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A higher-order beam model based on the asymptotic expansion method was suggested by Ferradi et al. [11]. Introducing
new degrees of freedom specific to the applied loads into the kinematics of the beam, this model yields fast and accurate
results. The present paper focuses on the extension of this model to the case of arbitrary eigenstrains expressed in a separate
form between the longitudinal coordinate and the in-section coordinates. The asymptotic expansion procedure is recalled
and the derivation of a higher-order beam model performed. The beam model is interpolated with NURBS. The case of a
bridge deck heated on a localized area is studied. A second case study of a prestressed cantilever beam is then investigated.
The results of the higher-order beam model are compared to a 3D solution in each example. The performances of the beam
model appears to be accurate and very time-efficient.
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1 Introduction

Structural analysismust take into account eigenstrains such as thermal load, prestress orweakly coupled swelling phenomena.
Furthermore, beam models are certainly the most widely used models by structural engineers because of their simplicity.
This motivates the introduction of these prescribed strains into beam models. However, the kinematics of beam models is
often based on very simple assumptions which are often unable to describe precisely local effects induced by these strains
prescribed arbitrarily in the section. In the absence of richer kinematics, shell models or full 3D computations are necessary.
Those computations being time-consuming, the simplicity and the great time efficiency of beam models motivates the
development of adequately refined higher-order beam models.

Beam models have a long history and a vast variety of contributions may be found in the literature. The first beam
models were based on ad-hoc assumptions on the 3D fields which motivated the denomination axiomatic. Most of the time
axiomatic models rely on an educated guess on the 3D displacement field in a separated form between the longitudinal
coordinate and the in-section coordinates. Then, straightforward application of the minimum of potential energy leads to
1D boundary value problems corresponding to the beam model. The Euler-Bernoulli beam model was the first suggestion.
In this model, it is assumed that the cross-section of the beam is rigid in its own plane and that it remains orthogonal to the
neutral axis of the beam. Hence, this model neglects the transverse shear strain and suffers from a kinematic contradiction:
since the section is not allowed to deform in its plane, transverse Poisson’s effect is precluded. The Timoshenko beammodel
allows an independent rotation of the section with respect to the neutral axis in order to take the transverse shear strain into
account [24]. However, since the section rotates rigidly, the shear strain is uniform in the section which does not satisfy the
free lateral boundary. Furthermore, the transverse Poisson’s effect is still restrained. These contradictions, suggested to push
further the kinematic enrichment in a polynomial form as illustrated in [6, 12]. However, having a correct approximation
requires a high number of kinematic degrees of freedom and raises the question of the sparsity of the approximation as will
be recalled below.

It turns out that, at leading order in the slenderness, these kinematic contradictions were resolved quite early thanks to
Saint Venant solution [8]. Indeed, this solution was originally derived for an elastic beam with a homogeneous and isotropic
section loaded at the extremities in a weak sense. Starting from static considerations, a full 3D solution was obtained where
the 6 classical generalized stress vary linearly along the beam and the section is free to deform in its plane as well as out of
its plane. More precisely, the 3D displacement field appears as the superposition of the classical rigid motion of the section
and of additional displacements related to the generalized stress which correct the over-constrained rigid motion of the
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2 G. Corre, A. Lebée, K. Sab, M. K. Ferradi, X. Cespedes: Higher-order beam model with eigenstrains

section. As consequence, the 3D stress is better approximated than in the preceding approaches and the traction, bending,
torsional and shear force stiffnesses are correctly evaluated.

Whereas this solution is perfectly relevant for rather compact and homogeneous sections, the Saint Venant solution is
not accurate enough when considering more general sections such as anisotropic or heterogeneous materials, open and
closed thin-walled sections. A classical illustration involves torsion warping. Indeed, the latter is assumed uniform along
the beam in the Saint Venant solution. Hence, clamped boundary conditions may not be strongly satisfied. In practical
situations, clamping a thin-walled beam generates a kinematic frustration which propagates far from the extremity and
needs correct estimation. A first successful extension of Saint Venant solution was made by Vlasov [26] who included the
torsional warping as an independent static degree of freedom (so called bi-moment) followed by Benscoter [3] who further
assumed that the corresponding kinematic degree of freedom is also independent. Both works rely on the torsional warping
correction included in the Saint Venant solution.

The efficiency of these models to capture end effects encouraged further refinement in more general configurations.
A noticeable contribution is from Iesan [14] who extended the Saint Venant solution to the case of fully anisotropic and
heterogeneous section. In addition the beam was loaded with body forces and surface tractions in a separated form between
in-section coordinates and the longitudinal coordinate. The longitudinal variation of the loads was assumed polynomial of
a fixed order and the corresponding solutions for each order is obtained by a recursive process.

Almost identical results were obtained from the formal asymptotic expansion. Indeed, this method is based on a scaling
of the original 3D problem so that it depends explicitly on a small parameter. In the case of beams, it is the ratio between the
typical size of the cross section and the length of the beam. Then the solution is assumed following an asymptotic expansion
with respect to the small parameter and inserted in the 3D equations. A collection of embedded in-section and longitudinal
problems is obtained which is solved by induction. The monograph from Trabucho & Viano [25] presents the method and
links the lowest orders of the asymptotic expansion with the Saint Venant solution as well as Vlasov beam model. Most
of recent contributions questions the correct derivation of boundary conditions especially at higher order [4, 5, 16, 17].
Another family of enriched beam model was derived following the so-called “Variational Asymptotic Method” [13,29–31].
This approach is very similar to formal asymptotic expansion and most of its developments were made assuming large
displacements and rotations of the section which makes higher-order developments much more involved.

In addition to the difficulties regarding boundary conditions, the main limitations of the asymptotic expansion approach
are the very high regularity of the applied load which is required when going higher order and the embedded structure of
the sequence of 1D problems to be solved. This makes the classical approach impractical for engineering applications.
Remarkably, the same difficulty arises with the extended Saint Venant solution from Iesan [14] since only polynomial
loadings are solution. For instance, concentrated loads commonly used in practice do not satisfy such regularity.

A solution to overcome this difficulty is to consider the whole family of in-section displacements or “modes” generated
from formal asymptotic expansion as kinematic enrichment carried by independent generalized beamdisplacements. Indeed,
the application of the minimum of the potential energy does not restrict severely the regularity of the longitudinal distribution
of the applied load. The very first illustration of this approach is the model from Benscoter [3] which treats the torsional
warping as an independent degree of freedom. In the case of a homogeneous and isotropic beam this idea was fully
generalized by Miara & Trabucho [22] (also detailed in [25]) and so called “Galerkin spectral approximation”. This work
is based on the seminal idea from Vogelius & Babuska [27, 28] which also originated the family of “hierarchical models”
for plates and shells [1]. Two noticeable observations were made. First, the formal asymptotic expansion delivers a free
family of kinematic enrichment which is dense in the space of the 3D solution. This means that going sufficiently high
in the expansion allows arbitrary refinement of the 3D solution. Second, the truncation of this family ensures that the
corresponding beam model is asymptotically consistent except at the boundary. This means that the kinematic enrichment
delivered by the formal asymptotic expansion is optimal in terms of approximation error far from the extremities of the
beam.

Practical implementation of this concept were suggested by El Fatmi [10] Lahmar et al. [21] and Ferradi et al. [11].
In [10], the enrichment was limited to the contribution of the Saint Venant modes and transverse loadings which are uniform
in the longitudinal direction. However, longitudinal or higher-order enrichments were discarded and there remained an
educated guess for enriching further the beam model. This approach was also extended to uniform thermal loads in [21].
In [11], the enrichment related to any kind of load was introduced up to an arbitrary order. A closed-form solution of the
higher-order beam model was derived and comparisons with full 3D calculations were performed. Even for a concentrated
load arbitrarily located in the section, the approximated solution yielded surprisingly good results.

In the present paper, the same approach is applied to eigenstrains and illustrated with two cases study. Furthermore,
the higher order beam model is implemented with NURBS finite elements in order to allow longitudinal variations of the
applied load. There are fewer contributions related to applied eigenstrain in beam theories. In addition to those previously
mentioned, the general case of periodic beams as well as thin walled beam was investigated by Kolpakov [18–20]. However,
the formal asymptotic expansion was not carried out up to an arbitrary order.
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Fig. 1 The beam configuration

This paper is also an opportunity to redevelop the formal asymptotic expansion procedure and emphasize its close link
with Saint Venant solution as well as the extension from Iesan [14]. It is organized as follows. First the formal asymptotic
expansion procedure is applied to a beam with a prescribed eigenstrain and the higher-order beam theory is derived and
solved numerically with NURBS finite elements in Section 2. Then, two elementary cases study are investigated. A bridge
submitted to a local elevation of temperature in Section 3 and a prestressed beam in Section 4

2 Kinematic enrichment based on the formal asymptotic expansion

2.1 The 3D problem
We consider a beam occupying the prismatic domain Ω (Figure 1) with a length L and a cross-sectional typical size h.
The boundary ∂Ω is the union of the lateral (free) surface ∂Ωt and the two end sections S± (clamped). The longitudinal
coordinate is x3 and the section coordinates are x1 and x2 denoted as xα1, the corresponding reference frame is denoted
(O, e1, e2, e3) where O is an arbitrary point of the plane x3 = 0.

The constitutive material of the beam is only function of the section coordinates xα and invariant in the longitudinal
direction. For convenience and without limitation, the corresponding fourth order stiffness tensor C(xα) is assumed
monoclinic with respect to a plane of normal e3:

Cαβγ3 = C333α = 0. (1)

The beam is only subjected to eigenstrains ε∗i j . The corresponding 3D linear boundary value problem writes as:
divx σ = 0 on Ω,
σ = C : (ε − ε∗) on Ω,
ε = ∇sxu on Ω,
σ · n = 0 on ∂Ωt,
u = 0 on S±,

(2)

where n is the outer normal to ∂Ωt , ∇sx is the symmetric part of the 3D gradient operator and divx is the 3D divergence
operator. Casting the weak form of this boundary value problem reveals that, in addition to the classical regularity of u, the
eigenstrain load needs to be square integrable.

Note that another way to introduce eigenstrains would be to turn it into a body force f ∗ = − divx (C : ε∗) and a force
per unit surface T ∗ = (C : ε∗) · n on ∂Ωt . Then it would be possible to use the method presented in [11]. This remark
shows that, without considering fields regularity, the optimality result presented in [22] may be adapted to the present
situation. However, this approach involves the preliminary computation of the divergence divx (C : ε∗), which may be a
source of numerical imprecision, especially with heterogeneous sections or eigenstrains with low regularity. This motivates
the present direct formulation of the higher-order beam theory.

1 In the following, Greek indices α, β, γ = 1, 2 denote in-section dimensions and Latin indices i, j, k, l = 1, 2, 3, all three dimensions. Einstein
summation convention on repeated indices is used.
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2.2 Scaling and variable separation
A new set of coordinates yi is defined from the global coordinates,

(x1, x2, x3) = (hy1, hy2, Ly3) , (3)

which rewrites the derivation operator as:

∇x = 1
L

(
∇y3 +

1
η
∇yα

)
, (4)

as well as the integration over the domain Ω as:∫
Ω

dΩ =
∫ L

0

∫
S

dxαdx3 = L3
η

2

∫ 1

0

∫
S0

dyαdy3 = L3
η

2

∫ 1

0
〈 〉 dy3, (5)

where η = h
L is the small parameter related to the slenderness of the beam, S0 is the scaled cross-section, independent from

η and 〈 〉 denotes integration on the scaled cross-section.
The eigenstrain is assumed to have the following separated form:

ε∗i j = η d̃i j(yα)T(y3), (6)

where d̃i j(yα) is the eigenstrain distribution in the section and T(y3) is its longitudinal variation. In this section, capital
letters denote functions of only the y3 coordinate (except for C) and •̃ denotes functions of only in-section coordinates yα.

2.3 Expansion
The asymptotic expansion method is a formal procedure in which all fields are assumed sufficiently smooth. It yields a
cascade of in-section and longitudinal boundary value problems which are classically solved recursively. In the present
case, only the in-section problems are of interest in order to derive a collection of displacement modes.

The displacement, strain and stress variables are expanded as power series of the small parameter as follows [4,23,25,32]:

u = L
(
U0
α(y3)eα + ηu1 + η2u2 + ...

)
, (7)

ε = ε0 + ηε1 + η2ε2 + ..., (8)

σ = σ0 + ησ1 + η2σ2 + ... (9)

and introduced in the equations of the 3D boundary value problem (2) where each power p of η is identified. The problem
being linear, the choice of the starting order has no incidence on the final formulation in terms of physical variable. Here
the starting order is chosen so that the leading order of the displacement field is 0. The starting order of the other fields is
chosen accordingly. This motivates the scaling of the eigenstrain in Equation (6).

For p ∈ N, each compatibility equations, boundary conditions and constitutive equations for p and equilibrium equations
for p − 1 yield an auxiliary problem on the cross-section which splits in two uncoupled boundary value problems.

Transverse displacement First, the in-section displacement problems (transverse mode) T p+1 are gathered for p ≥ 0:

T p+1 :



σp

αβ,β + σ
p−1
α3,3 = 0 on S0, (10a)

σp

αβ = Cαβγδ
(
εp

δγ − δp1 d̃δγT
)
+ Cαβ33

(
εp

33 − δp1d̃33T
)

on S0, (10b)

σp

33 = C33αβ

(
εp

βα − δp1 d̃βαT
)
+ C3333

(
εp

33 − δp1d̃33T
)

on S0, (10c)

εp

αβ = up+1
(α,β), εp

33 = up

3,3 on S0, (10d)

σp

αβnβ = 0 on ∂S0. (10e)
Copyright line will be provided by the publisher



ZAMM header will be provided by the publisher 5

where σ−1 = 0 and δ1p = 1 if p = 1 and δ1p = 0 else. Transposing the results from [2, 7], for a simply connected
cross-section and regular enough C and loadings, this boundary value problem on the displacement up+1

α is a pure traction
problem which is well-posed provided that the applied load is globally self-equilibrating for in-section translations and
rotation: 〈

σp−1
α3,3

〉
= 0 and

〈
yβεβασ

p−1
α3,3

〉
= 0, (11)

where εαβ is the permutation operator: ε11 = ε22 = 0, ε12 = +1, ε21 = −1. Then, under condition (11), the solution is
uniquely defined up to the following rigid motion of the section in its plane:

uR,p+1
α = Up+1

α (y3) + yβεβαΘ
p+1(y3). (12)

where Up+1
α is a transverse displacement and Θp+1 a twist rotation.

Longitudinal displacement Second, the longitudinal displacement problems (warpingmode)Wp are obtained for p ≥ 0:

Wp+1 :



σp

3α,α + σ
p−1
33,3 = 0 on S0, (13a)

σp

α3 = Cα3β3 2
(
εp

β3 − δp1 d̃β3T
)

on S0, (13b)

2εp

α3 = up+1
3,α + up

α,3 on S0, (13c)

σp

α3nα = 0 on ∂S0. (13d)

Again, for a simply connected cross-section and regular enough C and loadings, this boundary value problem on the
displacement up+1

3 is well-posed if the applied load is globally self-equilibrating for the longitudinal translation:〈
σp−1

33,3

〉
= 0. (14)

In this case, the solution is uniquely defined up to a uniform longitudinal displacement:

uR,p+1
3 = Up+1

3 (y3). (15)

Resultants and macroscopic equilibrium equations The rigid motion of the section suggests the following definition of
the beam resultants at each order p ≥ 0:

N p

3 =
〈
σp

33
〉
, M p

α =
〈
yασ

p

33
〉
, M p

3 =
〈
yβεβασ

p

α3
〉

and V p
α =

〈
σp

α3
〉
, (16)

where N p

3 is the normal traction, M p
α are the bending moments2, M p

3 is the moment of torsion and V p
α are the shear forces.

These resultants must comply with the following beam equilibrium equations for each p ≥ 0:
N p

3,3 = 0, (17a)
M p

α,3 = V p+1
α , (17b)

M p

3,3 = 0, (17c)
V p

α,3 = 0. (17d)

Indeed, from the in-section equilibrium equations (10a) and (13a):〈
σp+1

3α,α + σ
p

33,3

〉
=

∫
∂S0 σ

p+1
α3 nαdl + N p

3,3 = 0,〈
yβ

(
σp+1

3α,α + σ
p

33,3

)〉
= −V p+1

β +
∫
∂S0 yβσ

p+1
α3 nαdl + M p

β,3 = 0,〈
yγεγα

(
σp+1
αβ,β + σ

p

α3,3

)〉
=

〈
−yγ,βεγασp+1

αβ

〉
+

∫
∂S0 yγεγασ

p+1
αβ nβdl + M p

3,3 = 0,〈
σp+1
αβ,β + σ

p

α3,3

〉
=

∫
∂S0 σ

p+1
αβ nβdl + V p

α,3 = 0.

(18)

Note that equilibrium equations (17a-c-d) are identical to conditions (11,14). Hence, satisfying beam equilibrium equations
ensures that T p andWp have a unique solution up to the rigid motions (12,15).

2 It will appear that M p
α is the working conjugate to the curvatureU p

α,33 and not the conventional bending moment. Indeed, the classical definition is
m

p
α =

〈
εαβyβσ

p

33
〉
= εαβM

p

β . This choice is made for convenience.

Copyright line will be provided by the publisher
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2.4 Cascade resolution
The series of problems are now solved order by order.

2.4.1 First-order problems
Transverse displacement The problem T 1 is not loaded. Consequently, the transverse displacement u1

α is a rigid motion
and the corresponding stress is null:

u1
α = U1

α(y3) + yβεβαΘ
1(y3) and σ0

αβ = 0, σ0
33 = 0. (19)

Here, Θ1 appears as the leading order angle of twist and U1
α as the next order macroscopic transverse displacement.

Longitudinal displacement The longitudinal displacement problem (warping mode)W1 writes as:

W1 :


σ0

3α,α = 0 on S0, (20a)

σ0
α3 = Cα3β3 2ε0

β3 on S0, (20b)

2ε0
α3 = u1

3,α +U0
α,3 on S0, (20c)

σ0
α3nα = 0 on ∂S0. (20d)

The applied load is self-equilibrating and the solution of this boundary value problem writes as:

u1
3 = U1

3 + yαU0
α,3 and σ0

α3 = 0, (21)

where U0
α,3 appears as the bending rotation and U1

3 as the leading order longitudinal displacement.

2.4.2 Second-order problems
Transverse displacement The transverse displacement u2

α is derived through:

T 2 :



σ1
αβ,β = 0 on S0, (22a)

σ1
αβ = Cαβγδ

(
ε1
δγ − d̃δγT

)
+ Cαβ33

(
ε1

33 − d̃33T
)
, on S0, (22b)

σ1
33 = C33αβ

(
ε1
βα − d̃βαT

)
+ C3333

(
ε1

33 − d̃33T
)

on S0, (22c)

ε1
αβ = u2

(α,β), ε1
33 = U1

3,3 + yαU0
α,33 on S0, (22d)

σ1
αβnβ = 0 on ∂S0. (22e)

Again, the applied load is globally self-equilibrating. The solution of this boundary value problem parametrized by the
elongation U1

3,3, the curvatures U0
α,33 and the eigenstrain T writes as the linear superposition of each contribution:

u2
α = ũe3

α U1
3,3 + ũχ1

α U0
1,33 + ũχ2

α U0
2,33 + ũTα T +U2

α + yβεβαΘ
2, (23)

where ũe3
α , ũχ1

α , ũχ2
α are in-section displacements related to transverse Poisson’s effect under pure traction and pure curvatures

which are illustrated for a square section in Figure 2. When the section is homogeneous, these correctors have a closed-form
expression which is detailed in [32] for instance. Finally, ũTα is a transverse Poisson’s effect related to the eigenstrain. In
order to be uniquely defined, the following constraints are applied to all these in-section displacements:

〈ũα〉 = 0 and
〈
yβεβαũα

〉
= 0. (24)

Longitudinal displacement The longitudinal displacement u2
3 complies with:

W2 :



σ1
3α,α = 0 on S0, (25a)

σ1
α3 = Cα3β3 2

(
ε1
β3 − d̃β3T

)
on S0, (25b)

2ε1
α3 = u2

3,α + yβεβαΘ
1
,3 +U1

α,3 on S0, (25c)
σ1
α3nα = 0 on ∂S0. (25d)

Copyright line will be provided by the publisher
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(a) Transverse mode ũe3
α (b) Transverse mode ũχ1

α (c) Transverse mode ũχ2
α

Fig. 2 Transverse modes related to pure traction and pure curvatures for a homogeneous square section with an isotropic material

(a) Warping mode ũχ3
3 (b) Warping mode ũV1

3 (c) Warping mode ũV2
3

Fig. 3 Warping modes related to pure torsion and pure shear forces for a homogeneous square section with an isotropic material

The applied load is globally self-equilibrating. The solution of this boundary value problem parametrized by Θ1
,3, U1

α,3 and
T writes as the linear superposition of each contribution:

u2
3 = ũχ3

3 Θ
1
,3 + ũT3 T +U2

3 + yαU1
α,3, (26)

where ũχ3
3 is the torsion warping illustrated in Figure 3a and ũT3 a warping related to the eigenstrain. Indeed, the displacement

ũχ3
3 is exactly the solution of the Neumann problem for Saint Venant’s torsion. Again, these warpings are constrained as

follows:

〈ũ3〉 = 0. (27)

Macroscopic constitutive equations From the solution of second order problems, the first order stress may be written
as: 

σ1
αβ = σ̃

e3
αβU1

3,3 + σ̃
χ1
αβU0

1,33 + σ̃
χ2
αβU0

2,33 + σ̃
T
αβT, (28a)

σ1
α3 = σ̃

χ3
α3Θ

1
,3 + σ̃

T
α3T, (28b)

σ1
33 = σ̃

e3
33U1

3,3 + σ̃
χ1
33 U0

1,33 + σ̃
χ2
33 U0

2,33 + σ̃
T
33T . (28c)

Expressing the traction and bending moments leads to the following constitutive equations:
N1

3 = A3U1
3,3 + S1U0

1,33 + S2U0
2,33 + NT

3 T, (29a)

M1
1 = S∗1U1

3,3 + D1U0
1,33 + D12U0

2,33 + MT
1 T, (29b)

M1
2 = S∗2U1

3,3 + D∗12U0
1,33 + D2U0

2,33 + MT
2 T, (29c)

Copyright line will be provided by the publisher
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where: 
A3 =

〈
σ̃e3

33
〉
, S1 =

〈
σ̃
χ1
33

〉
, S2 =

〈
σ̃
χ2
33

〉
, NT

3 =
〈
σ̃T

33
〉
,

S∗1 =
〈
y1σ̃

e3
33

〉
, D1 =

〈
y1σ̃

χ1
33

〉
, D12 =

〈
y1σ̃

χ2
33

〉
, MT

1 =
〈
y1σ̃

T
33

〉
,

S∗2 =
〈
y2σ̃

e3
33

〉
, D∗12 =

〈
y2σ̃

χ1
33

〉
, D2 =

〈
y2σ̃

χ2
33

〉
, MT

2 =
〈
y2σ̃

T
33

〉
.

(30)

The modulus A3 is the traction stiffness, D1 and D2 are the bending stiffnesses. The moduli NT
3 , MT

1 and MT
2 are the traction

and bending moments induced by the eigenstrain. It is proved in Appendix (A) that S∗1 = S1, S∗2 = S2 and D∗12 = D12.
The stiffnesses S1 and S2 are related to the first moments of inertia. Furthermore, there is a position for O, the origin of
the reference frame, such that S1 = S2 = 0 and rotating the reference frame with respect to e3, there is an angle such that
D12 = 0. When the section is homogeneous, this choice of reference frame corresponds to the centroid of the section
oriented along one of the principal axis of the second moments of inertia. This is assumed in the following:

N1
3 = A3U1

3,3 + NT
3 T, (31a)

M1
1 = D1U0

1,33 + MT
1 T, (31b)

M1
2 = D2U0

2,33 + MT
2 T . (31c)

Similarly the torsion is expressed as function of the macroscopic displacements and the eigenstrain:

M1
3 = D3Θ

1
,3 + MT

3 T . (32)

where the torsion stiffness and the torsion induced by the eigenstrain are:

D3 =
〈
yγεγασ̃

χ3
α3

〉
and MT

3 =
〈
yγεγασ̃

T
α3

〉
. (33)

Whereas the uncoupling between traction and bendingmoments may always be satisfied with a proper choice of the reference
frame, the uncoupling between torsion is obtained here because of the symmetry assumption (1). This assumption may
be released without limiting the approach presented here. Indeed, constitutive equations (31) and (32) would be simply
coupled in such a case.

2.4.3 Third-order problems
Transverse displacement The transverse displacement u3

α is derived through T 3 and loaded by Θ1
,33, T,3, U2

3,3 and U1
α,33.

The applied load is self-equilibrating in translation. Indeed:〈
σ1
α3

〉
= V 1

α = M0
α,3 = 0. (34)

Furthermore, from the macroscopic equilibrium in torsion (17c) and the constitutive equation (32), it is possible to express
Θ1
,33 as function of T,3:

M1
3,3 = D3Θ

1
,33 + MT

3 T,3 = 0. (35)

Substituting this relation in T 3 ensures that it is equilibrated in rotation and leads to:

T 3 :



σ2
αβ,β +

(
σ̃T
α3 −

MT
3

D3
σ̃
χ3
α3

)
T,3 = 0 on S0, (36a)

σ2
αβ = Cαβγδε2

δγ + Cαβ33ε
2
33, on S0, (36b)

σ2
33 = C33αβε

2
βα + C3333ε

2
33 on S0, (36c)

ε2
αβ = u3

(α,β), ε2
33 =

(
ũT3 −

MT
3

D3
ũχ3

3

)
T,3 +U2

3,3 + yαU1
α,33 on S0, (36d)

σ2
αβnβ = 0 on ∂S0. (36e)

The solution of this boundary value problem writes as:

u3
α = ũT∇α T,3 + ũe3

α U2
3,3 + ũχ1

α U1
1,33 + ũχ2

α U1
2,33 +U3

α + yβεβαΘ
3 with

〈
ũT∇α

〉
= 0 and

〈
yβεβαũT∇α

〉
= 0 (37)

and yields only one new transverse displacement localization related to the first-order variations of T .
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Longitudinal displacement The longitudinal displacement u3
3 complies withW3 and is loaded by Θ2

,3, T,3, U1
3,33 and

U0
α,333. The applied load is not globally self-equilibrating for each individual loading. From the constitutive equation (31a)

and the equilibrium equation (17a) with p = 1 it is deduced that :

U1
3,33 = −

NT
3

A3
T,3. (38)

Substituting this inW3 ensures it is well-posed. Furthermore, it is also convenient to ensure that the load is also self-
equilibrating in bending. This is obtained, from the constitutive equations (31b) and (31c) and the equilibrium equation (17b)
for p = 1:

U0
1,333 =

V 2
1 − MT

1 T,3
D1

and U0
2,333 =

V 2
2 − MT

2 T,3
D2

. (39)

Inserting these relations in problemW3 leads to:

W3 :



σ2
3α,α + σ̃

χ1
33

V 2
1

D1
+ σ̃

χ2
33

V 2
2

D2
+

(
σ̃T

33 −
NT

3
A3
σ̃e3

33 −
MT

1
D1

σ̃
χ1
33 −

MT
2

D2
σ̃
χ2
33

)
T,3 = 0 on S0, (40a)

σ2
α3 = Cα3β3 2ε2

β3 on S0, (40b)

2ε2
α3 = u3

3,α + ũχ1
α

V 2
1

D1
+ ũχ2

α
V 2

2
D2
+

(
ũTα −

NT
3

A3
ũe3
α − MT

1
D1

ũχ1
α − MT

2
D2

ũχ2
α

)
T,3 + yβεβαΘ

2
,3 +U2

α,3 on S0, (40c)

σ2
α3nα = 0 on ∂S0. (40d)

The solution is parametrized by the shear forces V 2
α the first-order variations of the eigenstrain T,3 and higher-order

displacements. It writes as the linear superposition of each contributions:

u3
3 = ũV1

3 V 2
1 + ũV2

3 V 2
2 + ũT∇3 T,3 + ũχ3

3 Θ
2
,3 + yαU2

α,3 +U3
3. with 〈ũ3〉 = 0 (41)

The longitudinal displacements ũV1
3 and ũV2

3 are warpings related to shear forces illustrated in Figure (3b) and (3c). Indeed,
considering the whole problemW3 loaded exclusively with shear forces, one can identify the corresponding Neumann
problems in Saint Venant’s beam theory. Furthermore, the equilibrium equation (40a) considered with only the shear forces
loading and integrated on a partial section is actually Jouravskii’s Formula [15] which gives a fair estimate of shear stress
in beams.

Macroscopic constitutive equations From the solution of third order problems, the second-order stress may be written
as: 

σ2
αβ = σ̃

e3
αβU2

3,3 + σ̃
χ1
αβU1

1,33 + σ̃
χ2
αβU1

2,33 + σ̃
T∇
αβT,3, (42a)

σ2
α3 = σ̃

V1
α3V 2

1 + σ̃
V2
α3V 2

2 + σ̃
T∇
α3 T,3 + σ̃

χ3
α3Θ

2
,3, (42b)

σ2
33 = σ̃

e3
33U2

3,3 + σ̃
χ1
33 U1

1,33 + σ̃
χ2
33 U1

2,33 + σ̃
T∇
33 T,3. (42c)

Expressing the second-order traction and bending moments leads to:
N2

3 = A3U2
3,3 + NT∇

3 T,3, (43a)

M2
1 = D1U1

1,33 + MT∇
1 T,3, (43b)

M2
2 = D2U1

2,33 + MT∇
2 T,3, (43c)

where NT∇
3 =

〈
σ̃T∇

33
〉
, MT∇

1 =
〈
y1σ̃

T∇
33

〉
and MT∇

2 =
〈
y2σ̃

T∇
33

〉
are the traction and bending moments induced by the

longitudinal variations of the eigenstrain T . Similarly the second-order torsion is expressed as function of the macroscopic
displacements and the eigenstrain:

M2
3 = D3Θ

2
,3 + ySαεαβV 2

β + MT∇
3 T,3, (44)

where the torsion induced by the variations of eigenstrains is MT∇
3 =

〈
yγεγασ̃

T∇
α3

〉
and the shear center of the beam is defined

as:

yS1 = −
〈
yαεαβσ̃

V2
β3

〉
and yS2 =

〈
yαεαβσ̃

V1
β3

〉
. (45)

When the section presents two axis of symmetry, the shear center is in O but this is not always true.
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10 G. Corre, A. Lebée, K. Sab, M. K. Ferradi, X. Cespedes: Higher-order beam model with eigenstrains

2.4.4 Fourth-order and higher-order problems
The induction process may be pursued any higher order. Indeed, noticing that V p

α,3 = 0 and following the same procedure
as for T 3 andW3 it appears that T 4 andW4 are formally identical to T 3 andW3, incrementing the orders and depending
on the second derivative of T . Hence, going higher order leads to the derivation of displacement localizations related to
higher derivatives of T relevant for faster variations of T .

The use of the asymptotic expansion method is based on the scaling in equation (3). Hence the rescaled coordinates yi
have been used in the expression of the auxiliary problems T p andWp . However, the distinction between the two sets
of coordinates is no longer necessary in practice once the section modes are computed. The use of the coordinates yi is
therefore dropped in all what follows and replaced by the use of the coordinates xi .

2.5 Families of kinematic enrichment
In the asymptotic expansion procedure, three families of kinematic enrichment emerged. First, the rigid motion of the
section was carried by the six macroscopic variables Up

i , Up

α,3 and Θp

3 . They are respectively related to the following
displacement modes:

ũU1 =
©«

1
0
0

ª®¬ , ũU2 =
©«

0
1
0

ª®¬ , ũU3 =
©«

0
0
1

ª®¬ , ũΘ2 =
©«

0
0
−x1

ª®¬ , ũΘ1 =
©«

0
0
x2

ª®¬ , ũΘ3 =
©«
−x2
x1
0

ª®¬ . (46)

Second, the six correctors related to the six beam resultants3 were derived: ũe3
α , ũ

χ1
α , ũ

χ2
α , ũ

χ3
3 , ũ

V1
3 , ũ

V2
3 . They are also referred

to as Saint Venant’s modes [10, 14]. Note that ũχ3
3 is the warping used by Benscoter [3]. Third, exactly as in [11], a family

of modes related to the eigenstrain loading and its longitudinal variations was obtained: ũT , ũT∇, ũT∇2 ...
Finally, this suggests gathering all these modes in the following approximation for the 3D displacement:

u =
n∑
i=1

ũi(xα)Xi(x3) (47)

where n is the number of modes and Xk(x3) are longitudinal unknown fields. It is demonstrated in [22] that the modes
generated are linearly independent. But in the eventuality where the components of the eigenstrains would be described
respectively with different longitudinal functions (T1,T2...), redundancies may occur. In this case it is necessary to
orthogonalize the basis of modes.

2.6 Numerical approximation of the higher-order beam model
The discretization of the section used for the resolution of the auxiliary problems is presented. The discretization of the
longitudinal beam element and the numerical approximation of the total displacement are then exposed. This approximated
expression of the displacement is used to formulate the expression of the minimum of potential energy, leading to the 1D
boundary value problem.

2.6.1 Numerical resolution of the auxiliary problems
For each order p, the weak forms of T p andWp are expressed. The resolution of the formulations obtained yields the
displacement modes. The numerical resolution is operated by a discretization of the section with finite elements. The
elements chosen here are triangles, the interpolation being quadratic. More precisely, the isoparametric expressions of the
interpolation functions are:

N1(a1, a2) = a1(2a1 − 1) , N2(a1, a2) = a2(2a2 − 1) , N3(a1, a2) = (1 − a1 − a2)(1 − 2a1 − 2a2)
N4(a1, a2) = 4a1a2 , N5(a1, a2) = 4a2(1 − a1 − a2) , N6(a1, a2) = 4a1(1 − a1 − a2). (48)

But there is no limitation in the choice of the type of finite elements. Stress and strain are computed at the three Gauss points
of each element while displacement is computed at the nodes of the sectional mesh. Note that T p andWp are also loaded
with eigenstrains which must be expressed at the Gauss points (in Equation (40c) for instance). Hence, for the resolution
of T p andWp , the displacement loading the auxiliary problems must be interpolated at the Gauss points thanks to the
interpolation functions.

3 From the traction, bending and torsion constitutive equations (31) and (32), ũe3
α , ũχβα and ũ

χ3
3 may directly be expressed as function of N3, Mβ

and M3.
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Fig. 4 2nd-order NURBS basis functions for the knot vector {0, 0.05, 0.1, 0.15, 0.2, 0.4, 0.7, 1}

2.6.2 Numerical approximation of the beam element

To solve the higher-order beam model, the one-dimensional longitudinal problem needs to be formulated. The kinematic
variables Xi are expressed with interpolation functions:

Xi(x3) =
m∑
k=1

Nk(x3)Ũi,k, (49)

with m the number of interpolation functions. Ũi,k is the generalized displacement associated to the mode i and the
interpolation function k.
We use NURBS (Non-Uniform Rational B-Splines). NURBS are a generalization of B-Splines and Bézier curves). NURBS
basis functions are defined by a degree p and a non-uniform knot vector Ξ = {ξ1, ξ2, ..., ξl} with l the number of knots.
This domain partition allows the definition of basis functions, defined recursively by the Cox-de Boor’s formulas. 0th order
functions are piecewise constants:

Nk,0(ξ) =
{

1 if ξk ≤ ξ < ξk+1,
0 otherwise. (50)

Higher-order basis functions (p > 0) are then defined by

Nk+1,p(ξ) = ξ − ξk
ξk+p − ξk Nk,p−1(ξ) +

ξk+p+1 − ξ
ξk+p+1 − ξk+1

Nk+1,p−1(ξ). (51)

It defines m = l + p − 1 NURBS basis functions for the order p, each function being Cp−1. It can be noticed that NURBS
basis functions form a partition of unity:

m∑
k=1

Nk,p(ξ) = 1. (52)

Moreover the basis functions are in general not interpolatory except at the ends of the beam. This motivates distinction
between knots and "nodes".

Each basis function is a polynomial with a compact support contained in the interval
[
ξk, ξk+p+1

]
. Their use is therefore

convenient to describe very fast variations of a field: refining the mesh defines more basis functions with short supports
and affords a better localization of the field. This is an important advantage of NURBS over Lagrange polynomials: the
support of a Lagrange polynomial is the whole domain [ξ0, ξl], and a Lagrange polynomial can show important oscillations
on this interval in certain cases, a situation often called the Runge’s phenomenon. The number of interpolation functions
m depends on the refinement of the mesh and the chosen polynomial degree. In practice, in order to better describe fast
variations of a mechanical field, the degree of the NURBS shouldn’t be too high, since the higher the degree is, the larger the
supports of the functions are. An illustration of NURBS basis functions with a variable refinement of the mesh is presented
in Figure 4.

Copyright line will be provided by the publisher



12 G. Corre, A. Lebée, K. Sab, M. K. Ferradi, X. Cespedes: Higher-order beam model with eigenstrains

2.6.3 Formulation of the beam problem
For a fixed degree p of NURBS interpolation, the total displacement can now be approximated as:

û =
n∑
i=1

ũi(x)
m∑
k=1

Nk,p(x3)Ũi,k . (53)

The stationarity of the minimum of the potential energy based on equations (2) requires:

Find u ∈ K,
∫
Ω

ε(u) : C : ε(û)dΩ =
∫
Ω

ε∗ : C : ε(û)dΩ, ∀û ∈ K, (54)

whereK = {regular enough u | u = 0 on S±} is the set of kinematically compatible fields. The injection of the approxima-
tion û (53) into equation (54) leads to the classical linear system:

KŨ = F th, (55)

where Ũ =
{
Ũi,k

}
with 1 ≤ i ≤ n and 1 ≤ k ≤ m. The resolution of (55) yields the value of all the kinematic unknowns.

Equation (53) then gives the total displacement.

2.6.4 Locking study
NURBS offers many advantages but they are not yet free from locking [9]. A cantilever beam has been studied in order to
investigate this phenomenon and define the range of applicability of the present discretization. The beam has a constant
square section of S = 1 × 1 m2, is clamped for x3 = 0 and is loaded for x3 = L by a vertical force F(L) = F0/L3. The
young’s modulus and the Poisson’s ratio are E = 35 GPa and ν = 0. The kinematics of the beam comprises the rigid and
Saint Venant’s modes, and also up to three modes associated to the load applied and its gradients as described in [11] and
so called force modes. This means that there are only 15 kinematic DOF per section. The beam element is interpolated
with NURBS of various degrees, defined by 11 knots evenly distributed in [0, L], with ξ1 = 0 and ξ11 = L. Hence the total
number of DOF is the same for all calculations.

The analytical expression of the vertical displacement at x3 = L for Euler’s model is well-known. Hence, the following
relative error between Euler’s model and the higher-order beam model is defined:

eEuler =

�����ubeam2 − uEuler2

uEuler2

����� , with uEuler2 =
FL3

3EI
, and ubeam2 =

1
S
〈u2(x1, x2, L)〉 , (56)

where S is the area of the section. The Euler solution delivers a good indication on the numerical behavior of the present
finite element when the slenderness increases since it is known to be the limit model for large slenderness.

First, the influence of the order of the NURBS on the locking phenomenon is investigated for an enrichment limited to
2 force modes (the applied load and its first gradient). Figure 5a shows the relative error as function of the slenderness of
the beam for several NURBS orders. For low slenderness, all relative errors are high. Indeed, for such slenderness, it is
the Euler model which is not valid. When increasing the slenderness, all beam models are expected to converge towards
the Euler solution. This is not the case when locking occurs. The first order NURBS basis functions are identical to the
Lagrange polynomials classically used. Therefore the same locking phenomenon is observed and eEuler goes to 1 for high
slenderness. The second order NURBS also suffers from locking after L/h = 20. Third order NURBS tends to the Euler’s
solution with a best match for L/h = 50 and eEuler < 1.10−4. Locking appears from L/h = 100. However, distance to
Euler’s solution remains only about 1% for L/h = 500.

Second, the influence of the number of force modes is investigated with second order NURBS. Figure 5b shows the
relative error as function of the slenderness of the beam for several number of force modes. It shows that increasing the
number of force modes does not influence the slenderness above which locking occurs.

Therefore, for common situations with L/h < 100, second-order or third order NURBS can be considered as adapted
for the interpolation of the beam element. In case of higher slenderness, increasing the number of longitudinal knots will
mitigate locking.

3 Application to a thermal load

3.1 Thermal load on a clamped beam
To illustrate the method, we consider a beam clamped at both ends, and loaded with a thermal load. The section of the beam
is represented in Figure 6. The beam is 40 m long. The volume of the beam is denoted by Ω. A thermal load is applied on
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x1
x2

x1 = −0.5 m x1 = 2.5 m

x2

x3

x3 = 10 m x3 = 20 m

ST

LT

x2 = 0.65 m

10 m

0.3 m

0.5 m
0.8 m

40 m

Fig. 6 Geometry of the beam and domain ΩT submitted to thermal load

Fig. 7 Position of the thermal load area ΩT

the volume ΩT = ST × LT described in Figures 6 and 7. The thermal load generates an isotropic strain on ΩT :

ε∗i j = α
(
T − T ref

)
δi j (57)

where α is the dilatation coefficient, here fixed at 12.10−6, and T ref is the reference temperature

T − T ref =

{
Tmax − T ref = 40◦C on ΩT

0◦C on Ω \ΩT
(58)

Copyright line will be provided by the publisher



14 G. Corre, A. Lebée, K. Sab, M. K. Ferradi, X. Cespedes: Higher-order beam model with eigenstrains

mesh 1 2 3 4
elements in slab’s thickness 2 3 6 6
elements in slab’s width 40 100 100 200
total number of elements 18492 140000 280000 560000

total time 320 s 1577 s 8505 s 27753s

Table 1 Refinement of the meshes

x3 = 15 m x3 = 9, 90 m
ε11 ε22 ε33 ε11 ε22 ε33

mesh 1 2, 81 4, 38 7, 21 1, 34 5, 15 7, 53
mesh 2 0, 40 0, 49 0, 02 0, 46 1, 85 5, 32
mesh 3 0, 98 0, 55 0, 01 0, 41 0, 63 0, 56

Table 2 Strain relative errors eL2 in percentage of meshes 1, 2 and 3 compared to mesh 4

The material considered is homogeneous and isotropic. We consider the following values of the Young’s modulus and
the Poisson’s ratio: E = 210 GPa and ν = 0.3.

3.2 Reference solution

A 3D model computed with Code_Aster is taken as a reference solution for our study. A convergence study related to the
refinement of the mesh is first carried out. 4 meshes are investigated. Each mesh is made of hexahedric elements, each
element being quadratic. The refinements of the 4 meshes are described in Table 1.

In order to assess the convergence of the different computations, the values of the strains are observed in the middle of
the eigenstrain area (x3 = 15 m) and close to the strain discontinuity (x3 = 9, 90 m). The results are extracted at the center
of the slab’s thickness (x2 = 0.65 m) and presented in Figure 8.

The results quickly converge. The Figure 8f representing the strain ε33 at x3 = 9, 90 m shows a slower convergence.
Figure 8f shows that convergence is reached for mesh 3, since the curves of mesh 3 and mesh 4 are almost overlapping.
Results obtained with mesh 2 shows a gap with the converged values about 5%. Mesh 4 is chosen as the reference solution.
In order to compare the results of the solutions presented in Figures 8a-8f we define the following L2-estimator for a given
x3 and for x2 = 0.65 m:

eL2 (εi j) =

[∫
L1

(
εi j(x1) − ε(4)i j (x1)

)2
dx1

]1/2

[∫
L1

(
ε
(4)
i j (x1)

)2
dx1

]1/2 (59)

where L1 = [−5, 5] is the width of the considered section. The relative errors between meshes 1, 2 and 3 and mesh 4 are
gathered in Table 2. The maximum relative errors of each solution give an estimate of the accuracy of the reference solution
and will be compared to the error of the higher-order beam approximation.

3.3 Higher-order beam solution

For the computation of the present method, the section is meshed with 712 triangle elements, as shown in Figure 9. Each
element is quadratic. The longitudinal and transverse components of the eigenstrain are assumed to vary accordingly to two
different longitudinal functions T1 and T2:

ε∗α3 = 0
ε∗αβ = d(xγ)T1(x3)δαβ
ε∗33 = d(xγ)T2(x3)

(60)

where d(xα) is defined as:

d(xγ) =
{
α(Tmax − T ref) if xγ ∈ ST
0 if xγ < ST

(61)
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Fig. 8 Axial strains in the heated area and close to the temperature discontinuity for the 3D solution

The use of two different functions T1 and T2 is an arbitrary choice based on experience. Since the components of the
eigenstrain follow two different longitudinal functions, the 2D computation yields twice as many eigenstrain modes, which
represents a kinematics richer than if a single function had been used. The first orthonormalized eigenstrainmodes computed
up to the second gradients of T1 and T2 are given in Figure 9.

The longitudinal mesh is composed of 42 knots: 41 knots are evenly distributed between 0 and L and an additional knot
is placed at x3 = 9, 90. This last knot is added in order to better compute displacements and strains close to the eigenstrain
discontinuity. This longitudinal mesh is less refined than the one of the reference model which has 400 elements along its
longitudinal axis.

The model is first computed without eigenstrain modes. Thus the only modes considered are rigid and Saint Venant’s
modes as presented in Section 2.5. We call this solution S0 with 12 kinematic DOF per section. The model is then computed
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(a) Transverse mode uT1 (b) Warping mode uT1∇

(c) Warping mode uT2∇ (d) Transverse mode uT1∇2

(e) Transverse mode uT2∇2

Fig. 9 The 5 eigenstrain modes related to the heated area in the cross-section for case study 1.

reference model higher-order beam model
type of elements 20-node hexahedron 6-node triangle + 42-knot beam

number of elements 560000 712 + 1
CPU computation time 27753 s 11 s

Table 3 Comparison of the solutions

up to the second gradient of the eigenstrain u∇T
2
i , i = 1, 2. This should yield a maximum of 6 modes (uT1 , uT2 , u∇T1 , u∇T2 ,

u∇T
2
1 and u∇T

2
2 ). In our case of study uT1 = uT2 . We therefore get only 5 additional eigenstrain modes which are presented

in Figure 9. It can be noticed than uT1 = uT2 does not imply uT1∇ = uT2∇, since the recursive definition of transversal
problems T p+1 and warping problemsWp+1 is second order: they imply loading terms as function of displacements of the
order p − 1 and p.

We call this second solution S with 17 kinematic DOF per section. The comparison between S and S0 highlights the
contribution of the eigenstrain modes to the global response. The main features of the 3D solution and the solution S are
presented in Table 3.
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(a) 3D computation (b) Higher-order beam model

Fig. 10 Deformed structure under thermal load (amplification factor = 200)

3.4 Comparison of the solutions

The deformed structure obtained with the 3D computation and with the higher-order beam model are presented in Figure 10
(the same scale is used for both figures). The color map shows the norm of the 3D displacement. Figure 10 illustrates the
ability of the higher-order beam model to capture the cross-sectional displacements. The higher-order beam model can also
satisfactorily capture the discontinuities of loads: the heated area is easily identifiable in Figure 10b.

A finer comparison of the present beammodel to the reference model is now performed. Like with the reference solution,
the results presented hereafter are all extracted at the mid surface of the slab (x2 = 0.65 m), as defined in Figure 6. In order
to compare the different solutions we define as previously the following L2-estimators:

eL2 (ui) =

[∫
L1

(
ui(x1) − u3D

i (x1)
)2

dx1

]1/2

[∫
L1

(
u3D
i (x1)

)2
dx1

]1/2 , eL2 (εi j) =

[∫
L1

(
εi j(x1) − ε3D

ij (x1)
)2

dx1

]1/2

[∫
L1

(
ε3D
ij (x1)

)2
dx1

]1/2 (62)

3.4.1 Results in the heated area

The first results presented are computed in the middle of the heated area at x3 = 15 m. Displacement and strain are shown
in Figures 11. Shear strains being less significant are not presented here.

The displacement u1 matches well with the 3D solution, since eL2 (u1(x3 = 15 m)) = 1, 69.10−2. The discontinuity of
the eigenstrain clearly appears in Figure 11a. Displacement obtained with S0 shows that the beam modes are not sufficient
to describe the global response to this specific load. The vertical displacement u2 matches with the 3D model with an
error eL2 (u2(x3 = 15 m)) = 2, 33.10−2, but a higher expansion order would bring even more satisfying results. Looking at
the longitudinal displacement, the 3D solution is more rigid than the beam solution, and eL2 (u3(x3 = 15 m)) = 4, 00.10−2.
The accuracy of the solution could be improved by refining the longitudinal mesh. According to Figures 11d to 11f,
the axial strains computation shows very satisfying prediction. The strain ε33 shows a little difference with the reference
model eL2 (ε33(x3 = 15 m)) = 2, 45.10−2. This error can still be lowered by increasing the number of modes or by re-
fining the longitudinalmesh. As presented in Table 3, the computation of thismethod is fast, and it provides satisfying results.

3.4.2 Discontinuity and boundary conditions

It is now interesting to compare the response provided by both models close to the strain discontinuity and close to one
clamped end. The displacements computed at x3 = 9, 90 m and x3 = 1 m are shown in Figure 12.
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Fig. 11 Comparison of displacements and strains of the slab in the heated zone, x3 = 15 m

Close to the discontinuity, the prediction of solution S is still satisfying. The cross-sectional displacements matches
with the 3D model: eL2 (u1(x3 = 9, 90 m)) = 1, 42.10−2 and eL2 (u2(x3 = 9, 90 m)) = 1, 50.10−2. Even if the longitudinal
displacement is less satisfying with a L2-error eL2 (u3(x3 = 9, 90 m)) = 6, 94.10−2, it appears that the model has no real
difficulty in capturing the discontinuities. If needed, the results of u3 could be improved by increasing the number of
longitudinal knots.

The effect of the boundaries on the displacements appears in Figures 12d to 12f (x3 = 1 m). Solution S matches well on
the 3D model for the longitudinal displacement u3 (eL2 (u3(x3 = 1 m)) = 2, 52.10−2), but the cross-sectional displacements
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Fig. 12 Displacement of the heated slab close to the temperature discontinuity x3 = 9, 90 m (a), (b), (c) and close to supports x3 = 1 m
(d), (e), (f)

u1 and u2 are not so close to the reference solution: eL2 (u1(x3 = 1 m)) = 3, 57.10−1 and eL2 (u2(x3 = 1 m)) = 1, 39.10−1)).
Yet the estimation is suitable for engineering practice. It is consistent to find less accurate results close to the boundaries
since the boundary conditions are not considered in the computation of the modes. The boundaries requires particular
strains that could be captured by adding modes specifically computed for the boundary conditions under consideration.
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y2

y1y3

Fig. 13 Section of the prestressed beam

reference model higher-order beam model
type of elements 15-nodes pentahedron 6-nodes triangle + 41 longitudinal knots

number of elements 99680 1788 + 1
CPU computation time 1805 s 24 s

Table 4 Main features of the 3D solution and solution S

4 Application to a prestressed beam

4.1 Prestressed cable in a cantilever beam

We further illustrate the present model with a cantilever beam prestressed with a steel cable. The section of the beam is
represented in Figure 13. The beam is 20 m long. The concrete domain is denoted by Ωc and the steel domain by Ωs . A
constant eigenstrain ε∗ = ε∗33e3 ⊗ e3 is applied inΩs , with ε∗33 = 7.10−3, corresponding to 23 MN tension in the prestressed
cable. Both materials are homogeneous and isotropic with:

• (E, ν)concrete = (35 GPa, 0.2)

• (E, ν)steel = (200 GPa, 0.3)

The beam is 20 m long. Note that, a real concrete beam would require additional reinforcement bars as well as a non-linear
constitutive behavior. This simplified example is chosen here to illustrate the ability of eigenstrain modes to capture rather
fast variations of the strain in the section.

4.2 Reference and beam solution

As for the previous example, a convergence study is carried out in order to choose the reference solution. The study
is computed with Code_Aster with full 3D computations. The mesh of the chosen reference solution is made of 99680
pentahedric elements, each element being quadratic. This mesh has been constructed by meshing the end section with 2492
triangles, and then by extruding this 2D mesh on 40 section evenly distributed from x3 = 0 to x3 = L. For the computation
with the higher-order beam model, the section is meshed with 1788 triangle elements. Each element is quadratic. The
displacementmodes are computed accordingly to this load, using the same decomposition of the eigenstrain as in the previous
example. The sectional modes are computed up to the fourth gradient of the eigenstrain. The 5 first orthonormalized modes
associated to the eigenstrain uT , u∇T , u∇T 2 , u∇T 3 and u∇T

4 are represented in Figure 14. These three cross-sectional
modes and two warping modes clearly illustrate the action of the cable on the beam. The shift between purely transversal or
purely warping modes at each order comes from the monoclinic symmetry of the constitutive material (1) and the absence
of shear in the thermal loading of the present case study.

The longitudinal mesh is composed of 41 knots evenly distributed on the length of the beam. The longitudinal mesh
used here is the same as the one of the reference model. A first solution only with the rigid and the Saint Venant’s modes is
computed and called S0 with 12 kinematic DOF per section. The solution using also the 5 eigenstrain modes is called S and
involves 17 kinematics DOF per section. The main features of the 3D model and the solution S are presented in Table 4.
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(a) Transverse mode uT (b) warping mode u∇T

(c) Transverse mode u∇T 2 (d) warping mode u∇T 3

(e) Transverse mode u∇T 4

Fig. 14 The 5 eigenstrain modes related to the prestress in the steel cable used in case study 2.

4.3 Comparison of the solutions

The deformed structure obtained with the 3D computation and with the higher-order beam model are presented in Figure 15
(the same scale is used for both figures). As expected, the prestressed cable compresses and raises the beam. The higher-
order beam model captures cross-sectional displacements such as the lowering of the edges of the table, and warping
displacements such as the punching effect of the cable which can be observed at the end of the beam. A finer comparison
of the models is presented now. Displacements and strains are computed at mid-span of the beam at x3 = 10 m and close to
the clamped end at x3 = 0.5 m. The results presented hereafter are all extracted at the axis of symmetry of the section for
x1 = 0 m.
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(a) 3D computation (b) Higher-order beam model

Fig. 15 Deformed structure under prestress steel cable (amplification factor = 100)

4.3.1 Results at mid-span of the beam

The displacements computed at x3 = 10 m are presented in Figure 16. Because of the symmetry of the structure and the
load, the horizontal displacement at x1 = 0m is expected to be zero. Very low values are observed in the three computations.
However, these results can still be considered like almost zero values in view of the numerical oscillations of the 3D solution.
The vertical displacement in Figure 16b illustrates the action of the cable close to x2 = 1.8 m. This effect cannot be captured
without eigenstrain modes. The L2-error is eL2 (u2(x3 = 10 m)) = 1, 27.10−2. The longitudinal displacement is also well
represented by the beam model with eL2 (u3(x3 = 10 m)) = 2, 43.10−2. The strains deriving from these displacements are
presented in Figures 16d to 16f. The shear strains are not presented here because of their very small amplitude. Thanks to
the enrichment of its kinematics, the beam model is able to capture the strains locally generated by the cable. However, the
strains ε11 and ε22 of solution S does not perfectly match with the 3D solution in the prestressed area, leading to the errors
eL2 (ε11(x3 = 10 m)) = 7, 67.10−2 and eL2 (ε22(x3 = 10 m)) = 2, 69.10−1. The accuracy of these results could be improved
by providing a more refined mesh in the prestressed area of the model.

4.3.2 Results close to support

The previous example showed that the results were less satisfactory near the boundary conditions. This is confirmed in the
present case by the computations at x3 = 0.5 m. The beam solution S still correctly matches with the 3D solution, but larger
errors are observed: eL2 (u2(x3 = 0, 5 m)) = 2, 43.10−1 and eL2 (u3(x3 = 0, 5 m)) = 5, 12.10−2. It can be noticed that even if
the amplitude of the vertical displacement close to support is globally 1000 times smaller than in the middle of the beam at
x3 = 10 m, the detailed influence of the cable is still well captured by the beam model.

Regarding strains, the beam model does not perfectly match with the 3D model but remains suitable for engineering
practice. The L2-error of the axial strains are eL2 (ε11(x3 = 0, 5 m)) = 1, 35.10−1, eL2 (ε22(x3 = 0, 5 m)) = 2, 48.10−1 and
eL2 (ε33(x3 = 0, 5 m)) = 1, 56.10−1. Solution S does not describe the variation of ε33 around x2 = 1, 80 m. This is explained
by the influence of the boundary conditions on the displacement. This should be solved by the computation and the addition
of new modes specific to the boundary conditions.

5 Conclusion

A numerical method based on the asymptotic expansion method was recently suggested by Ferradi et al. [11]. The strength
of this higher-order model is that the kinematics of the beam is enriched not only with 2D-modes related to the geometry
of the section, but also according to the loads applied on the structure. This way, local effects produced by the application
of the loads are directly captured by the beam element. Moreover, the extension of the kinematics does not require any a
priori knowledge on the solution of the problem. Based on the use of the asymptotic expansion method, this model enables
the user to enrich the kinematics of the beam until any expansion order n, and to refine the results subsequently.

Because of the presence of many inelastic phenomena in civil engineering applications, the current paper extends this
method to the case of eigenstrains. The introduction of eigenstrains in the equilibrium equations leads to the computation
of additional modes specific to the strains applied to the structure. These modes are added to the higher-order kinematics
of the beam.

When compared to a 3D computation, the model presented here shows very satisfying results with a significantly reduced
computational cost. Indeed, only very few additional modes and corresponding beam DOF (3 to 5) were required for
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Fig. 16 Displacement and strain at mid-length of the beam, x3 = 10 m

capturing fairly well the applied eigenstrains. These time performances can still largely be improved by more advanced
numerical techniques. As shown in this article, the model is able to capture strain discontinuities: the thermal discontinuity
introduced in the first example is faithfully described in the results computed by the beammodel. This example also illustrates
the ability of the model to capture both transverse and longitudinal discontinuities. The second example highlights the
ability of the model to render local behavior such as the punching of the prestress cable on the end section of the clamped
beam. However, the very close vicinity of the boundaries sometimes seems more difficult to compute, as exposed in the first
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Fig. 17 Displacement and strain close to support, x3 = 0, 5 m

example. In order to better describe the mechanical behavior next to boundary conditions, the introduction of new modes
specific to these boundary conditions is already under investigation.

A Proof of the symmetry of the beam constitutive equation

In this section, the symmetry of the constitutive equation (29) is briefly sketched for Sη = S∗η .
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Recall that:

Sη =
〈
σ̃
χη
33

〉
and S∗η =

〈
xησ̃

e3
33

〉
. (63)

The boundary value problem 22 being linear, each localization field ũA, σ̃A satisfies the equations for a unit value of the
macroscopic field A and vanishing the other macroscopic fields. From the longitudinal constitutive equation (22c):

Sη =
〈
C33αβ ũχηα,β + C3333xη

〉
and S∗η =

〈
xη

(
C33αβ ũe3

α,β + C3333

)〉
, (64)

and the transverse constitutive equation (22b):

Sη =
〈(
σ̃e3
αβ − Cαβγδ ũe3

δ,γ

)
ũχηα,β + C3333xη

〉
and S∗η =

〈(
σ̃
χη
αβ − Cαβγδ ũχηδ,γ

)
ũe3
α,β + xηC3333

〉
(65)

Because the in-plane stress must satisfy equilibrium equation (22a) as well as free boundary conditions (22e) we have:〈
σ̃e3
αβ ũχηα,β

〉
= −

〈
σ̃e3
αβ,β ũχηα

〉
= 0 and

〈
σ̃
χη
αβ ũe3

α,β

〉
= −

〈
σ̃
χη
αβ,β ũe3

α

〉
= 0 (66)

From this and equation (65) it appears that Sη = S∗η . Similar arguments ensure D∗12 = D12.
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