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Abstract

A Thermo-Hydro-Mechanical (THM) model for Cosserat continua is developed

to explore the influence of frictional heating and thermal pore fluid pressuriza-

tion on the strain localization phenomenon. A general framework is presented

to conduct a bifurcation analysis for elasto-plastic Cosserat continua with THM

couplings and predict the onset of instability. Furthermore, the presence of an

internal length in Cosserat continua enables to estimate the thickness of the

localization zone. This is done by performing a linear stability analysis of the

system and looking for the selected wavelength corresponding to the instability

mode with fastest finite growth coefficient. These concepts are applied to the

study of fault zones under fast shearing. For doing so, we consider a model of

a sheared saturated infinite granular layer. The influence of THM couplings on

the bifurcation state and the shear band width is investigated. Taking represen-

tative parameters for a centroidal fault gouge, the evolution of the thickness of

the localized zone under continuous shear is studied. Furthermore, the effect of

grain crushing inside the shear band is explored by varying the internal length

of the constitutive law.
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1. Introduction

Strain localization is of major importance in fault zones as it affects shear

heating and pore pressure build up during seismic slip (Kanamori and Brodsky,

2004). In this paper we investigate the effect of microstructure and of various

Thermo-Hydro-Mechanical (THM) couplings on the behavior of geomaterials5

and, in particular, on the behavior of mature faults zones during pre- and co-

seismic slip. Seismic slip is accompanied by extreme shear strain localization

into a narrow, thin zone, which is commonly called Principal Slip Zone (PSZ).

According to field observations, the PSZ has a finite thickness (see for instance

Punchbowl fault, San Andreas system (Chester and Chester, 1998), Big Hole10

normal fault, Utah (Shipton et al., 2006), Median Tectonic line, Japan (Wib-

berley and Shimamoto, 2003)), which varies from hundreds of microns to few

centimetres (Sibson, 2003), depending on the size of the microstructure and of

THM mechanisms. The PSZ lies within a zone of highly fragmented, granulated

material called fault gouge (Ben-Zion and Sammis, 2003).15

Theoretical and experimental research show that strain localization is caused

and enhanced by weakening mechanisms that can either be of pure mechanical

origin (e.g. geometrical and mechanical changes of the solid skeleton (Togo and

Shimamoto, 2012), such as grain cataclasis, reorientation, debonding etc.) or

of a combination of various physico-chemical couplings (Sulem and Stefanou,20

2016). For instance, thermal pressurization of the pore fluid in saturated fault

materials is a THM mechanism that plays a fundamental role in the weaken-

ing of fault zones (Lachenbruch, 1980, Viesca and Garagash, 2015). Thermal

pressurization is a consequence of the contrast between the thermal expansion

coefficient of the pore fluids and the solid matrix (Rice, 2006) and leads to a25

decrease of the effective mean stress and consequently to a reduction of the

shear strength of the gouge. The thickness of the PSZ governs the temperature

build-up and the overall energy budget. It is worth mentioning that the acti-

2



vation of other multi-physical phenomena that involve chemical processes are

also controlled by the thickness of the localization zone (Brantut et al., 2011,30

Veveakis et al., 2013, Platt et al., 2015, Sulem and Stefanou, 2016).

Models that are able to describe the localization thickness and its evolution

have to take into account both the size of the microstructure of a fault gouge as

well as the multi-physical couplings that take place during seismic slip. Cosserat

theory allows in a natural way to account for the aforementioned characteristics,35

leading to a shear band of finite thickness even under low strain rates (Mühlhaus

and Vardoulakis, 1987). The use of this theoretical framework is also justified

by the fact that it can cover a large spectrum of strain rates, i.e. from very

low (pre-seismic) to quite high (co-seismic). Notice that existing models for

fault gouges based on the classical, Cauchy continuum (also called Boltzmann40

continuum (Vardoulakis, 2009)) lead to an infinitely small localized zone (slip on

a mathematical plane) (Vardoulakis, 1985) unless rate-dependent constitutive

behavior is considered for high strain rates and/or THM couplings are explicitly

taken into account (Rice et al., 2014, Platt et al., 2014). Moreover, grain size

cannot be considered in the constitutive description of Cauchy continua, despite45

the fact that it has been recognized to play an important role on fault gouge

behavior (Anthony and Marone, 2005, Cashman et al., 2007, Phillips and White,

2017).

Cosserat continuum (Cosserat and Cosserat, 1909) is a special case of micro-

morphic continua (Germain, 1973, Godio et al., 2016), also called generalized50

or higher order continua. In addition to the translational degrees of freedom

of the Cauchy continuum, Cosserat theory considers rotational degrees of free-

dom at the material point that allow for a better representation of the physics

and the mechanical behavior of heterogeneous solids with non-negligible mi-

crostructure. Cosserat continuum theory naturally incorporates one or several55

material lengths related to the microstructure in the constitutive equations of

the material (see Appendix B).

Cosserat continuum has been previously used for studying the behavior of

fault gouges and strain localization (Sulem et al., 2011, Veveakis et al., 2013). In
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these works the conditions for the onset of localization were investigated under60

THM couplings with a microstructure of given size. In the present papers (Part

I and II) we extend the aforementioned works by studying (a) the evolution of

the localization zone thickness and its dependency on various parameters such

the size of the microstructure, (b) the full stress-strain response of the fault

gouge, which is related to the transition from seismic to aseismic slip (Scholz,65

2002, Tse and Rice, 1986) and (c) the apparent rate dependency of the system

due to THM couplings even under rate-independent constitutive laws.

In part I, we focus mainly on point (a) using bifurcation theory and Linear

Stability Analysis (LSA). The approach is analytical and it allows to explore

qualitatively the influence of the evolution of the hardening parameter and of the70

grain size on the thickness of the localized zone. In Sections 2 and 3 we present

the momentum, mass and energy balance equations and the full constitutive

equations for general Cosserat elasto-plastic continua. The bifurcation analysis

in this framework is presented in Section 4 and linked with classical results

like the singularity of the acoustic tensor. Finally, the bifurcation analysis is75

applied to the problem of slip in a fault zone (Section 5) and the influence of

the main parameters of the model is investigated as far it concerns the onset of

localization and the shear band thickness evolution.

2. Basic concepts of three-dimensional Cosserat continuum mechan-

ics and balance equations80

The Cosserat continuum is a special case of first order micromorphic con-

tinua, for which the particle is considered rigid (Godio et al., 2016, Stefanou

et al., 2010). In the frame of Cosserat theory the kinematics of a material point

in three-dimensional (3D) space is described by six degrees of freedom, which

are three translations ui and three rotations ωci (i = 1, 2, 3). In this section, the85

basic concepts of Cosserat theory are outlined.
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2.1. Cosserat kinematics

Compared to a Cauchy continuum formed by a set of particles identified by

their coordinates xi, we attach to every particle a system of axes parallel to the

Cartesian one and with M, the center of mass of the particle, as origin.90

If we consider a point M’, in the particle of center M, defined by its coordi-

nates x′i, the displacement field in M’, u′i, can be written as follows, considering

only terms of first order.

u′i = ui + χij x
′
j (2.1)

Einstein summation convention is followed herein. χij is the micro-deformation

tensor. As the microstructure is considered rigid in Cosserat theory, the micro-95

volume cannot deform and can only rotate. Thus, the micro-deformation tensor

χij is antisymmetric and is called the Cosserat rotation ωcij . As ωcij is antisym-

metric, we can write :

ωcij = −eijk ωck (2.2)

where eijk is the Levi-Civita symbol.

The following kinematic fields are introduced: the deformation tensor γij100

- which is split into its symmetric εij and antisymmetric part γ[ij] - and the

curvature tensor κij - also split into its symmetric κ(ij) and antisymmetric part

κ[ij].

εij =
1

2
(ui,j + uj,i) Ωij =

1

2
(ui,j − uj,i)

γ[ij] = Ωij − ωcij κij = ωci,j

γij = εij + γ[ij] = ui,j − ωcij = ui,j + eijk ω
c
k (2.3)

The macroscopic strain and rotation tensors (εij and Ωij) are the symmetric

and antisymmetric parts of the displacement gradient as in a classical Cauchy105
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continuum. γ[ij] is the difference between the macroscopic rotation Ωij and the

rotation of the microstructure ωcij . The curvature tensor κij is defined as the

gradient of Cosserat rotations.

2.2. Momentum and angular momentum balance equations

Correspondingly the stress tensor τij is also divided into its symmetric σij110

and antisymmetric part τ[ij]. The symmetric part corresponds to the macro-

scopic stresses (the ones that are considered in Cauchy continuum), the anti-

symmetric one is nonzero in general. A tensor for the couple-stress is defined

by µij linked to the curvature.

x1

x2

x3

τ33

τ23

τ13

τ32

τ22

τ12 τ21

τ31

τ11

μ22

μ32
μ12

μ23

μ33
μ13

μ31
μ11

μ21

Figure 1: Representation of stress and couple-stress components.

The momentum balance equations can be written as follows (assuming no115

body forces acting on the medium)(Vardoulakis and Sulem, 1995, Stefanou et al.,

2017):

τij,j − ρ
∂2ui
∂t2

= 0 (2.4)

µij,j − eijk τjk − ρI
∂2ωci
∂t2

= 0 (2.5)

where ρ is the density, I is the micro-inertia, which is considered isotropic

here. For example, I = 2
5R

2 if we identify the particle as spherical grains with

radius R (I = 1
2R

2 in 2D ) (Vardoulakis and Sulem, 1995).120
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2.3. Energy balance equation

The energy and mass balance equations as classically derived for a saturated

Cauchy continuum are extended here to a saturated Cosserat continuum.

The energy conservation in a quasi-static transformation is expressed as

follows:125

ρC
∂T

∂t
= PH − jQi,i (2.6)

where ρC is the specific heat per unit volume of the material in its reference state

and jQi represents the heat flux density. It is assumed here that the rate of heat

produced PH is due to plastic dissipation, thus, PH = σij ε̇
p
ij + τ[ij]γ̇

p
[ij] +µij κ̇

p
ij .

This expression is the sum of three terms, one corresponding to the plastic

work due to the symmetric part of the stress tensor (Cauchy), σij ε̇
p
ij , and the130

two others are due to Cosserat effects (Vardoulakis and Sulem, 1995). ε̇pij ,

γ̇p[ij] and ˙κij
p are the plastic symmetric deformation rate, plastic antisymmetric

deformation rate and the plastic curvature rate tensors respectively. The heat

flux is linked to the temperature gradient by Fourier’s law:

jQi = −kT T,i (2.7)

where kT is the thermal conductivity of the material which is assumed ho-135

mogeneous here. Substituting these two expressions gives the energy balance

equation.

ρC(
∂T

∂t
− cthT,ii) = σij ε̇

p
ij + τ[ij]γ̇

p
[ij] + µij κ̇

p
ij (2.8)

where cth = kT
ρC is the thermal diffusivity.

2.4. Mass balance equation

We consider a porous medium consisting of two phases, i.e. the solid skeleton140

and the fluid contained in the pores. The conservation of the mass of the skeleton

and the fluid, when no mass exchange occurs is:
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dsms

dt
= 0

dfmf

dt
= 0 (2.9)

where dπ

dt refers to the particle derivative with respect to particle π (= s or f)

(Coussy, 2004). mf and ms are respectively the fluid mass and the skeleton

mass per unit volume of the medium. If ρs and ρf are the skeleton and fluid145

mass densities so that ρs (1−n) dΩt and ρf n dΩt are respectively the skeleton

mass and the fluid mass currently contained in the material volume with an

Eulerian porosity n, we obtain:

dsms

dt
=
ds(ρs (1− n) dΩt)

dt
=
ds(ρs (1− n))

dt
dΩt + ρs (1− n)

dsdΩt

dt
dfmf

dt
=
df (ρf n dΩt)

dt
=
df (ρf n)

dt
dΩt + ρf n

dfdΩt

dt
(2.10)

By applying the Eulerian continuity conditions and using the expression of

the particle derivative (Coussy, 2004) we get:150

∂(ρs (1− n))

∂t
+ ((ρs (1− n))V si ),i = 0

∂(ρf n)

∂t
+ (ρf n V fi ),i = 0 (2.11)

where V si and V fi are the velocity fields of the solid and fluid phase respectively.

(),i represents the divergence operator applied to the current state. However,

we keep a small strain framework and therefore no distinction will be made in

the following between the reference and the deformed configuration.

If we neglect the gradient of the density of the fluid and solid phases, Eq. 2.11155

becomes

−ρs ∂n
∂t

+ (1− n)
∂ρs

∂t
+ ρs ((1− n)V si ),i = 0 (2.12)

n

ρf
∂ρf

∂t
+
∂n

∂t
+ n V fi,i = 0 (2.13)
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Finally, adding Eq. 2.12 divided by ρs and Eq. 2.13 yields:

n

ρf
∂ρf

∂t
+

1− n
ρs

∂ρs

∂t
+ V si,i + (n(V fi − V

s
i )),i = 0 (2.14)

If we assume that the density of the fluid ρf and of the solid ρs only depend on

the pressure and temperature (Rice, 2006), we obtain:

∂ρf

∂t
= ρf βf

∂p

∂t
− ρf λf

∂T

∂t
∂ρs

∂t
= ρs βs

∂p

∂t
− ρs λs

∂T

∂t
(2.15)

where βf and βs are the compressibilities per unit volume of the pore fluid160

and the solid phase respectively and λf , λs the thermal expansivities per unit

volume. The fluid mass flux is assumed to obey the isotropic Darcy’s law (for a

quasi-static flow without any body force).

n(V fi − V
s
i ) = − χ

ηf
p,i (2.16)

where χ is the intrinsic permeability of the porous medium, and ηf is the vis-

cosity of the pore fluid. Inserting Eqs. 2.15, 2.16 in Eq. 2.14 we obtain165

∂p

∂t
= chy p,ii +

λ∗

β∗
∂T

∂t
− 1

β∗
∂εv
∂t

(2.17)

where chy = χ/(ηfβ∗) is the hydraulic diffusivity, β∗ = nβf + (1 − n)βs is the

mixture compressibility, λ∗ = (nλf + (1 − n)λs) is the coefficient of thermal

expansion of the soil-water mixture (Vardoulakis, 1986). This formulation dif-

fers from Sulem et al. (2011) and Rice (2006), where the authors introduce the

mechanical constitutive equation through the variation of porosity. Therefore,170

instead of having the term depending on total volumetric deformation εv, they

have one depending on plastic volumetric deformation εpv. In Eq. 2.17, we keep

the volumetric deformation without assuming any particular constitutive equa-

tion (Lachenbruch, 1980). Its evolution can be controlled by damage, plastic
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deformation or evolution of the porous space. The link between the two formu-175

lations in the case of an elasto-plastic constitutive model is shown in Appendix

A.

3. Thermo-Hydro elasto-plastic model for fluid-saturated isotropic

Cosserat materials

For simplicity, constitutive equations are written in terms of the Terzaghi180

effective stress for both the elastic and plastic strains. However the underlying

assumption of elastically incompressible grains can be overcome without diffi-

culty by resorting to Biot’s theory of poromechanics (Biot and Willis, 1957).

3.1. Isotropic elastic constitutive law

The general constitutive equations for a linear isotropic elastic Cosserat con-185

tinuum are defined by six coefficients. The two classical deformation moduli, K

and G, and four additional coefficients, Gc, L, M , and Mc (Mindlin, 1964).

τij = Kγekk δij + 2G(εeij −
1

3
γekk) + 2Gcγ

e
[ij] (3.1)

µij = Lκekk δij + 2M(κe(ij) −
1

3
κekk) + 2Mcκ

e
[ij] (3.2)

(.)e denotes elastic quantities. In comparison with the classical Cauchy con-

tinuum four additional moduli are used for an isotropic, centrosymmetric linear

elastic Cosserat continuum. The first one is Gc, which has a dimension of stress190

and relates the antisymmetric parts of the stress and deformation tensors, which

are conjugate in energy. The other moduli, L, M and Mc have the dimension

of length squared times stress. Any ratio of L, M or Mc to K, G or Gc results

in a material parameter of dimension of length squared (Cowin, 1970).

In the analyses of simple shearing of an infinite layer presented in Section 5195

the choice of L does not have any influence due to invariance in x1 and x3

directions. Moreover, setting Mc = M = GR2

h3
, where h3 a coefficient defined in
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Appendix B, we assure that no out-of-plane moments are developed (see Fig. 1

and Eq. 3.2).

The generalized elastic stress-strain relationships are written as:

τij = Ceijkl γkl

µij = Me
ijkl κkl (3.3)

where the elastic stiffness tensors Ceijkl and Me
ijkl are derived from (Eqs. 3.1 -

3.2).

Ceijkl = (K − 2

3
G)δijδkl + (G+Gc)δikδjl + (G−Gc)δilδjk (3.4)

Me
ijkl = (L− 2

3
M)δijδkl + (M +Mc)δikδjl + (M −Mc)δilδjk (3.5)

3.2. Thermo-elasto-plastic incremental constitutive relationship200

Following Mühlhaus and Vardoulakis (1987), a flow theory of plasticity for

granular media with Cosserat microstructure can be derived by keeping the

same definitions for the yield surface and the plastic potential as in the classical

theory and by generalizing the stress and strain invariants for Cosserat continua.

We decompose the deformation rate tensor and the curvature rate tensor into

elastic, plastic and thermal parts (Lemaitre et al., 2009):

γ̇ij = γ̇eij + γ̇pij + γ̇thij and κ̇ij = κ̇eij + κ̇pij (3.6)

˙(.) denotes the time derivative. Thermal strain rates are written as: γ̇thij =

αṪ δij where α is the coefficient of thermal expansion. No thermal part for the

curvature is considered as the thermal expansion for isotropic solids does not

have a direct effect on the rotations inside the medium.

Denoting F the yield function and assuming that F depends on the stress205

invariants and on accumulated plastic strains F = F (τ, σ, γp, εpv), we obtain

Ḟ =
∂F

∂τ
τ̇ +

∂F

∂σ
σ̇ +

∂F

∂γp
γ̇p +

∂F

∂εpv
ε̇v
p = 0 (3.7)
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An example of generalized invariants used for Cosserat media is presented in

detail in part 4.

Denoting Q the plastic potential and λ̇ the plastic multiplier, we have

γ̇pij = λ̇
∂Q

∂τij

κ̇pij = λ̇
∂Q

∂µij
(3.8)

The hardening modulus Hs is defined by:

Hs = − ∂F
∂γp

(3.9)

We assume the following equalities that can be proven for several yield functions

that have a linear dependence in τ and σ (see for example Drucker-Prager in

the following):

λ̇ = γ̇p and ε̇pv = β γ̇p (3.10)

The consistency condition gives

λ̇ =
< 1 >

Hp
(
∂F

∂τij
Ceijkl(γ̇kl − α Ṫ δkl)) +

∂F

∂µij
Me
ijklκ̇kl (3.11)

or,

λ̇ =
< 1 >

Hp
(bFkl (γ̇kl − α Ṫ δkl) + bFMkl κ̇kl) (3.12)

with

Hp =
∂F

∂τij
Ceijkl

∂Q

∂τkl
+

∂F

∂µij
Me
ijkl

∂Q

∂µkl
+Hs (3.13)

< 1 >=

1 if F = 0 and λ̇ > 0 (plastic loading)

0 otherwise

(3.14)

and,

bFkl =
∂F

∂τij
Ceijkl (3.15)

bQij = Ceijkl
∂Q

∂τkl
(3.16)

bFMkl =
∂F

∂µij
Me
ijkl (3.17)

bQMij = Me
ijkl

∂Q

∂µkl
(3.18)
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Using Eqs. 3.8 and 3.12, the incremental constitutive equations can be expressed

as:

τ̇ij = (Ceijkl −
< 1 >

Hp
bQijb

F
kl) ˙γkl − αṪ (Ceijkl −

< 1 >

Hp
bQijb

F
kl)δkl −

< 1 >

Hp
bQijb

FM
kl κ̇kl

µ̇ij = (Me
ijkl −

< 1 >

Hp
bQMij bFMkl ) κ̇kl −

< 1 >

Hp
bQMij bFkl γ̇kl − αṪ

< 1 >

Hp
bQMij bFkl δkl

(3.19)

These constitutive relationships can be written in the general form.

τ̇ij = Cepijkl γ̇kl +Dep
ijkl κ̇kl + Eepijkl Ṫ δkl

µ̇ij = Mep
ijkl κ̇kl + Lepijkl γ̇kl +Nep

ijkl Ṫ δkl (3.20)

with,

Cepijkl = Ceijkl −
< 1 >

Hp
bQijb

F
kl Dep

ijkl = −< 1 >

Hp
bQijb

FM
kl

Eepijkl = −(Ceijkl −
< 1 >

Hp
bQijb

F
kl) Lepijkl = −< 1 >

Hp
bQMij bFkl

Mep
ijkl = Me

ijkl −
< 1 >

Hp
bQMij bFMkl Nep

ijkl =
< 1 >

Hp
bQMij bFkl (3.21)

3.3. Drucker-Prager yield surface

The classical Drucker-Prager plastic model for cohesionless materials was

extended to Cosserat media by Mühlhaus and Vardoulakis (1987) for a 2D

continuum. Herein, we follow the same approach to develop a 3D THM model

for Cosserat continua.

F = τ + µ σ and Q = τ + β σ (3.22)

The generalized stress invariants are defined as:

σ =
τkk
3

(3.23)

τ =

√
h1 sij sij + h2 sij sji +

1

R2
(h3mijmij + h4mijmji) (3.24)

Similarly, the generalized plastic deviatoric strain rate is written as:

γ̇p =
√
g1 ė

p
ij ė

p
ij + g2 ė

p
ij ė

p
ji +R2(g3 k̇

p
ij k̇

p
ij + g4 k̇

p
ij k̇

p
ji) (3.25)
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where sij , mij , eij and kij are the deviatoric parts of the stress, couple-stress,210

strain and curvature respectively. The evaluation of the parameters hi and gi

is discussed in Appendix B based on micro-mechanical considerations. Some

values are summarized in Table 1.

2D model 3D model

static model {hi} = {3/4,−1/4, 1, 0} {hi} = {2/3,−1/6, 2/3,−1/6}

{gi} = {3/2, 1/2, 1, 0} {gi} = {8/5, 2/5, 8/5, 2/5}

Kinematic model {hi} = {3/8, 1/8, 1/4, 0} {hi} = {2/5, 1/10, 2/5, 1/10}

{gi} = {3,−1, 4, 0} {gi} = {8/3,−2/3, 8/3,−2/3}

Table 1: Values for the coefficients in the stress and strain deviatoric generalized invariants

for a Cosserat continuum from Mühlhaus (1986), Mühlhaus and Vardoulakis (1987), Sulem

and Vardoulakis (1990), Unterreiner (1994)

The hardening shear modulus is:

−Hs =
∂F

∂γp
=

∂µ

∂γp
σ (3.26)

and the hardening coefficient is:

hs =
∂µ

∂γp
(3.27)

The gradient terms of the yield function and plastic potential are expressed as :

∂F

∂τij
=

1

τ
(h1 sij + h2 sji) +

µ

3
δij (3.28)

∂Q

∂τij
=

1

τ
(h1 sij + h2 sji) +

β

3
δij (3.29)

∂F

∂µij
=

∂Q

∂µij
=

1

τR2
(h3 µij + h4 µji) (3.30)

It is easily shown that λ̇ = γ̇p and ε̇pv = β γ̇p by decomposing γ̇pij (obtained from

the plastic flow rule) into its deviatoric and volumetric part and then replacing

them into the expression for γ̇p. Moreover, we have

bFkl = Kµ δkl +
skl
q

(
(G+Gc)h1 + (G−Gc)h2

)
+
slk
q

(
(G+Gc)h2 + (G−Gc)h1

)
(3.31)
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bQij = Kβ δij +
sij
τ

(
(G+Gc)h1 + (G−Gc)h2

)
+
sji
τ

(
(G+Gc)h2 + (G−Gc)h1

)
(3.32)

bFMkl = bQMkl =
1

τR2

[
mkl ((M +Mc)h3 + (M −Mc)h4) +mlk ((M −Mc)h3 + (M +Mc)h4)

]
(3.33)

∂F

∂σij
Cijkl

∂Q

∂σkl
= K µ β +

sklskl
τ2

(
(G+Gc)(h

2
1 + h2

2) + 2(G−Gc)h1h2

)
+
sklslk
τ2

(
(G−Gc)(h2

1 + h2
2) + 2(G+Gc)h1h2

)
(3.34)

∂F

∂µij
Mijkl

∂Q

∂µkl
=

1

τ2R4

[
mkl mkl ((M +Mc)(h

2
3 + h2

4) + 2(M −Mc)h3h4)

+mkl mlk ((M −Mc)(h
2
3 + h2

4) + 2(M +Mc)h3h4)
]

(3.35)

4. Bifurcation analysis

Let us consider an evolution problem described by Eqs. 2.4, 2.5, 2.8 and 2.17.215

This set of equations presents a homogeneous steady state without Cosserat

effects if adiabatic, undrained and prescribed total stresses as boundary con-

ditions are applied. Note that these boundary conditions are different from

Lachenbruch (1980), Rice et al. (2014) as they consider a layer sheared at a

constant strain rate. The steady state is defined by T = Ts, p = ps, τij = τ0
ij ,220

γij = γ0
ij , µij = 0 and κij = 0, where Ts and ps are a reference temperature and

pressure respectively, τ0
ij and γ0

ij are the homogeneous stress and deformation

tensors that depend on the geometry and boundary conditions. We denote all

the fields corresponding to this steady state with a superscript 0.

We are interested in determining the conditions for which the above ho-

mogeneous solutions become unstable in the Lyapunov sense (Lyapunov, 1892,
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Stefanou and Alevizos, 2016). The relevant variables of the problem are ex-

pressed as follows:

T (xi, t) = T 0 + T ∗(xi, t) p(xi, t) = p0 + p∗(xi, t)

τ ′kl(xi, t) = τ ′0kl + τ ′∗kl(xi, t) uk(xi, t) = u0
k(xi) + u∗k(xi, t)

ωck(xi, t) = ωc0k + ωc∗k (xi, t) (4.1)

where the superscript * denotes a perturbation from the reference homogeneous225

state.

The constitutive equations 3.20 can be linearized around the reference state

to obtain the following relationships between the perturbations of stresses, cou-

ple stresses, strains and curvatures:

τ ′∗kl = Cepklmn γ
∗
mn +Dep

klmn κ
∗
mn + Eepklmn T

∗ δmn

µ∗kl = Mep
klmn κ

∗
mn + Lepklmn γ

∗
mn +Nep

klmn T
∗ δmn (4.2)

Eqs. 2.4, 2.5, 2.8 and 2.17 become then:230

Cepklmn(u∗m,nl + emnq ω
c∗
q,l) + Eepklmn T

∗
,lδmn +Dep

klmn ω
c∗
m,nl − p∗,l δkl − ρ

∂2u∗k
∂t2

= 0

(4.3)

Mep
klmn ω

c∗
m,nl + Lepklmn (u∗m,nl + emnq ω

c∗
q,l) +Nep

klmn T
∗
,lδmn

−eklm(Ceplmnq(u
∗
n,q + enqr ω

c∗
r ) + Eeplmnq T

∗δnq +Dep
lmnq ω

c∗
n,q)− ρI

∂2ωc∗i
∂t2

= 0

(4.4)

ρC(
∂T ∗

∂t
− cthT ∗,kk) = τ ′0kl(u̇

∗
k,l + eklm ω̇c∗m,l) + µ0

klω̇
c∗
k,l

(4.5)

∂p∗

∂t
= chy p

∗
,kk + Λ

∂T ∗

∂t
− 1

β∗
∂u∗k,k
∂t

(4.6)

To obtain Eq. 4.5, we neglect the perturbations of the elastic deformation

and curvature tensors as compared to the plastic ones.
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The system of Eqs. 4.3 - 4.6 is a linear system of eight equations with

eight unknowns (the perturbed fields). It is convenient to apply a space Fourier

transform to study it. The system admits solutions of the form:235

X∗k(xl, t) = Xk(t).exp(i ξ xl nl) (4.7)

where ξ is the inverse of the wavelength λ = h
2πN (N is an integer satisfying

the boundary conditions). In the following, the height h will be kept as an open

parameter so that all values of λ will be explored. nj is a polarization direction,

i2 = −1 and X∗i (xj , t) a vector containing the eight perturbation unknowns as

follows:

X∗k(xl, t) = [u∗k(xl, t) ωc∗k (xl, t) T ∗(xl, t) p∗(xl, t)]
t (4.8)

Inserting Eq. 4.7 in Eqs. 4.3 - 4.6, we obtain a system of ordinary differential

equations, which admits solutions of the form:

Xk(t) = Xk.exp(s t) (4.9)

where s is the rate of growth of the perturbation and Xk a vector of algebraic

quantities. This leads to the following linear system of equations, written in

matrix form:


Γkm − ρs2δkm ∆km Eepklmniξnlδmn −iξnk

Ξkm Πkm − ρIs2δkm −eklmEeplmnqδnq +Nep
klmnδmn 0

−τ ′0klsiξnlδkm −τ ′0klsieklm − µ0
klsiξnlδkm ρC(s+ cthξ

2) 0

1
β∗ siξnk 0 −Λs s+ chyξ

2




um

ωcm

T

p

 = 0

(4.10)

where
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Γkm = −Cepklmnξ
2nnnl

∆km = Cepklqneqnmiξnl −D
ep
klmnξ

2nnnl

Ξkm = −Lepklmnξ
2nnnl − eklrCeplrmqiξnq

Πkm = −Mep
klmnξ

2nnnl + Lepklrnernmiξnl − eklrC
ep
lrnqenqm − eklrD

ep
lrmqiξnq

(4.11)

For non-trivial solutions, the determinant of the matrix in Eq. 4.10 must240

be zero. This condition yields a polynomial equation in terms of s. The roots

of this equation provide us information about the stability of the system. If

one of the roots has a real part strictly positive the considered homogeneous

state is unstable. If all the roots have a real part that is strictly negative, the

homogeneous state is stable. We cannot conclude anything in the case where at245

least one of the roots has a real part equal to 0 and all the others have a real

part strictly negative.

Note that the classical condition of localization for rate-independent plastic

materials with a Cauchy continuum is retrieved (Rudnicki and Rice, 1975) (no

couplings or Cosserat effect considered), i.e. det(Γkm) = 0, where Γkm is the

acoustic tensor. The localization condition for a purely mechanical system in

the framework of Cosserat continuum is:

det

Γkm − ρs2δkm ∆km

Ξkm Πkm − ρIs2δkm

 = 0 (4.12)

The singularity of the above tensor is similar to the condition found in Iordache

and William (1998), Steinmann and Willam (1991) for the onset of localization

(s = 0). In these papers, the authors derive the localization condition from250

the kinematic and static compatibility conditions across the shear band as done

classically for strain localization analysis (Vardoulakis and Sulem, 1995).
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5. Application to rapid shearing in fault zones

Field observations of faults show that shear deformation is extremely local-

ized in so-called slip-zones of finite but small thickness, composed of cataclastic255

material due to excessive shearing (Engelder, 1974, Myers and Aydin, 2004).

Outcrops indicate that an even thinner zone of ultracataclastic material is often

identified inside the fault core called the principal slip zone (PSZ) (Rice, 2006).

The thickness of the PSZ appears to be a key parameter for understanding

fault behavior (Kanamori and Brodsky, 2004) as it is related to the triggering260

and evolution of various multi-physical couplings and energy dissipation during

seismic slip. From the mechanics point of view, the deformations are localized

in a shear band whose thickness can be measured from field observations and

laboratory tests.

Strain localization in narrow bands can be seen as a bifurcation from the265

homogeneous deformation solution of the underlying mathematical problem. In

this section, we determine the conditions for shear band formation by taking

into account the THM couplings developed in the previous sections. The results

are then compared to field and experimental data.

5.1. Fault core model under THM couplings270

A simple configuration of a fault core is represented in Fig. 2 as a homoge-

neous infinite layer of fluid saturated granular material with a thickness h. The

material inside this layer is modeled as a Cosserat continuum in order to take

into account its granular microstructure.

Prior to localization, the state of stress, strain, pore pressure and tempera-

ture is assumed to be homogeneous in the layer. As a condition of zero couple

stress is applied at the boundaries, the couple stresses are identically zero in the

medium. Thus, the medium behaves like a Cauchy continuum.

τ12 = τ21 µij = 0 (5.1)

Moreover, the different fields depend only on the component x2 due to the

invariance in the x1 and x3 directions. Eqs. 3.31 to 3.35 can be simplified at
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Figure 2: Boundary conditions for the infinite sheared layer modeling a saturated gouge

the homogeneous state:

∂F

∂σij
Cijkl

∂Q

∂σkl
= µβK +G (5.2)

∂F

∂mij
Mijkl

∂Q

∂mkl
= 0 (5.3)

so,275

Hp = µβK +G+Hs (5.4)

Moreover,

bQMij = bFMkl = 0 (5.5)

bQijb
F
kl = K2µβδijδkl +

KµG

τ
sijδkl +

KβG

τ
δijskl +

G2

τ2
sijskl (5.6)

We introduce the following dimensionless quantities:

x =
x1

R
; z =

x2

R
; ui =

ui
R

; p =
p

τn
;

τ ij =
τ ij
τn

; t =
cth
R2

t; T =
Λ

τn
T ; ξ = ξR (5.7)
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Considering Eq. 5.7 , the dimensionless form of the matrix in 4.10 is:
1
τn

Γkm − Is2 ∆̃km
1
ΛE

ep
klmniξnlδmn −iξni

Ξ̃km Π̃km − I
2s

2 1
ΛR (−ReklmEeplmnqδnq +Nep

klmnδmn) 0

−αklsiξnlδkm − 1
Rαklsieklm − ζklsiξnlδkm s+ ξ

2
0

1
β∗τn

siξnk 0 −s s+ 1
Leξ

2


(5.8)

where,

∆̃ik =
1

τn
(Cepijqleqlkiξnj −

1

R
Dep
ijklξ

2nlnj)

Ξ̃ik =
1

τn
(− 1

R
Lepijklξ

2nlnj − eijqCepjqkmiξnm)

Π̃ik =
1

τn
(− 1

R2
Mep
ijklξ

2nlnj +
1

R
Lepijqleqlkiξnj − eijqC

ep
jqlmelmk −

1

R
eijqD

ep
jqkmiξnm)

αij =
τ ′0ijΛ

ρCτn
; ζij =

µ0
ijΛ

ρCτnR
; Le =

cth
chy

(5.9)

Note that for an infinite layer, as we assume invariance in x1 and x3 direction,

we look for shear bands parallel to the layer axis thus the polarization vector ni280

is simply perpendicular to the (x1, x3) plane.

5.2. Linear stability and wavelength selection

We consider a fault at 7km depth to study its stability and the shear band

thickness predicted by our model. The values of the different parameters are

retrieved from Rice (2006) and Sulem et al. (2011). They correspond to fault285

gouge and were obtained from experiments on samples from the Median Tectonic

Line, Japan, and the Aegion fault in Greece. They are summarized in Table

2. In this example, we obtain a a critical value for the hardening parameter at

bifurcation state Hcr = 2MPa (corresponding to hs = 0.015). For Hs > Hcr,

all the real roots of the polynomial are negative (Figure 3) and some complex290

roots feature a positive real part. For Hs < Hcr, some real roots are positive

(Figure 3).
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parameters values units parameters values units

K 16.67× 103 MPa µ 0.5

G 10× 103 MPa β 0

Gc 5× 103 MPa λ∗ 7.4× 10−5 /oC

R 0.01 mm ρC 2.8 MPa/oC

ρ 2500 kg/m3 cth 1 mm2/s

τn 200 MPa chy 12 mm2/s

τ ′0 67 MPa αs 2.5× 10−5 /oC

β∗ 8.2× 10−5 MPa−1 n 0.04

Table 2: Numerical values for the parameters of a deep rock gouge from Sulem et al. (2011),

Rice (2006)

In Figures 3 and 4, the dashed lines represent the real parts of the roots

that have a nonzero imaginary part. For these values the system diverges by

oscillating, it corresponds to a so-called ”flutter instability”. As mentioned in295

Benallal and Comi (2003), our system is not differentiable due to the Kuhn-

Tucker condition (Eq. 4.2), therefore to develop the above equations, we have

assumed monotonous loading conditions to stay in the plastic regime. Thus,

one cannot assess that the flutter type instabilities obtained in this analysis are

meaningful. Moreover, in Simões and Martins (2005), the authors performed300

linear stability and finite element analyses for a non-associative elastic-plastic

layer and observed that the complex eigenvalues with a positive real part, do

not always correspond to an unstable behavior in the numerical results.

The value for the critical hardening modulus given in Sulem et al. (2011)

is retrieved. The results are very sensitive to the ratio λ∗/β∗ because shear305

heating destabilizes the system and instability can occur even in the hardening

regime. When plastic shear deformations occur, the energy is dissipated by

heat and the temperature in the gouge increases. The presence of the thermal

pressurization term λ∗

β∗
∂T
∂t in the mass balance equation, entails an increase of

the pore pressure and thus a decrease of the effective normal stresses if the total310
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Figure 3: Real parts of the growth coefficient as a function of the wavelength of the perturba-

tion for Hs = 2.1 MPa > Hcr. The different colors represent different roots. The dashed lines

represent the real part of the roots with non zero imaginary parts whereas the continuous

lines correspond to real roots.
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Figure 4: Real parts of the growth coefficient as a function of the wavelength of the perturba-

tion for Hs = 1.9 MPa < Hcr. The different colors represent different roots. The dashed lines

represent the real part of the roots with non zero imaginary parts whereas the continuous

lines correspond to real roots.

23



stress is kept constant. This decrease of the normal stress induces a decrease of

the fault strength and destabilizes the system.

For a given hardening modulus below the critical value Hs < Hcr, we can see

in Figure 4 that the real roots of the polynomial equation present a maximum.

This finite maximal growth coefficient of the instability is obtained thanks to315

the introduction of the inertia terms (Sulem et al., 2011). This maximum corre-

sponds to the instability mode with fastest growth (see Eq. 4.9). If we consider

that the width of the localized zone corresponds to the wavelength of fastest

growth, we can plot in Fig. 5 the evolution of the selected wavelength λmax

(normalized by the Cosserat material length R) as a function of the hardening320

modulus. It should be mentioned that as argued by Sulem et al. (2011), inertia

and micro-inertia terms play a minor role on the onset of the instability and on

the selected wavelength. This is also corroborated by (Rice, 2006) and (Rice

et al., 2014) who state that inertia terms are negligible over length scales over

which thermal and fluid diffusion is important. However, the quasi static ap-325

proximation reaches its limit because it leads to an infinite rate for the evolution

of the perturbation (unbounded growth coefficient in LSA analysis).
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Figure 5: wavelength of the perturbation with fastest growth λmax as a function of the

hardening coefficient hs
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The selected wavelength tends to infinity for Hs → H−cr and decreases with

decreasing hardening modulus. This general trend is similar to (Mühlhaus and

Vardoulakis, 1987). The authors observed that for dry granular materials the330

shear band thickness is infinite at the bifurcation state and then decreases in

the post-bifurcation regime as the strain localization evolves.

When a layer of granular material is sheared, experiments show that the

shear stress evolves towards a residual value and, thus, the hardening modulus

tends to 0 after sufficient slip (see Fig. 12 and Chambon et al. (2006)). In this335

example, the width of localization for Hs → 0 is 320×R = 3.2mm. Indeed, Rice

(2006) stated that most of the models that calculate the width of localization

for dry granular materials predict a thickness between 7 to 30 times D50 (the

mean particle diameter)(Oda and Kazama, 1998, Muir Wood, 2002, Tordesillas

et al., 2004) and this is much smaller that what is observed here. However, it340

should be noted that most of these analyses were performed considering sand and

calibrated on data from triaxial experiments performed at much lower confining

pressure than the ones acting at a depth of a few kilometers.

5.3. Effect of friction and dilatancy on localization

The yield surface for a Drucker-Prager model is defined with two parameters:345

the friction and the dilatancy coefficients. In this section, we look at their influ-

ence on the triggering of localization. The critical hardening parameter, under

which the homogeneous state of deformation is unstable for some wavelengths

of the perturbation, is plotted as a function of β and µ.

In granular materials, inelastic deformations can induce volume changes.350

In low porosity rocks dilatancy can be the result from rearrangement of close

packed particles due to shearing or from uplift sliding over asperity contacts. But

the opposite effect, compaction, can also be observed as a result of pore collapse

or grain crushing (Rudnicki, 2000). To illustrate the influence of these effects on

the stability of our system, we plot on Fig. 6 the value of the bifurcation param-355

eter Hcr as a function of the dilatancy coefficient β ranging from -0.004 to 0.004

for Mechanical, Hydro-Mechanical and Thermo-Hydro-Mechanical couplings.
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The mechanical system presents a linear evolution of the critical hardening

modulus with β. For a dilatant material (β > 0), bifurcation occurs in the

softening regime, whereas for a compacting material (β < 0), bifurcation occurs360

in the hardening regime for a value much greater than the one obtained for

β = 0.

For HM couplings, the evolution is bilinear and the two lines intersect at

β = 0. The bifurcation is the same as for the mechanical system in the dilatant

regime, whereas it is obtained for higher values of Hs in the contractant regime.365

The appearance of this second line in the contractant regime is due to the

undrained behavior that becomes unstable before the underlying drained one

(Rice, 1975). Indeed, the dilatancy coefficient affects the evolution of pore

pressure. If the material is compacting the pore volume decrease induces pore

fluid pressurization, which triggers instability.370

The introduction of thermal pressurization in the THM model has the effect

of shifting the line in the contractant regime to even higher values of Hcr, but

the slope remains the same. Thus, the undrained behavior is affected by thermal

pressurization but the drained behavior is not.

THM

HM

M

-0.004 -0.002 0.002 0.004
β

-10

10

20

Hcr (MPa)

Figure 6: Critical hardening modulus at bifurcation Hcr plotted as a function of the dila-

tancy coefficient β considering Mechanical (M), Hydro-Mechanical (HM) and Thermo-Hydro-

Mechanical (THM) couplings (µ = 0.5).

26



The initial friction coefficient µ also plays a role in the value of the bifurcation375

parameter. In Fig. 7, we plot the value of the critical hardening parameter

against the initial friction coefficient ranging from 0.3 to 0.8 (typical values

obtained experimentally for a gouge (Scott et al., 1994, Scuderi et al., 2013)).

For a higher value of µ, the shear stress applied to the sheared layer is greater

and thus the mechanical energy dissipated is greater which makes the system380

more unstable.
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μ

1

2

3

4

5

Hcr (MPa)

Figure 7: Bifurcation parameter Hcr for different values of friction coefficient considering

THM couplings (β = 0).

5.4. Sensitivity analysis to hydraulic parameters and normal stress

The hydraulic parameters of the problem are not well constrained, they

depend on the material, the pore pressure, the temperature, the porosity, etc...

To have a better insight into the effects of some parameters on the behavior385

of the system, we plot the evolution of the wavelength selection λmax with the

hardening coefficient for different values of them.

Several studies were conducted in order to investigate the value of perme-

ability and diffusivity inside the fault core (Wibberley and Shimamoto, 2003,

Sulem et al., 2004, Rafini, 2008). They show that the gouge has a much lower390

permeability than the surrounding fractured rock mass. It can be three orders
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of magnitude less (10−19m2 for the gouge compared to 10−16m2 for surrounding

rock). In Figure 8, the selected wavelength is plotted as a function of the hard-

ening modulus for three values of χ. For a very low permeability χ = 10−21m2

the results are similar to χ = 10−19m2. For χ = 10−17m2, the bifurcation pa-395

rameter is the same but the significant effect is on the wavelength selection. For

Hs → 0, λmax/R tends towards 373 for χ = 10−17m2.

χ=10-17m2

χ=10-18m2

χ=10-19m2
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Figure 8: wavelength selection λmax as a function of the hardening coefficient hs for different

values of the permeability χ.

Several parameters of the model also depend on the porosity (e.g. the per-

meability, the thermal pressurization term, the mixture compressibility...). In

addition, they evolve during the shear process because of deformations and pos-

sible thermally activated chemical reactions (Sulem and Famin, 2009). To take

into account the effect of porosity on the permeability, we use a cubic Kozeny-

Carman permeability law.

χ = χ0(
1− n0

1− n
)2(

n

n0
)3 (5.10)

where χ0 and n0 are the reference permeability and porosity respectively and

their values are the ones considered in Table 2. The other parameters of the

model modified by the change of porosity in this study are the ratio λ∗/β∗ and400
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the mixture compressibility. The effect of porosity on the wavelength selection

is shown in Figure 9. It has a major effect on the bifurcation parameter and on

the shear band width. The greater the porosity, the more unstable the system is.

Indeed, when the porosity increases the pore pressure increase due to thermal

pressurization is more pronounced and further destabilizes the system.405

n=0.2

n=0.1

n=0.04
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Figure 9: wavelength selection λmax as a function of the hardening coefficient hs for different

values of the porosity n.

However, the parameter that has the biggest impact on the stability is the

ratio λ∗/β∗ as shown in Figure 10. Considering the different values of the

thermal expansion coefficient and of the compressibility for the fluid and the

solid given in Rice (2006), this parameter varies between 0.59 and 1.62 MPa/oC.

We can see that for a value of 0.59 MPa/oC, the bifurcation is obtained for a410

value of the hardening coefficient close to zero (hcrit = 0.002). However, for

λ∗/β∗=1.62 MPa/oC, the critical value of the hardening coefficient lies clearly

in the hardening regime (hcrit = 0.045).

Another effect studied here is the change of the normal stress applied to

the sheared layer and its effect on the wavelength selection. We have taken415

values of 100 and 300 MPa corresponding to 3.5 and 10 kilometers depth in the

crust respectively. The highest value corresponds to a typical depth of transition
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Figure 10: wavelength selection λmax as a function of the hardening coefficient hs for different

values of the ratio λ∗/β∗ that governs the thermal pressurization effect.

between brittle and ductile behavior in the Earth crust. As for the permeability,

the bifurcation state is not strongly affected whereas the wavelength selection

is. The greater the normal stress is, the smaller the selected wavelength is and420

thus the thinner the shear band is.
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Figure 11: wavelength selection as a function of the hardening coefficient hs for different

values of normal stress τn

5.5. Evolution of the shear band thickness with the hardening state

In the previous section, we have studied how the selected wavelength evolves

with the hardening modulus for various values of the material parameters. We

recall that the above linear stability analysis (LSA) is performed from a reference425

state which is assumed homogeneous in the system. In the following, we consider

a typical stress-strain curve for a fault gouge material under shear and explore

the evolution of shear band thickness in due course of the shearing process.

This is done by evaluating the selected wavelength from the LSA assuming

homogeneous deformation at each state which is not strictly speaking the case430

because of progressive strain localization. However, it can give an interesting

insight which will be confirmed in the companion paper (Rattez et al., 2017) by

performing a fully coupled numerical analysis of the post-localization regime.

Ikari et al. (2009) performed double direct shear experiments on a series of

saturated fault gouges containing Montmorillonite, Illite, Chlorite and Quartz435

at effective normal stresses from 12-59 MPa and at subseismic velocities (1

to 300 µm/s). In Fig. 12, results for a Montmorillonite-Quartz mixture are

presented. From the curve τ (the tangential stress applied) versus γ (the total
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shear deformation), the plastic hardening modulus is related to tangent modulus

Htan through the relationshipHtan = Hs
1+Hs

G

. The hardening coefficient is related440

to the plastic hardening modulus by hs = Hs
τn

.
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Figure 12: Stress-strain curve for a clay-rich gouge from Ikari et al. (2009).

In Fig. 13, the evolution of the hardening coefficient with the shear defor-

mations obtained from Fig. 12 is shown. It is positive until the maximum shear

stress is reached and then negative. Its evolution presents a minimum value of

-0.055, which corresponds to the minimum value of the shear band thickness445

and then it increases towards zero.

From the evolution of the plastic hardening coefficient in Fig. 13, we can

calculate the evolution of the selected wavelength as shown in Fig. 14 for the

material parameters considered in Table 2. In Fig.14, we observe that the evo-

lution of the selected wavelength follows the evolution of the plastic hardening450

coefficient hs: Consequently, the shear band thickness first decreases to a mini-

mum value of 1.5 mm and then increases to reach a residual value of 3.2 mm.
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Figure 13: Evolution of the plastic hardening coefficient for the stress-strain response given

in Fig. 12.
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Figure 14: Evolution of the shear band width along with deformations considering the evolu-

tion of the hardening coefficient depicted in Fig. 13.
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5.6. Effect of microstructure evolution

At high mean stresses, like for faults at great depth, grain crushing is ob-

served from exhumed samples and also in experiments (Verberne et al., 2014,455

Brantut et al., 2008, Marone and Scholz, 1989). Structural fabrics occurring

within fault zones are commonly characterized by distinct grain size and shape

distributions that are generally interpreted as strain localization indicators.

Sammis et al. (1987) measured the particle distribution of intact gouge sam-

ples, retrieved from the Lopez Fault in the San Gabriel Mountains of South-460

ern California and observed a fractal dimension of approximately 2.6. On

the basis of the observations, they proposed the so-called comminution model,

for the mechanical processes that generate fault gouges. Several experiments

were conducted on natural and simulated fault gouges supporting Sammis’ the-

ory (Steacy and Sammis, 1991, An and Sammis, 1994) with some exceptions465

(Marone and Scholz, 1989, Storti et al., 2003).

The introduction of a characteristic length in the Cosserat continuum enables

us to take into account the microstructure evolution of the medium (Bauer,

2016). In our model this characteristic length is related to the mean grain

diameter (see Appendix B). Thus, to model a grain size evolution, we assume470

an exponential decrease with increasing total shear strain γ12 (Montési and

Hirth, 2003).

D(γ12) = (D0 −Dfin)e−
γ12
γc +Dfin (5.11)

where D0 is the initial grain diameter, Dfin is the final grain diameter and γc

is a characteristic deformation that accounts for the rate of evolution (here taken

as 1). In Gu and fong Wong (1994), the authors conducted saw-cut experiments475

on simulated quartz gouges. The particle size distributions of gouge samples

before and after frictional sliding were characterized using a laser diffraction

particle size analyzer. They obtained a decrease of 30 % of the mean grain

diameter after a total shear strain γ12 of 6 . To see the effect of a more intense
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grain crushing, we study also the case of a decrease of 50 % of the mean grain480

diameter.

In Fig. 15, we have taken into account the evolution of both the grain size

and the hardening modulus with the total shear strain. The decrease of shear

band width is almost proportional to the decrease of grain size: for a decrease

of 50 % of D we have a decrease of 50 % of the shear band width.485
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Figure 15: Evolution of the shear band thickness along with deformations considering the

evolution of the hardening coefficient as plotted in Fig. 13 and a final mean grain diameter

that is 70 % and 50 % of the initial one.

6. Conclusions

Seismic slip takes place in a narrow, thin zone (PSZ), whose thickness plays

a fundamental role regarding the behavior of ultracataclastic fault cores. In

this paper we investigate the effects of the grain size of the fault gouge on the

evolution of the thickness of the PSZ. The various Therm-Hydro-Mechanical490
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couplings that are ubiquitous during pre- and co-seismic slip of faults are also

considered.

Our analysis is based on a three-dimensional Thermo-Hydro-Mechanical

model for Cosserat continua. The latter allows to take into account in a direct

way the size of the microstructure and its evolution. The model is a general-495

ization of the Mühlhaus and Vardoulakis (1987), Vardoulakis and Sulem (1995)

model in 3D. Regarding the constitutive description of the fault gouge material,

an elasto-plastic constitutive model is adopted. The constitutive description

is general and can be calibrated from experimental tests. Our formulation ex-

tends the existing ones on Cosserat (de Borst, 1991, Iordache and William, 1998,500

Sulem et al., 2011, Manzari, 2004) as it is in three-dimensions and accounts for

strong couplings between the involved fields, i.e. the temperature, the pore

fluid pressure and mechanics. These couplings are derived on one hand by the

mass and energy balance equations and on the other hand by the considered

constitutive laws.505

Bifurcation theory (Linear Stability Analysis) is applied on the coupled,

non-linear Cosserat system of equations in order to extract the conditions for

the onset of localization. The mathematical treatment of the equations is kept

general in order (a) to show the differences with the classical approaches that use

the acoustic tensor (Rudnicki and Rice, 1975) or LSA (Benallal and Comi, 2003)510

and (b) to allow a variety of applications in geomechanics. However, the derived

criteria are used here for studying the onset of localization in fault zones. It is

worth mentioning also that the present work extends further the works of Sulem

et al. (2011), Veveakis et al. (2013) by investigating the evolution of the localized

zone thickness and its dependency on various parameters such as the grain515

size, the hardening modulus, the porosity, the permeability, the pressurization

coefficient and the normal stress. These parameters have competing effects on

the size of the localization thickness, which is assessed from the wavelength of

the perturbation with the maximum growth coefficient (Lyapunov exponent).

It is shown that the localization zone thickness is directly scaled with the520

grain size. This means that the larger the grains are the larger the shear band
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becomes. This intrinsic, physical length scale is introduced by the material

parameters of the Cosserat continuum, which can be experimentally determined

(see Appendix B). Two additional length scales are intrinsic to the presented

model. These lengths emerge from the thermal and hydraulic diffusivities that525

control also the shear band thickness. In particular the higher these diffusivites

are the larger the localization zone is. Consequently, the permeability, which is

directly related to the hydraulic diffusivity, influences the size of the shear band.

A more permeable medium leads to a broader localization zone. Nevertheless,

this effect is small in the range of typical gouge permeabilities.530

The role of porosity is twofold regarding localization. Higher porosity com-

monly corresponds to higher permeability (e.g. Kozeny-Carman law). It also

leads to a lower thermal pressurization coefficient. This latter has a more sig-

nificant influence on the shear band thickness. Higher permeability and lower

thermal pressurization coefficient both result in a broader thickness of the lo-535

calized zone. On the other hand, higher porosity results in a higher mixture

compressibility, which on the contrary leads to thinner localized zone. Of course

the dominance of one or another of these competing mechanisms depends on the

fault material. However, for the material parameters used here, a more porous

material presents a narrower localization zone, because the effect of porosity on540

mixture compressibility is dominant. Nevertheless, the thermal pressurization

is not only affected by the porosity but also by other material parameters and

the analysis has shown that this parameter has a very significant influence on

the localized zone thickness.

The shear band thickness also depends on the confining stress. Although545

the condition for localization is independent of the confining stress if we assume

a linear yield criterion, it affects the shear band thickness. More specifically,

large confining stress (e.g. deeper faults) lead to narrower PSZ.

Finally, the evolution of the friction coefficient during shearing has an im-

pact on the shear band thickness development. A typical hardening modulus550

evolution for gouge material is considered and allows to follow the evolution of

the localization zone during shearing. We observe a decrease of the shear band
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thickness at the beginning of the localization process, followed by a progressive

increase towards a steady value. By assuming an exponential grain size reduc-

tion under shearing, which was taken into account by modifying the internal555

length of the model, it enables to provide a qualitative estimation of the ef-

fect grain cataclasis during slip. It is shown that grain communition causes a

decrease of the PSZ width.

It is worth emphasizing that the results of the present paper are of qualitative

nature. Our target is to explore the tendency of the overall system and the560

impact of the several physical quantities. However, this investigation is based

on LSA, which a has two main drawbacks. The first one is the linearization of

the non-linear system of equations, while the second one, is that the linearization

is performed to a reference state that does not evolve with deformation. These

are strong assumptions for studying the post-bifurcation behavior that have565

to be explored further numerically. Indeed, in the companion paper (Rattez

et al., 2017), the full system of equation is integrated using the Finite Element

Method, which allows to also track the exact material response.
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Appendix A. Link between different formulations of the mass balance

equation800

After writing the mass conservation for the fluid and the solid phase (see

section 3), we obtain equations 2.12 and 2.14.

−ρs ∂n
∂t

+ (1− n)
∂ρs

∂t
+ ρs (1− n)V si,i = 0 (A.1)

n

ρf
∂ρf

∂t
+

1− n
ρs

∂ρs

∂t
+ V si,i + (n(V fi − V

s
i )),i = 0 (A.2)

As V si,i = ε̇v, Eqs. A.1 and A.2 can be written:

− 1

1− n
∂n

∂t
+

1

ρs
∂ρs

∂t
+ ε̇v = 0 (A.3)

n

ρf
∂ρf

∂t
+

1− n
ρs

∂ρs

∂t
+ ε̇v + (n(V fi − V

s
i )),i = 0 (A.4)

n represents the porosity of the current volume dΩt, as it refers the current

volume to the current configuration, it is called the Eulerian porosity (Coussy,

2004). In contrast, the Lagrangian porosity, written here φ, refers the current

porous volume to the initial volume dΩt0. We have the relationship:805

n dΩt = φ dΩt0 (A.5)

The hypothesis of infinitesimal transformations gives us the approximation:

dΩt0 ≈
dΩt

1 + εv
≈ dΩt(1− εv) (A.6)

If we insert Eq. A.6 in Eq. A.5, take the time derivative and neglect the second

order terms, we get the relationship between the variation of Lagrangian porosity

and Eulerian porosity.
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ṅ = φ̇− φ ε̇v (A.7)

From Eqs. A.3, A.5 and A.7, we have:810

ε̇v = φ̇− 1− φ
ρs

∂ρs

∂t
(A.8)

φ

ρf
∂ρf

∂t
+

1− φ
ρs

∂ρs

∂t
+ ε̇v + (φ(V fi − V

s
i )),i = 0 (A.9)

We can insert the expression of εv in A.8 into A.9.

φ

ρf
∂ρf

∂t
+ φ̇+ (φ(V fi − V

s
i )),i = 0 (A.10)

Following Rice (2006), the porosity is then decomposed into its elastic and

inelastic part n = nel + nie. Thus,

∂φ

∂t
=
∂φel

∂t
+
∂φie

∂t
= φ βn

∂p

∂t
+ φ λn

∂T

∂t
+
∂φie

∂t
(A.11)

where βn and λn are the compressibility and the thermal expansivity of the

pore volume respectively.815

βn =
βd − βs

φ
− βs (A.12)

λn = λs (A.13)

where βd = 1/K is the drained compressibility. Finally, from Eqs.A.11, A.10,

2.15 and 2.16

∂p

∂t
= c∗hy p,ii + Λ

∂T

∂t
− 1

β∗∗
∂φie

∂t
(A.14)

In Eq.A.14, c∗hy = χ/(ηfβ∗∗) is the hydraulic diffusivity, β∗∗ = φ(βf + βn)

is the storage capacity, Λ = (λf − λn)/(βf + βn) is the undrained thermal

pressurization coefficient (Rice, 2006).820
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Appendix B. Micro-mechanical considerations

In this section, we will follow the method presented in Mühlhaus and Var-

doulakis (1987) to define the stress and plastic strain invariants for a granular

medium modelled by a Cosserat continuum. The granular medium is repre-

sented by a random assembly of spheres with a radius R. R represents an ef-825

fective radius of the grains. As granular materials are composed of grains with

different shapes and sizes, it is usually assumed to be the mean grain size for

granular materials with a narrow grain size distribution. Which length would be

appropriate for a larger grain size distribution is actually an open question. As

the Cosserat material length controls the width of the strain localization zone,830

this parameter can be back analyzed from field or laboratory experiments. For

zero-entropy materials such as monodisperse blocky structures, the appropriate

Cosserat length is found to be the block size (Besdo, 1985, Godio et al., 2017).

If we consider two spheres in contact embedded in a continuum, which is defined

by the velocity and spin fields vi and ω̇ci , like in Fig. B.16, the relative velocity835

and spin velocity of the 2 particles are given by (for small rotations):

v∗i − vi = 2R vi,j nj

ω̇c∗ij − ω̇cij = 2R ω̇cij,k nk (B.1)

˙(.) denotes the time derivative. ω̇ci is linked to the micro-deformation tensor

(or Cosserat rotation tensor) by ω̇cij = −eijk ω̇ck (eijk is the Levi-Civita tensor).

We express the velocity of the different spheres at the contact point:

v
(1)
i = vi +R ω̇cij nj

v
(2)
i = v∗i −R ω̇c∗ij nj (B.2)

Thus the relative displacement at the contact point can be written:840

∆vi = v
(2)
i − v

(1)
i = 2R(vi,j − ω̇cij −Rω̇cij,k nk) nj (B.3)
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Figure B.16: Relative velocities and spins for 2 grains in contact

or,

∆vi = 2R(γ̇ij +R eijk κ̇kl nl) nj (B.4)

γ̇ij is the strain rate tensor and κ̇ij , the curvature rate tensor. The tangential

part, of the relative velocity is:

∆vti = 2R(γ̇ij − γ̇pq np nq δij +R eijk κ̇kl nl) nj (B.5)

We can calculate its quadratic mean around a sphere of radius R, which

defines a invariant measure of slip rate:

< ∆vt >= [
1

S

∫
s

∆vti∆v
t
idS]1/2 (B.6)

where S is the surface of the sphere. By using the following identities:

∫
s

ninjdS =
4π

3
R2δij∫

s

ninjnkdS = 0∫
s

ninjnknldS =
4π

15
R2(δijδkl + δikδjl + δilδjk) (B.7)

we get,

< ∆vt >=

√
16

15
ėij ėij −

4

15
ėij ėji +R2(

16

15
k̇ij k̇ij −

4

15
k̇ij k̇ji) (B.8)
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ėij and k̇ij are the deviatoric part of the strain rate tensor and curvature rate

tensor respectively.

In order to retrieve the classical shear strain rate intensity
√

2 ėij ėij when

the Cosserat effects vanishes (ėij = ėji and κ̇ij → 0 ), the coefficients in Eq. B.8845

are multiplied by a factor 5/2 (Vardoulakis, 2009). It results in the following

definition for γ̇p:

γ̇p =

√
g1 ėij ėij + g2 ėij ėji +R2(g3 k̇ij k̇ij + g4 k̇ij k̇ji)

g1 = g3 =
8

3
and g2 = g4 = −2

3
(B.9)

The expression of the shearing intensity τ that is dual in energy with γ̇p is

deduced from Eq. B.9. We set the plastic strain rate to be equal to the Lagrange

multiplier and we obtain the values of the coefficients in τ by identification of850

the different terms on the two sides of this equality. Its final form is:

τ =

√
h1 sij sij + h2 sij sji +

1

R2
(h3mijmij + h4mijmji)

h1 = h3 =
2

5
and h2 = h4 =

1

10
(B.10)

A micro-mechanical model could also be developed by considering that the

normal stresses acting on a elementary volume aren’t uniform and, thus, in-

troduce moments. This hypothesis is justified knowing that continuum with

micro-structure presents large gradients of stresses and their variation at the855

level of micro-structure can’t be ignored.

By emphasizing the contact tractions over the periphery of grains, it re-

sults on a different definitions of the invariants (Sulem and Vardoulakis, 1990)

(Mühlhaus and Vardoulakis, 1987). It is called the ”static” Cosserat model.
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