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A higher-order beam model based on the asymptotic expansion method was suggested by Ferradi et al. [11]. Introducing
new degrees of freedom specific to the applied loads into the kinematics of the beam, this model yields fast and accurate
results. The present paper focuses on the extension of this model to the case of arbitrary eigenstrains expressed in a separate
form between the longitudinal coordinate and the in-section coordinates. The asymptotic expansion procedure is recalled
and the derivation of a higher-order beam model performed. The beam model is interpolated with NURBS. The case of a
bridge deck heated on a localized area is studied. A second case study of a prestressed cantilever beam is then investigated.
The results of the higher-order beam model are compared to a 3D solution in each example. The performances of the beam
model appears to be accurate and very time-efficient.
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1 Introduction

Structural analysis must take into account eigenstrains such as thermal load, prestress or weakly coupled swelling phenomena.
Furthermore, beam models are certainly the most widely used models by structural engineers because of their simplicity.
This motivates the introduction of these prescribed strains into beam models. However, the kinematics of beam models is
often based on very simple assumptions which are often unable to describe precisely local effects induced by these strains
prescribed arbitrarily in the section. In the absence of richer kinematics, shell models or full 3D computations are necessary.
Those computations being time-consuming, the simplicity and the great time efficiency of beam models motivates the
development of adequately refined higher-order beam models.

Beam models have a long history and a vast variety of contributions may be found in the literature. The first beam
models were based on ad-hoc assumptions on the 3D fields which motivated the denomination axiomatic. Most of the time
axiomatic models rely on an educated guess on the 3D displacement field in a separated form between the longitudinal
coordinate and the in-section coordinates. Then, straightforward application of the minimum of potential energy leads to
1D boundary value problems corresponding to the beam model. The Euler-Bernoulli beam model was the first suggestion.
In this model, it is assumed that the cross-section of the beam is rigid in its own plane and that it remains orthogonal to the
neutral axis of the beam. Hence, this model neglects the transverse shear strain and suffers from a kinematic contradiction:
since the section is not allowed to deform in its plane, transverse Poisson’s effect is precluded. The Timoshenko beam model
allows an independent rotation of the section with respect to the neutral axis in order to take the transverse shear strain into
account [24]. However, since the section rotates rigidly, the shear strain is uniform in the section which does not satisfy the
free lateral boundary. Furthermore, the transverse Poisson’s effect is still restrained. These contradictions, suggested to push
further the kinematic enrichment in a polynomial form as illustrated in [|6,|12]. However, having a correct approximation
requires a high number of kinematic degrees of freedom and raises the question of the sparsity of the approximation as will
be recalled below.

It turns out that, at leading order in the slenderness, these kinematic contradictions were resolved quite early thanks to
Saint Venant solution [§]]. Indeed, this solution was originally derived for an elastic beam with a homogeneous and isotropic
section loaded at the extremities in a weak sense. Starting from static considerations, a full 3D solution was obtained where
the 6 classical generalized stress vary linearly along the beam and the section is free to deform in its plane as well as out of
its plane. More precisely, the 3D displacement field appears as the superposition of the classical rigid motion of the section
and of additional displacements related to the generalized stress which correct the over-constrained rigid motion of the
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2 G. Corre, A. Lebée, K. Sab, M. K. Ferradi, X. Cespedes: Higher-order beam model with eigenstrains

section. As consequence, the 3D stress is better approximated than in the preceding approaches and the traction, bending,
torsional and shear force stiffnesses are correctly evaluated.

Whereas this solution is perfectly relevant for rather compact and homogeneous sections, the Saint Venant solution is
not accurate enough when considering more general sections such as anisotropic or heterogeneous materials, open and
closed thin-walled sections. A classical illustration involves torsion warping. Indeed, the latter is assumed uniform along
the beam in the Saint Venant solution. Hence, clamped boundary conditions may not be strongly satisfied. In practical
situations, clamping a thin-walled beam generates a kinematic frustration which propagates far from the extremity and
needs correct estimation. A first successful extension of Saint Venant solution was made by Vlasov [26] who included the
torsional warping as an independent static degree of freedom (so called bi-moment) followed by Benscoter [3]] who further
assumed that the corresponding kinematic degree of freedom is also independent. Both works rely on the torsional warping
correction included in the Saint Venant solution.

The efficiency of these models to capture end effects encouraged further refinement in more general configurations.
A noticeable contribution is from Iesan [14]] who extended the Saint Venant solution to the case of fully anisotropic and
heterogeneous section. In addition the beam was loaded with body forces and surface tractions in a separated form between
in-section coordinates and the longitudinal coordinate. The longitudinal variation of the loads was assumed polynomial of
a fixed order and the corresponding solutions for each order is obtained by a recursive process.

Almost identical results were obtained from the formal asymptotic expansion. Indeed, this method is based on a scaling
of the original 3D problem so that it depends explicitly on a small parameter. In the case of beams, it is the ratio between the
typical size of the cross section and the length of the beam. Then the solution is assumed following an asymptotic expansion
with respect to the small parameter and inserted in the 3D equations. A collection of embedded in-section and longitudinal
problems is obtained which is solved by induction. The monograph from Trabucho & Viano [25] presents the method and
links the lowest orders of the asymptotic expansion with the Saint Venant solution as well as Vlasov beam model. Most
of recent contributions questions the correct derivation of boundary conditions especially at higher order [4}/5,|16L/17].
Another family of enriched beam model was derived following the so-called “Variational Asymptotic Method” [[13}29-31]].
This approach is very similar to formal asymptotic expansion and most of its developments were made assuming large
displacements and rotations of the section which makes higher-order developments much more involved.

In addition to the difficulties regarding boundary conditions, the main limitations of the asymptotic expansion approach
are the very high regularity of the applied load which is required when going higher order and the embedded structure of
the sequence of 1D problems to be solved. This makes the classical approach impractical for engineering applications.
Remarkably, the same difficulty arises with the extended Saint Venant solution from Iesan [[14] since only polynomial
loadings are solution. For instance, concentrated loads commonly used in practice do not satisfy such regularity.

A solution to overcome this difficulty is to consider the whole family of in-section displacements or “modes” generated
from formal asymptotic expansion as kinematic enrichment carried by independent generalized beam displacements. Indeed,
the application of the minimum of the potential energy does not restrict severely the regularity of the longitudinal distribution
of the applied load. The very first illustration of this approach is the model from Benscoter [3] which treats the torsional
warping as an independent degree of freedom. In the case of a homogeneous and isotropic beam this idea was fully
generalized by Miara & Trabucho [22]] (also detailed in [25]]) and so called “Galerkin spectral approximation”. This work
is based on the seminal idea from Vogelius & Babuska [27,28]] which also originated the family of “hierarchical models”
for plates and shells [[1]. Two noticeable observations were made. First, the formal asymptotic expansion delivers a free
family of kinematic enrichment which is dense in the space of the 3D solution. This means that going sufficiently high
in the expansion allows arbitrary refinement of the 3D solution. Second, the truncation of this family ensures that the
corresponding beam model is asymptotically consistent except at the boundary. This means that the kinematic enrichment
delivered by the formal asymptotic expansion is optimal in terms of approximation error far from the extremities of the
beam.

Practical implementation of this concept were suggested by El Fatmi [10] Lahmar et al. [21] and Ferradi et al. [11].
In [1O], the enrichment was limited to the contribution of the Saint Venant modes and transverse loadings which are uniform
in the longitudinal direction. However, longitudinal or higher-order enrichments were discarded and there remained an
educated guess for enriching further the beam model. This approach was also extended to uniform thermal loads in [21].
In [[11f], the enrichment related to any kind of load was introduced up to an arbitrary order. A closed-form solution of the
higher-order beam model was derived and comparisons with full 3D calculations were performed. Even for a concentrated
load arbitrarily located in the section, the approximated solution yielded surprisingly good results.

In the present paper, the same approach is applied to eigenstrains and illustrated with two cases study. Furthermore,
the higher order beam model is implemented with NURBS finite elements in order to allow longitudinal variations of the
applied load. There are fewer contributions related to applied eigenstrain in beam theories. In addition to those previously
mentioned, the general case of periodic beams as well as thin walled beam was investigated by Kolpakov [18-20]]. However,
the formal asymptotic expansion was not carried out up to an arbitrary order.
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Fig.1 The beam configuration

This paper is also an opportunity to redevelop the formal asymptotic expansion procedure and emphasize its close link
with Saint Venant solution as well as the extension from Iesan [[14]]. It is organized as follows. First the formal asymptotic
expansion procedure is applied to a beam with a prescribed eigenstrain and the higher-order beam theory is derived and
solved numerically with NURBS finite elements in Section[2] Then, two elementary cases study are investigated. A bridge
submitted to a local elevation of temperature in Section[3]and a prestressed beam in Section 4]

2 Kinematic enrichment based on the formal asymptotic expansion

2.1 The 3D problem

We consider a beam occupying the prismatic domain Q (Figure [T) with a length L and a cross-sectional typical size h.
The boundary dQ is the union of the lateral (free) surface 0Q, and the two end sections S* (clamped). The longitudinal
coordinate is x3 and the section coordinates are x; and x; denoted as xaﬂ the corresponding reference frame is denoted
(O, ey, €3, e3) where O is an arbitrary point of the plane x3 = 0.

The constitutive material of the beam is only function of the section coordinates x, and invariant in the longitudinal
direction. For convenience and without limitation, the corresponding fourth order stiffness tensor C(x,) is assumed
monoclinic with respect to a plane of normal e3:

CurﬁyS = C333¢ = 0. (D

The beam is only subjected to eigenstrains sl*] The corresponding 3D linear boundary value problem writes as:

div,o =0 on Q,

og=C:(e-€&") onQ,

e=Viu on Q, 2)
o-n=0 on 9%,

u=0 on 8%,

where n is the outer normal to 9€Q;, V3 is the symmetric part of the 3D gradient operator and divy is the 3D divergence
operator. Casting the weak form of this boundary value problem reveals that, in addition to the classical regularity of u, the
eigenstrain load needs to be square integrable.

Note that another way to introduce eigenstrains would be to turn it into a body force f* = —div, (C : &*) and a force
per unit surface T* = (C : €*) - n on 9€;. Then it would be possible to use the method presented in [[11]. This remark
shows that, without considering fields regularity, the optimality result presented in [22] may be adapted to the present
situation. However, this approach involves the preliminary computation of the divergence div, (C : €*), which may be a
source of numerical imprecision, especially with heterogeneous sections or eigenstrains with low regularity. This motivates
the present direct formulation of the higher-order beam theory.

! In the following, Greek indices «, 8,7y = 1,2 denote in-section dimensions and Latin indices i, j, k, I = 1, 2, 3, all three dimensions. Einstein
summation convention on repeated indices is used.
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2.2 Scaling and variable separation

A new set of coordinates y; is defined from the global coordinates,
(x1, X2, x3) = (hy1, hy, Lys), 3)
which rewrites the derivation operator as:

1 1
V= — (Vm + —vya), o
L T

as well as the integration over the domain Q as:

L 1 1
/ 40 = / / dxodxs = L7 / / dyadys = L’ / () dys, )
Q 0 S 0 SO 0

where = % is the small parameter related to the slenderness of the beam, SO is the scaled cross-section, independent from
7 and ( ) denotes integration on the scaled cross-section.
The eigenstrain is assumed to have the following separated form:

8;';' =n Ciij(y(y)T()B), (6)

where d; i(ya) is the eigenstrain distribution in the section and T'(y3) is its longitudinal variation. In this section, capital
letters denote functions of only the y3 coordinate (except for C) and & denotes functions of only in-section coordinates y,.

2.3 Expansion

The asymptotic expansion method is a formal procedure in which all fields are assumed sufficiently smooth. It yields a
cascade of in-section and longitudinal boundary value problems which are classically solved recursively. In the present
case, only the in-section problems are of interest in order to derive a collection of displacement modes.

The displacement, strain and stress variables are expanded as power series of the small parameter as follows [4,23[[25\32]:

u="L(Uyy3)eq +nu' +5'u’ +..), @)
& = 80 + 7]81 + 7]2(‘3‘2 + ..., (8)
o=0"+y30"+770" + ... 9)

and introduced in the equations of the 3D boundary value problem (2Z)) where each power p of 7 is identified. The problem
being linear, the choice of the starting order has no incidence on the final formulation in terms of physical variable. Here
the starting order is chosen so that the leading order of the displacement field is 0. The starting order of the other fields is
chosen accordingly. This motivates the scaling of the eigenstrain in Equation (6)).

For p € IN, each compatibility equations, boundary conditions and constitutive equations for p and equilibrium equations
for p — 1 yield an auxiliary problem on the cross-section which splits in two uncoupled boundary value problems.

Transverse displacement First, the in-section displacement problems (transverse mode) 7 ”*' are gathered for p > 0:

Tappt Tass =0 on S°, (10a)
025 = Capys (65, = 0p1dyT) + Caps (5 — G diaT)  on S, (10b)
TV ) 0%y = Cvsap (e = 6p1dpaT) + Crzas (5 = 6p1dnT) o ", 100)
Eop = Uy S5 =5, on S°, (10d)
ohgip =0 on 4S°. (10e)
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where o' = 0 and 61p = 1if p = 1 and 61, = O else. Transposing the results from [2,(7], for a simply connected
cross-section and regular enough C and loadings, this boundary value problem on the displacement 5" is a pure traction
problem which is well-posed provided that the applied load is globally self-equilibrating for in-section translations and
rotation:

(or35) =0 and  (ypesacris’y) =0, (11)
where €, is the permutation operator: €1 = €2 = 0, €2 = +1, & = —1. Then, under condition (1'1;1'[), the solution is
uniquely defined up to the following rigid motion of the section in its plane:

uy”t = UL (33) + Ypepa®” (33). (12)

1. . . .
where U™ is a transverse displacement and ®”*' a twist rotation.

Longitudinal displacement Second, the longitudinal displacement problems (warping mode) ‘WP are obtained for p > 0:

Thaa * T35 =0 on S°, (132)
s ) Ts = Caspr2 (e = 0pndT)  on S, (13b)
26", = ul’ + ul 4 on S°, (13¢)
ol ng = 0 on 8S8°. (13d)

Again, for a simply connected cross-section and regular enough C and loadings, this boundary value problem on the
displacement u% ! is well-posed if the applied load is globally self-equilibrating for the longitudinal translation:

-1
(o555) =o0. (14)
In this case, the solution is uniquely defined up to a uniform longitudinal displacement:
uRr = Ur(ys). (15)

Resultants and macroscopic equilibrium equations The rigid motion of the section suggests the following definition of
the beam resultants at each order p > 0:

Ny =(o%), Mg =(va03;). Mi=(pegacyy) and Vg =(o7;), (16)

where N7 is the normal traction, M, are the bending moment M3 is the moment of torsion and V7 are the shear forces.
These resultants must comply with the following beam equilibrium equations for each p > 0:

=0, (17a)
M(';3 = Vo, (17b)

P =0, (17¢)
V”3 =0. (17d)

Indeed, from the in-section equilibrium equations (T0a)) and (T3a):
+1 b
<0'3pa,a 733, 3> Joso Tax nadl + Ni3 =0,
<)’B ( é’:a + 0-33 3)> = —Vé’” + faso y,BO'(’glnadl + M[’;’3 =0,

(18)
<y7€w(‘rgﬁt’fﬁ a33)> <y7,6’fya > + Joso YrEraTag npdl + M7 = 0,

<ag;jﬁ+a53’3> Jygo 25npdl + V7 =0,

Note that equilibrium equations (I7a}c-d) are identical to conditions (I1J]T4). Hence, satisfying beam equilibrium equations
ensures that 77 and “W? have a unique solution up to the rigid motions (12J15)).

2 Tt will appear that M £ is the working conjugate to the curvature U (’; 43 and not the conventional bending moment. Indeed, the classical definition is

mpy, = (€apyBohy) = €apM [’; . This choice is made for convenience.
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2.4 Cascade resolution

The series of problems are now solved order by order.

2.4.1 First-order problems

Transverse displacement The problem 7 is not loaded. Consequently, the transverse displacement u}, is a rigid motion
and the corresponding stress is null:

uil = U(ll(yS) + yﬁeﬁa®l(y3) and O’zﬁ =0, 0'33 =0. (19)

Here, ®' appears as the leading order angle of twist and U], as the next order macroscopic transverse displacement.

Longitudinal displacement The longitudinal displacement problem (warping mode) ‘W' writes as:

OSa =0 on S°, (20a)
e To3 = Cazps 263 on S°, (20b)
2ef; =u3, + Uy on SY, (20¢)
olna =0 on 9S°. (20d)

The applied load is self-equilibrating and the solution of this boundary value problem writes as:
uy=Us+yaUp 3 and 055 =0, (21)
where U, , appears as the bending rotation and Uj as the leading order longitudinal displacement.

2.4.2 Second-order problems

Transverse displacement The transverse displacement w7, is derived through:

Topp =0 on SY, (22a)
Ohs = Capyo (8hy = doyT) + Caps (33— dT) . on S, (22b)
T2: 1 0l = Csiap (80 — dpaT) + Cos (s~ dT)  on S, (22¢)
Eop = Ulapy 33 = Uss+aUp s on SY, (22d)
Tapttp =0 on 4S°. (22e)

Again, the applied load is globally self-equilibrating. The solution of this boundary value problem parametrized by the

elongation Uj 5, the curvatures U, 5, and the eigenstrain T writes as the linear superposition of each contribution:

~X1 ~X2

2 ~e 1 0 0 ~T 2 2
Uy =iy Uss + il Ujsy +ily Uysy +ilg T+ U, + ypega®’, (23)

where i3, i), i#X? are in-section displacements related to transverse Poisson’s effect under pure traction and pure curvatures
which are illustrated for a square section in Figure[2] When the section is homogeneous, these correctors have a closed-form
expression which is detailed in [32] for instance. Finally, i, is a transverse Poisson’s effect related to the eigenstrain. In
order to be uniquely defined, the following constraints are applied to all these in-section displacements:

<I/~ta> =0 and <y'365(,ﬁa> =0. (24)

Longitudinal displacement The longitudinal displacement 3 complies with:

Tlga =0 on S, (25a)
W - To3 = Casps 2 (8);3 - JBST) on S°, (25b)
26y = 15, + Yp€pa®'s + Ul 5 on S, (25¢)
Thala =0 on 8S°. (25d)
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Fig. 2 Transverse modes related to pure traction and pure curvatures for a homogeneous square section with an isotropic material

7

(a) Warping mode & (b) Warping mode ﬁgl (c) Warping mode ﬁ;’z

Fig. 3 Warping modes related to pure torsion and pure shear forces for a homogeneous square section with an isotropic material

The applied load is globally self-equilibrating. The solution of this boundary value problem parametrized by ®';, U}, ; and
T writes as the linear superposition of each contribution:

Wy = @@L + iy T+ Uj + yo Ul 5 (26)

where ﬂg‘ ? is the torsion warping illustrated in Figureand ﬂg a warping related to the eigenstrain. Indeed, the displacement

17/3(3 is exactly the solution of the Neumann problem for Saint Venant’s torsion. Again, these warpings are constrained as

follows:

(@3) = 0. 27

Macroscopic constitutive equations From the solution of second order problems, the first order stress may be written
as:

_ ~ ~ T

Top = OopUss + TopUlas + TupUs 33 + GapT (28a)
_ ~T

Tz = 0305+ Gy3T, (28b)

033 = 053 Us 3 + 55Uy 53+ 535 Up 33 + 03T (28¢)

Expressing the traction and bending moments leads to the following constitutive equations:

N}y = A3Ul, + S1U} 33 + S2U5 33+ Ny T, (29a)
M| = S{Uj 5+ DU} 33 + D1aUs 55 + M{ T, (29b)
My = ;U 5 + DU 3 + DyUS 3 + M) T, (29¢)
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8 G. Corre, A. Lebée, K. Sab, M. K. Ferradi, X. Cespedes: Higher-order beam model with eigenstrains

where:

Ay= (F53), Si= (033), = (3%), N = (75)
S;=(nd5), Di=(noy), Dn=(ndg), M =(nsy), (30)
S; = (nd5), Dy =(»033), D2= (»035), M) =(nd).

The modulus Aj is the traction stiffness, D and D, are the bending stiffnesses. The moduli N3T , M IT and M2T are the traction
and bending moments induced by the eigenstrain. It is proved in Appendix @ that §§ = 81, §; = S and D}, = Di».
The stiffnesses S; and S, are related to the first moments of inertia. Furthermore, there is a position for O, the origin of
the reference frame, such that S; = S, = 0 and rotating the reference frame with respect to es, there is an angle such that
Di> = 0. When the section is homogeneous, this choice of reference frame corresponds to the centroid of the section
oriented along one of the principal axis of the second moments of inertia. This is assumed in the following:

Ny = AsUy; + N3 T, (31a)
M{ =D\U} ;; + M{T, (31b)
M} = DyU3 3+ M] T. (3lc)

Similarly the torsion is expressed as function of the macroscopic displacements and the eigenstrain:
T
M; = D3®"3 +M;T. (32)
where the torsion stiffness and the torsion induced by the eigenstrain are:
~ X T ~T
D; = <y76yaa'£> and  M; = (y,e,a03). (33)

Whereas the uncoupling between traction and bending moments may always be satisfied with a proper choice of the reference
frame, the uncoupling between torsion is obtained here because of the symmetry assumption (). This assumption may
be released without limiting the approach presented here. Indeed, constitutive equations (31)) and (32)) would be simply
coupled in such a case.

2.4.3 Third-order problems

Transverse displacement The transverse displacement «}, is derived through 77 and loaded by ®',;, T'3, U3, and U .
The applied load is self-equilibrating in translation. Indeed:
(Ta3) = Va = Mo5 = 0. (34)

a3

Furthermore, from the macroscopic equilibrium in torsion (I'7c) and the constitutive equation (32),, it is possible to express
©'5, as function of T 3:

M5 = D3@'; + M T3 = 0. 35)

Substituting this relation in 7 ensures that it is equilibrated in rotation and leads to:

Topp t (&({3 - ”2—3:&53) T3=0 on S°, (362)
Tap = Capyses, + Cap33eis, on S°, (36b)
T 1 033 = Caapep, + C333383; on S, (36¢)
€op = Wapy €3 = (’Z3T - Ag_{ﬁg(}) T3+Us5+YaUps ~ on S’ (36d)
Taphp =0 on 4S°. (36e)

The solution of this boundary value problem writes as:
uy = ity T3 + iy Uy 5+ 08 Ul 3 + 052 Ul 53 + Ul + ypega®  with (@) = 0 and (ypegaiy ) =0 (37)

and yields only one new transverse displacement localization related to the first-order variations of 7.
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Longitudinal displacement The longitudinal displacement u; complies with ‘W’ and is loaded by 0%, T3, Ul ., and

3,33

U2’333. The applied load is not globally self-equilibrating for each individual loading. From the constitutive equation 1i
and the equilibrium equation (17a) with p = 1 it is deduced that :
T
3
U31733 = —A—37:3. (38)

Substituting this in ‘W3 ensures it is well-posed. Furthermore, it is also convenient to ensure that the load is also self-
equilibrating in bending. This is obtained, from the constitutive equations (31b) and and the equilibrium equation
forp=1:

V:-MIT; V2-MIT;
U0y = 4177 gpnd U0, =2 277 39
1,333 D, 2,333 D, (39)
Inserting these relations in problem ‘W3 leads to:

2 ~ X2 ~T N‘T~e M 1z ~ X2 — 0
O'3a,a+0'§(31011 to 33D2 +( - A 05T D0 33)T3—0 onS%,  (40a)
W 0oz = Casps 2653 onS%  (40b)

. Ve Vs TN ey M oy MYy, 2 2 0
282, = u3a i oty t (ua — Ay — prite’ — 5y iy ) T3+ ypega®; + U, ;0n SY, (40c)
lana =0 on 88°.  (40d)

The solution is parametrized by the shear forces V2 the first-order variations of the eigenstrain 73 and higher-order
displacements. It writes as the linear superposition of each contributions:

wy =iy Vi + iy Vi + iy Ty + @00 + y,U 5 + Uy, with  (i3) =0 (41)

The longitudinal displacements u3 and i u 2 are warpings related to shear forces illustrated in Figure and ( D Indeed,
considering the whole problem W? loaded exclusively with shear forces, one can identify the corresponding Neumann
problems in Saint Venant’s beam theory. Furthermore, the equilibrium equation (40a)) considered with only the shear forces
loading and integrated on a partial section is actually Jouravskii’s Formula [15] which gives a fair estimate of shear stress
in beams.

Macroscopic constitutive equations From the solution of third order problems, the second-order stress may be written
as:

Top = ~(ex23U2 + 0 U1 3+ 0, U 233+ 0, ﬁT3’ (42a)
02y =GOV + V2v + 5T+ 5503, (42b)
033 = 03Uz 53+ T3 Uy 53 + 035 Uy 33 + T3 3 Ts. (42¢)

Expressing the second-order traction and bending moments leads to:

N} = AsU3; + N; VT3, (43a)
M; = D\U} 45 + M{" T3, (43b)
M = DUy 4+ M] VT, (43¢c)

where NIV = (51Y), MY = (y16L) and M]¥ = (y,0];') are the traction and bending moments induced by the
longitudinal variations of the eigenstrain 7. Similarly the second-order torsion is expressed as function of the macroscopic
displacements and the eigenstrain:

M; = D3O + yseapVi + Mj " T3, (44)

where the torsion induced by the variations of eigenstrains is M3T‘7 = < Vy€ya &g) and the shear center of the beam is defined
as:

y‘lg = — <y(l€a/ﬁ5-’;/§> and y; = <ya€aﬁa-’£‘g> . (45)

When the section presents two axis of symmetry, the shear center is in O but this is not always true.
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10 G. Corre, A. Lebée, K. Sab, M. K. Ferradi, X. Cespedes: Higher-order beam model with eigenstrains

2.4.4 Fourth-order and higher-order problems

The induction process may be pursued any higher order. Indeed, noticing that V(l;, 5 = 0 and following the same procedure
as for 77 and ‘W it appears that 7 and ‘W* are formally identical to 7 and ‘W?, incrementing the orders and depending
on the second derivative of 7. Hence, going higher order leads to the derivation of displacement localizations related to
higher derivatives of T relevant for faster variations of 7.

The use of the asymptotic expansion method is based on the scaling in equation (3). Hence the rescaled coordinates y;
have been used in the expression of the auxiliary problems 77 and ‘W”. However, the distinction between the two sets
of coordinates is no longer necessary in practice once the section modes are computed. The use of the coordinates y; is
therefore dropped in all what follows and replaced by the use of the coordinates x;.

2.5 Families of kinematic enrichment

In the asymptotic expansion procedure, three families of kinematic enrichment emerged. First, the rigid motion of the
section was carried by the six macroscopic variables U/, U ; and ©%. They are respectively related to the following
displacement modes:

1 0 0 0 0 -x2
a'=l o |, a2 =1 |, a% =0 | a®=| 0o |, a®=[ 0 |, a%=| x | (46)
0 0 1 —x| x2 0

. . . 3 ~X1 ~X2 ~X3 ~Vi ~V:
Second, the six correctors related to the six beam resultant were derived: i, X!, iiX?, ué“, i, I u32. They are also referred

to as Saint Venant’s modes [[10,/14]]. Note that ﬁg( ? is the warping used by Benscoter [3]. Third, exactly as in [11]], a family
of modes related to the eigenstrain loading and its longitudinal variations was obtained: @’ &t’", alv’...
Finally, this suggests gathering all these modes in the following approximation for the 3D displacement:

u= Z it (x0) X (x3) (47)
i=1

where n is the number of modes and X (x3) are longitudinal unknown fields. It is demonstrated in [22] that the modes
generated are linearly independent. But in the eventuality where the components of the eigenstrains would be described
respectively with different longitudinal functions (7',72...), redundancies may occur. In this case it is necessary to
orthogonalize the basis of modes.

2.6 Numerical approximation of the higher-order beam model

The discretization of the section used for the resolution of the auxiliary problems is presented. The discretization of the
longitudinal beam element and the numerical approximation of the total displacement are then exposed. This approximated
expression of the displacement is used to formulate the expression of the minimum of potential energy, leading to the 1D
boundary value problem.

2.6.1 Numerical resolution of the auxiliary problems

For each order p, the weak forms of 77 and ‘W7 are expressed. The resolution of the formulations obtained yields the
displacement modes. The numerical resolution is operated by a discretization of the section with finite elements. The
elements chosen here are triangles, the interpolation being quadratic. More precisely, the isoparametric expressions of the
interpolation functions are:

Ni(ay, @) =a1(2a; - 1) , Ny(aj,az) = axRay—1) , Ni(a,az) = (1 —a; —ax)(1 —2a; — 2ay)

48
N4(a1,a2) = 4a1a2 5 Ns(al,az) = 4612(1 —aj) — az) . Nﬁ(al,az) = 4a1(l —a) — az). ( )

But there is no limitation in the choice of the type of finite elements. Stress and strain are computed at the three Gauss points
of each element while displacement is computed at the nodes of the sectional mesh. Note that 77 and W? are also loaded
with eigenstrains which must be expressed at the Gauss points (in Equation for instance). Hence, for the resolution
of 77 and ‘W7, the displacement loading the auxiliary problems must be interpolated at the Gauss points thanks to the
interpolation functions.

3 From the traction, bending and torsion constitutive equations l| and 1) il :Z();ﬁ and :2;“ may directly be expressed as function of N3, Mg
and M3.
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Fig. 4 21d_order NURBS basis functions for the knot vector {0,0.05,0.1,0.15,0.2,0.4,0.7, 1}

2.6.2 Numerical approximation of the beam element

To solve the higher-order beam model, the one-dimensional longitudinal problem needs to be formulated. The kinematic
variables X; are expressed with interpolation functions:

Xi(x3) = )" Ne() O™, (49)
k=1

with m the number of interpolation functions. U®¥ is the generalized displacement associated to the mode i and the
interpolation function k.

We use NURBS (Non-Uniform Rational B-Splines). NURBS are a generalization of B-Splines and Bézier curves). NURBS
basis functions are defined by a degree p and a non-uniform knot vector E = {£], &, ..., &} with [ the number of knots.
This domain partition allows the definition of basis functions, defined recursively by the Cox-de Boor’s formulas. 0™ order
functions are piecewise constants:

U it <& <pyns
Neo(§) = { 0 otherwise. (50)
Higher-order basis functions (p > 0) are then defined by
- Ekepr1 — &
Nis1,p(&) = ﬁNk,p—l(g) + P Newrp-1(8). (5D
Erip — &k Erapr1 — Exr

It defines m = [ + p — 1 NURBS basis functions for the order p, each function being C”~!. It can be noticed that NURBS
basis functions form a partition of unity:

Z N p(é) = 1. (52)
=1

Moreover the basis functions are in general not interpolatory except at the ends of the beam. This motivates distinction
between knots and "nodes".

Each basis function is a polynomial with a compact support contained in the interval [§k, Ekapr ] . Their use is therefore
convenient to describe very fast variations of a field: refining the mesh defines more basis functions with short supports
and affords a better localization of the field. This is an important advantage of NURBS over Lagrange polynomials: the
support of a Lagrange polynomial is the whole domain [, &;], and a Lagrange polynomial can show important oscillations
on this interval in certain cases, a situation often called the Runge’s phenomenon. The number of interpolation functions
m depends on the refinement of the mesh and the chosen polynomial degree. In practice, in order to better describe fast
variations of a mechanical field, the degree of the NURBS shouldn’t be too high, since the higher the degree is, the larger the
supports of the functions are. An illustration of NURBS basis functions with a variable refinement of the mesh is presented
in Figure 4]
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2.6.3 Formulation of the beam problem

For a fixed degree p of NURBS interpolation, the total displacement can now be approximated as:
=" a(x) Y Nep()0™. (53)
i=1 k=1
The stationarity of the minimum of the potential energy based on equations (2)) requires:
Find u € X, /s(u) :C:e(@)dQ = / g :C:e(@)dQ, ViewX, (54)
Q Q

where K = {regular enough u | u = 0 on S*} is the set of kinematically compatible fields. The injection of the approxima-
tion & (53) into equation leads to the classical linear system:

KU = F™, (55)

where U = {U"*} with 1 <i <nand 1 < k < m. The resolution of (55) yields the value of all the kinematic unknowns.
Equation (53)) then gives the total displacement.

2.6.4 Locking study

NURBS offers many advantages but they are not yet free from locking [9]. A cantilever beam has been studied in order to
investigate this phenomenon and define the range of applicability of the present discretization. The beam has a constant
square section of § = 1 x 1 m?, is clamped for x3 = 0 and is loaded for x3 = L by a vertical force F(L) = F°/L3. The
young’s modulus and the Poisson’s ratio are E = 35 GPa and v = 0. The kinematics of the beam comprises the rigid and
Saint Venant’s modes, and also up to three modes associated to the load applied and its gradients as described in [[11] and
so called force modes. This means that there are only 15 kinematic DOF per section. The beam element is interpolated
with NURBS of various degrees, defined by 11 knots evenly distributed in [0, L], with & = 0 and &;; = L. Hence the total
number of DOF is the same for all calculations.

The analytical expression of the vertical displacement at x3 = L for Euler’s model is well-known. Hence, the following
relative error between Euler’s model and the higher-order beam model is defined:

beam __ , Euler

U U,

FL3
, ith Euler — ,
e “ 3EI

. 1
eEuler _ and utz’e‘”“ = § <u2(xl, X2, L)) P (56)

Euler
U

where S is the area of the section. The Euler solution delivers a good indication on the numerical behavior of the present
finite element when the slenderness increases since it is known to be the limit model for large slenderness.

First, the influence of the order of the NURBS on the locking phenomenon is investigated for an enrichment limited to
2 force modes (the applied load and its first gradient). Figure [Sa]shows the relative error as function of the slenderness of
the beam for several NURBS orders. For low slenderness, all relative errors are high. Indeed, for such slenderness, it is
the Euler model which is not valid. When increasing the slenderness, all beam models are expected to converge towards
the Euler solution. This is not the case when locking occurs. The first order NURBS basis functions are identical to the
Lagrange polynomials classically used. Therefore the same locking phenomenon is observed and ¢P!" goes to 1 for high
slenderness. The second order NURBS also suffers from locking after L/h = 20. Third order NURBS tends to the Euler’s
solution with a best match for L/h = 50 and ¢P" < 1.107*. Locking appears from L/h = 100. However, distance to
Euler’s solution remains only about 1% for L/h = 500.

Second, the influence of the number of force modes is investigated with second order NURBS. Figure [5b] shows the
relative error as function of the slenderness of the beam for several number of force modes. It shows that increasing the
number of force modes does not influence the slenderness above which locking occurs.

Therefore, for common situations with L/h < 100, second-order or third order NURBS can be considered as adapt