investigated here systematically based on a physical model that can account for the size of the microstructure.

The ability of the Cosserat continuum to provide localization zone of finite thickness (contrary to the Cauchy continuum, cf. Section 3.2) makes it possible to examine the influence of the hardening modulus evolution on the shear band thickness. Different softening laws are used, including an exponential softening of the friction coefficient, which is adequate for modeling the mechanical behavior of fault gouges and can be calibrated based on experimental data. Hardening (softening) modulus encapsulates and upscales various micromechanical phenomena and, together with the intrinsic Cosserat lengths, affects the stressstrain response. However, the roles of the hardening modulus and grain size are distinct. It is shown that the hardening modulus controls only the slope of the softening branch, while the grain size controls the localization thickness and thus affects the slope of the softening branch.

Another important factor, whose role was explored in detail in the companion paper, is thermal pressurization. This destabilizing mechanism is practically negligible at the nucleation phase of seismic slip and its effect is rather noticed during rapid co-seismic slip, where temperature increases significantly due to friction. The magnitude of this phenomenon is described through the, so-called, thermal pressurization coefficient, which expresses the increase of pore pressure in the gouge due to temperature increase. The numerical analyses confirm and extend the qualitative findings presented in Part I. Under high shearing deformation rates, it is shown that the thermal pressurization coefficient has a direct impact on the post peak evolution of the stress-strain response. Increased softening is observed for higher values of the aforementioned coefficient leading to more localized deformation. The effect of thermal pressurization is pronounced even when no-hardening/softening is considered, showing the significance of the mechanism in modeling and energy budget during seismic slip.

A substantial result exhibited in this paper is that both the softening, postpeak behavior and the shear band thickness depend on the applied velocity, showing thus rate dependency despite assuming a rate-independent constitutive description of the material. Thermal pressurization is again the central mechanism for this apparent rate-dependent behavior. In particular, the applied velocity controls the local dissipation rate due to friction and consequently the pore pressure increase rate. The pore pressure increase rate is controlled in parallel by the thermal and pore-pressure diffusion mechanisms, which introduce a characteristic time scale. Under high velocities the characteristic diffusion rate is small in comparison to the dissipation rate, which has as a result a more localized profile of deformation and a steeper post-peak softening branch. However, under low velocities, the diffusion mechanisms dominate, leading to a quasi homogeneous deformation profile without significant global softening if perfect plasticity is assumed for the fault gouge.

In this study, we focused on the role of the most prominent Thermo-Hydro-Mechanical couplings related seismic slip (see also [START_REF] Viesca | Ubiquitous weakening of faults due to thermal pressurization[END_REF]).

Yet, the present model can be extended to account for other weakening processes observed in fault zones, such as grain cataclasis and chemical reactions, among others. The former can be modeled by adequately varying the internal length of the Cosserat model [START_REF] Bauer | Simulation of the Influence of Grain Damage on the Evolution of Shear Strain Localization[END_REF] and the latter by adding additional terms to the constitutive description of the Cosserat material and the mass and energy balance equations [START_REF] Sulem | Thermal decomposition of carbonates in fault zones: Slip-weakening and temperature-limiting effects[END_REF][START_REF] Brantut | Strain Localization and Slip Instability in a Strain-Rate Hardening, Chemically Weakening Material[END_REF][START_REF] Veveakis | Failure in shear bands for granular materials: thermo-hydro-chemo-mechanical effects[END_REF][START_REF] Platt | Strain localization driven by thermal decomposition during seismic shear[END_REF]. Such extensions will provide in future work finer descriptions of important mechanisms that take place at different time and length scales and give valuable results regarding seismic slip and energy dissipation. 
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 1 Figure 1: Infinite layer of a fault material under shear. Notations and boundary conditions.
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 2 Fig. 2, the shear stress τ 12 at the top of the layer is plotted versus the normalized
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 2 Figure 2: Stress-strain diagram obtained for an elasto-plastic infinite sheared layer modeled as a Cosserat continuum for different numbers of elements in the vertical direction
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 3 Figure 3: Cosserat rotation with 80 elements in the vertical direction for τ 12 = 48MPa

  215independent which is a key feature of the Cosserat model. The deformation profile is almost identical for 80 and 160 elements. The profile for 240 elements is not represented in this graph as it coincides with the one obtained with the mesh of 160 elements.
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 4 Figure 4: Mesh-independency of the shear strain profile for τ 12 = 48 MPa

Figure 5 :

 5 Figure 5: Stress-strain graph for converged meshes computed with different values of the stress
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 68 Figure 6: Stress-strain diagram obtained for an elasto-plastic infinite sheared layer modeled as a classical Cauchy continuum for different numbers of elements in the vertical direction

Figure 9 :

 9 Figure 9: Computed dissipation as a function of the number of elements in the vertical direction (ny) for a Cosserat continuum and a Cauchy continuum
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 10 Figure 10: Effect of the hardening coefficient on the load-displacement diagram
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 11 Figure 11: Effect of the hardening coefficient on the shear strain γ 12 profile for τ 12 = 48MPa
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 12 Figure 12: Effect of the hardening modulus on the shear band thickness evolution
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 13 Figure 13: Effect of the internal length on the stress-strain graph
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 14 Figure 14: Effect of the internal length on the shear band thickness evolution
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 15 Figure 15: Effect of the internal length on the total shear strain profile for τ 12 = 48MPa
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 16 Figure 16: Effect of characteristic weakening deformation, γe, on: (a) the stress-strain diagram, (b) the shear band thickness evolution (µres = 0.3).

340Figure 17 :Figure 18 :Figure 19 :

 171819 Figure 17: In the case of γe = 0.2 and µres = 0.3.(a) Profile of the stresses τ 12 and τ 21 (b) Profile of the couple stresses µ 32
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  fractal law and is much broader. Based on these observations,[START_REF] Sammis | The kinematics of gouge deformation[END_REF] developed a communition model to explain the generation of fault gouges.

Figure 20 :

 20 Figure 20: Evolution of the minimum and residual shear band thickness with the internal length R.

Figure 21 :Figure 22 :

 2122 Figure 21: Effect of Thermo-Mechanical (TM) and Thermo-Hydro-Mechanical (THM) couplings on the stress-strain diagram with linear softening law hs = -0.5 (R=10 µm).
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  development and is slightly influenced by the value of the thermal pressurization coefficient. For Λ=2 MPa/ o C, the increase of temperature is faster than for lower thermal pressurization coefficients, but the final value attained is lower as the shear band width is decreasing faster and thus the maximum shear strain reached is smaller. The pore pressure evolution is more affected than the tem-445 perature by the thermal pressurization, as it is acting as a source term in the fluid mass balance equation. When the pore pressure increases, τ 11 and τ 33 and τ 22 decreases in the same way. It results in a decrease of the mean effective normal stress and causes a weakening of the shear stress.

Figure 23 :

 23 Figure 23: Effect of the thermal pressurization coefficient for hs=-0.5 and an internal length R=10 µm : Evolution of (a) the increase of pore pressure and (b) the increase of temperature, in the middle of the layer.

Figure 24 :

 24 Figure 24: Effect of slip rate on the stress-strain diagram for perfect plasticity (hs = 0), and an internal length R=10 µm

Figure 25 :

 25 Figure 25: Effect of slip rate on the shear band thickness for perfect plasticity (hs = 0 and R=10 µm).

Figure 26 :

 26 Figure26: Effect of slip rate for perfect plasticity (hs = 0), and an internal length R=10 µm on (a) the temperature increase profile (b) the pore pressure increase profile, at u 1 h = 0.5

Figure 27 :

 27 Figure 27: Effect of THM couplings on the stress-strain diagram for an exponential hardening (µres = 0.3 and γe = 0.2) and different internal lengths (R=10, 20 and 30 µm) considering a slip rate of 1m/s.

Figure 28 :

 28 Figure 28: Effect of THM couplings on the shear band thickness evolution for an exponential hardening (µres = 0.3 and γe = 0.2) and different internal lengths (R=10, 20 and 30 µm).

Figure 29 :

 29 Figure 29: Effect of THM couplings on the evolution of the minimum shear band thickness and the residual one with the internal length.

Figure 30 :Figure 31 :

 3031 Figure30: Comparisons of the shear band thickness evolution for internal lengths between 10 and 30 µm and two heights of the layer h, 1 and 2 mm using a linear evolution of the friction coefficient.

Figure 32 :Figure 33 :

 3233 Figure 32: Comparison of LSA and FEM results for the shear band thickness evolution for the THM model assuming an internal length R = 10µm, a height of 1 mm, a hardening coefficient hs = -0.5 and using a linear evolution of the friction coefficient.

Figure

  Figure B.36: Effect of the Boundary conditions on the stress-strain diagram

  Figure C.42: Example of wavelengths selection evolution with hardening for an isothermal, drained example considering inertia terms.

Table 1 :

 1 Values for the coefficients of the stress and strain generalized deviatoric second invariants for a Cosserat continuum from

Table 2 :

 2 Numerical values of the mechanical parameters of a deep rock gouge from Sulem

		et al. (2011), Rice (2006)
		horizontal displacement at the top. As expected, the plastic regime is reached
	205	for τ 12 = µσ and followed by a softening behavior. The results for 160 and
		240 elements in the vertical direction exhibit no clear difference, indicating a
		mesh-convergence.

Table 3 :

 3 Numerical values for the parameters of a deep rock gouge from

	parameters	values	units	parameters	values	units
	K	20 × 10 3	MPa	µ	0.5	
	G	10 × 10 3	MPa	β	0	
	Gc	5 × 10 3	MPa	λ *	7.4 × 10 -5	/ o C
	R	10	µm	ρC	2.8	MPa/ o C
	ρ	2500	kg/m 3	c th	1	mm 2 /s
	β *	8.2 × 10 -5 MPa -1	c hy	12	mm 2 /s
	n	0.04		α s	2.5 × 10 -5	/ o C

localized deformations as observed experimentally for granular materials[START_REF] Hall | Discrete and continuum analysis of localised deformation in 49 sand using X-ray µCT and volumetric digital image correlation[END_REF].

Comparisons for mechanical simulations with exponential hardening

The comparison between LSA and FEM is also made for the case of an exponential hardening evolution in Fig. 31 . The parameters and the results of the simulations are presented in section 3.4. We consider here a residual friction coefficient of 0.3 and a factor in the exponential γ e of 0.2. As in the preceding section, the analysis focuses on the effect of the internal length and of the height of the layer.

For the initiation of localization, we observe that the thicknesses predicted by the LSA fit well the numerical ones for internal lengths of 10 and 20 µm (Fig. 30 (a), (b), (d) and (e)). It is not the case for R=30 µm as the distribution of couple stress µ 32 over the layer doesn't reach a value close to zero at the boundary, even for a height of 2 mm (Fig. 30 (c) and (f)). Note that in Fig. 31(d) (R=10µm and h=2mm), the y-axis ranges from 0 to 1mm. Indeed, the numerical results exhibit the formation of two symmetrical shear bands at a quarter and three quarters of the layer thickness. Therefore the comparison with LSA is performed by considering only half of the layer (of thickness 1mm) in order to capture only one band.

After the nucleation, the shear band size decrease is well captured by the LSA. But as the thickness approaches its minimum value, the two curves begin to diverge significantly. The level of deformation is higher than the one corresponding to a linear softening of the friction coefficient, which explains this apparent contradiction with the section above. Moreover, when the shear stress tends to the residual value, the hardening modulus tends to zero. Thus, the shear band thickness obtained by the linear analysis grows indefinitely.

Comparisons for THM simulations

The comparison of LSA and FEM results is then performed for the system of the infinite sheared layer considering Thermo-Hydro-Mechanical couplings with the set of parameters described in Table 3. Only one example for a linear evolution of the friction coefficient and one example for the exponential law are presented here.

Appendix A. Determination of the shear band thickness

In this paper, the plastic strain rate distribution in the layer, γp (x 2 ), is chosen to evaluate the shear band thickness, like previous numerical as it enables 56 to follow the instantaneous evolution of the system [START_REF] Platt | Stability and localization of rapid shear in fluid-saturated fault gouge: 2. Localized zone width and strength evolution[END_REF][START_REF] Hall | Discrete and continuum analysis of localised deformation in 49 sand using X-ray µCT and volumetric digital image correlation[END_REF]. The function used to interpolate this field and determine from its expression the thickness is a Cosine function. However, it is not the only choice and previous authors have used a Gaussian shape approximation of the strain rate profile [START_REF] Andrews | A fault constitutive relation accounting for thermal pressurization of pore fluid[END_REF][START_REF] Noda | Earthquake ruptures with thermal weakening and the operation of major faults at low overall stress levels[END_REF][START_REF] Garagash | Seismic and aseismic slip pulses driven by thermal pressurization of pore fluid[END_REF], Platt et al., 2014[START_REF] Rempel | Thermal pressurization and onset of melting in fault zones[END_REF] at each time step:

where A is the amplitude of the maximum plastic strain rate, D is the standard deviation of the Gaussian distribution and Y is the position of the center. From the fitting of γp (x 2 ) with this Gaussian shape function, we define the shear band thickness as twice the full width at half maximum 2 2ln(2)D.

The trigonometric interpolating function used in the paper is defined by:

where B is twice the maximum plastic strain rate, Y is the position of the center, λ is the wavelength of the cosine function and

) is a rectangular function defined by:

As stated in the paper, the wavelength of the cosine function is interpreted directly as the shear band thickness and allows a clearer link with results of the LSA (Rattez et al., 2017a).

In shown for the example of Section 3.1, with a mesh of 80 elements. Furthermore, we have plotted the size of the plastic zone (the zone defined by F = 0, see Eq. 3.1). All curves exhibit the same tendency: a progressive decrease of the size of the band with accumulated slip. In the paper, the shear band thickness is computed using the Cosine function, as the adjusted coefficient of determination 1020 is better. The methodology to assess the shear band thickness performing a Linear Stability Analysis (LSA) is widely developed in the companion paper (Rattez et al., 2017a). In this section, we briefly describe the main results and explain 1065 how it is applied in order to compare with the numerical results described in Section 3.3.

The bifurcation parameter used for the Lyapunov stability analysis in the companion paper is the hardening modulus. For a value of this modulus, the study of the stability diagram enables to obtain an evaluation of the shear 1070 band thickness. The way this modulus develops during shearing is calculated from a stress-strain diagram obtained either from an experiment or a numerical simulation. Thus, the first step for the comparison consists in assessing the hardening modulus evolution for each numerical simulations.

In order to determine the hardening modulus evolution to insert in the LSA, some preliminary calculations are performed for compatibility of the homogeneous associated system for which the LSA is applied. The LSA in the companion paper is performed considering boundary conditions for the perturbation to the layer defined as µ 32 = 0. In other words, the linear stability analysis is valid for a geometry that has no Cosserat effects at its boundary. To fulfill this condition, the evolution of profiles for the shear stresses τ 12 , τ 21 and the couple stresses µ 32 are plotted (see Fig. C.38). From these profiles, we can extract of value of the effective height h * used to calculate the deformation. h * is defined as the minimum distance between the points for which µ 32 is less than 0.1% of the maximum absolute value. 6247 20.3027 24.2587 27.0138 28.9324 30.2685 31.199 31.8469 32.2981 32.6123 32.831 32.9832 33.0891 33.1627 33.2136 33.2487 33.2727 33.2886 33.2985 33.3039 33.3053 33.3031 33.2968 33.2857 33.2687 33.2464 33.2187 33.1833 33.1365 33.0734 32.9946 32.9035 32.7984 32.6788 32.5431 32.3899 32.2183 9447 54.4213 52.9307 51.4947 50.128 48.84 47.63 46.4947 45.434 44.448 43.5273 42.6667 41.8633 41.1133 40.4147 39.7638 39.1565 38.5905 38.0645 37.5767 37.1252 36.7084 36.3245 35.9719 35.6505 35.3581 35.093 34.8551 34.6408 34.4483 34.2767 34.1236 33.9879 33.8682 33.7632 33.672 33.5933 33.5302 33.4834 33.448 33.4203 33.3979 33.3809 33.3699 33.3636 33.3613 33.3628 33.3682 33.3781 33.394 33.4179 33.453 33.504 33.5776 33.6835 33.8357 34.0544 34.3685 34.8197 35.4677 36.3981 37.7343 39.6529 42.408 The global deformation for the associated system is then calculated using the formula γ In order to evaluate the shear band thickness in the companion paper from the linear stability analysis, THM couplings and inertia terms are considered. But these assumptions are not fulfilled for all numerical simulations. When only THM couplings are taken into account(but not the inertia), the stability diagram presents a asymptote instead of a maximum and the shear band thickness is the wavelength associated with the position of this asymptote (see Fig. C.40).

If inertia terms are considered for the purely mechanical system, there is a maximum in the stability diagram. Without inertia, it is not possible to perform a LSA for this system as no temporal terms remain in the equations. Therefore, the diagram is plotted with inertia terms, and the values of the minimum unstable wavelength λ min and the wavelength of fastest propagation λ max are extracted (see Figs. C.41 and C.42).