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Abstract: 

In this paper a Universal Multifractals comparison of the outputs of two types of 

collocated optical disdrometers installed on the roof of the Ecole des Ponts ParisTech is 

performed. A Campbell Scientific PWS100 which analyses the light scattered by the 

hydrometeors and an OTT Parsivel2 which analyses the portion of occluded light are 

deployed. Both devices provide the binned distribution of drops according to their size and 

velocity. Various fields are studied across scales: rain rate (R), liquid water content (), 

polarimetric weather radars quantities such the horizontal reflectivity (Zh) and the specific 

differential phase (Kdp), and DSD parameters such as the total drop concentration (Nt) and the 

mass-weighted diameter (Dm).

For both devices a good scaling is retrieved on the whole range of available scales (2h 

– 30s), except for the DSD parameters for which the scaling only holds down to few minutes. 

For R, the UM parameters are found equal to 1.5 and 0.2 for respectively  and C1. Results 

are interpreted with the help of the classical RZh   and dpKR  radar relations. 
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1) Introduction

Rainfall measurement with the help of disdrometers is rapidly developing for point 

measurements. The first ones were impact disdrometers (Joss and Waldvogel 1967), and now 

optical ones (Loffler-Mang and Joss 2000, Ellis et al. 2006, Battaglia et al. 2010, Frasson et 

al. 2011) are more commonly used for operational and research purposes. The great advantage

of these devices with regards to more conventional rain gauges is that they do not measure 

only a rain rate (or rainfall depth) but information about size and fall velocity for all the 

hydrometeors passing through the sampling area whose size is few tens of cm2. The Drop Size

Distribution (DSD) can then be computed from this raw data. From the DSD it is possible to 

estimate numerous rain related fields such as the rain rate (R) or the liquid water content () 

or even quantities measured directly by polarimetric weather radars such as the horizontal 

reflectivity (Zh) and the specific differential phase (Kdp) (Jaffrain and Berne 2012, Leinonen et 

al. 2012, Verrier et al. 2013). This widens a lot the range of applications for disdrometer data.

Numerous experiments have been carried out to compare the rain rate output of 

various types of collocated disdrometers along with rain gauges (Miriovsky et al. 2004, 

Krajewski et al. 2006, Frasson et al., 2011, Thurai et al. 2011). The temporal evolution 

(Thurai et al 2011) or spatial distribution (Jaffrain and Berne 2011) of total drop concentration

(Nt) and mass-weighted diameter (Dm), which are commonly used to fully characterize drop 

size distribution, have also been analysed. However these comparisons are usually done only 

at a single resolution, most commonly the maximum one available (i.e. using the time series 

at the recording time step). In this paper we suggest to carry out the comparison not only at a 

single scale but across scales. Considering various scales at once enables to obtained results 

robust over a wide range of scales. To achieve this, a theoretical framework relying on scale 

invariant properties is implemented. Available data enables to carry out analysis on scales 
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ranging from 30 s to approximately 2 hours for a punctual measure. Moreover not only R, , 

or Nt and Dm, but also the radar quantities Zh and Kdp will be investigated. The output data of 

two disdrometers, which have been deployed for few months on the roof of the Ecole des 

Ponts ParisTech building, will be used for this study. The two disdrometers are a Campbell 

Scientific PWS100 (Ellis et al. 2006, Campbell Scientific Ltd 2012), which has seldom been 

used in such study, and an OTT Parsivel2 (Battaglia et al. 2010, OTT 2014).

The variability across scales will be quantified with the help of stochastic universal 

multifractals which have been extensively used to analyze, model, and simulate geophysical 

fields extremely variable over wide range of scales such as rainfall (Schertzer and Lovejoy 

1987, 1997, Marsan et al. 1996, Olsson and Niemczynowicz 1996, Harris et al. 1997, de Lima

and Grasman 1999, Lovejoy and Schertzer 2007, Nykanen 2008, Royer et al. 2008, de Lima 

and de Lima 2009, Mandapaka et al. 2009, de Montera et al. 2009, Verrier et al. 2010). This 

framework has seldom been applied to Zh (see Tessier et al. 1993 for an example in space and 

not in time as here), and not to Kdp to the knowledge of the authors. 

Data and the retrieval of the various studied fields are presented in section 2 along 

with a brief reminder of the Universal Multifractals (UM) framework and a presentation of 

the methodology implemented. Results are in section 4 where classical RZh   of dpKR 

relations are investigated with this data set, and scaling features and UM parameters estimates

of the various fields are discussed. 

2) Data and methods

2.1) Description of the disdrometer data

The data used in this paper was collected between 27 September 2013 and 18 January 

2014 by two disdrometers installed on the roof of the Ecole des Ponts ParisTech building. 

They are both made of a transmitter that generates one or several laser sheet(s) and 
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receiver(s). The Campbell Scientific PWS100 computes size and fall velocity from light 

refracted by the hydrometeors (Ellis et al. 2006, Campbell Scientific Ltd 2012) whereas the 

OTT Parsivel2 relies on occluded light (Loffler-Mang and Joss 2000, for an initial version; 

Battaglia et al. 2010, OTT 2014). The 50 recorded events of this period are used in this study. 

The criteria defining an event is a rainy period during which more than 1 mm is collected and 

that is separated by more than 15 min of dry conditions before and after. The main output of 

the disdrometers is a matrix with the number nij of drop recorded according to classes of 

equivolumic diameter (index i, and defined by a centre Di and a width iD expressed in mm) 

and terminal fall velocity (index j, and defined by a centre vj and a width jv expressed in 

m.s-1). This matrix is recorded for each 30s time step ( t ). Gires et al. (2014) which used the

same data set noticed that the oblateness of drop was not properly taken into account in the 

PWS100 rationale and suggested a correction which is used here. Furthermore, as suggested 

by various authors (Jaffrain and Berne 2011, Kruger and Krajewski 2002, Thurai and Bringi, 

2005) all the drops whose velocity was more than 60% different from what was expected by 

Beard’s model (Beard 1977) according to its size were removed because considered as non 

meteorological measurements. 

The rain rate for each time step is then computed as:




ji ieff

iParsPWSji
ParsPWS DS

Dn

t
R

,

3
,/,

/ )(6


     (1)

where )( ieff DS  is the sampling area of the device which is slightly modified 

according to the drop size to take into account potential edge effects for large drops. For the 

Parsivel2 we have 




 

2
)( i

ieff

D
WLDS , where L = 180 mm and W = 30 mm are respectively

the length and width of the sensing area (LW = 54 cm2) (OTT 2014). The PWS100 is not 

4

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

4



subject to this issue and effS  is taken as constant equal to 40 cm2 (Campbell Scientific Ltd 

2012). For the selected events the total rainfall depth collected is equal to 172 mm for the 

PWS100 and 154 mm for the Parsivel2. A tipping bucket rain gauge is also located on the 

same roof and collected roughly 170 mm which is more in agreement with the PWS100, but it

should not be “over-interpreted” given that its accuracy is not very high due to high rain rates 

and low level of maintenance at the beginning of the recording period. The normalized bias 

between the two disdrometers (computed for the time steps where R > 1mm/h) is equal to 

0.11; the correlation equals 0.96; the Nash-Sutcliffe efficiency coefficient equals 0.89 and the 

RMSE is 1.83. Although not negligible the differences between the two disdrometers are 

rather low compared to what is commonly observed (Miriovsky et al. 2004, Krajewski et al. 

2006, Frasson et al., 2011, Thurai et al. 2011). 

A discrete drop size distribution (DSD) is computed from the available data as: 




j j

ji

iieff
i v

n

tDDS
DN ,

)(
1

)(     (2)

The number of drops with a diameter in the class i per unit volume (in m-3) is given by 

N(Di) Di. As it is commonly done, we use the total drop concentration Nt (m-3) and mass-

weighted diameter Dm (mm) to characterize the DSD. In this framework the DSD is written as

)()( mt DfNDN  ; where it appears that Dm characterizes the shape of the DSD and Nt its 

total intensity. These two parameters are defined as (Jaffrain and Berne 2012a, Leinonen et al.

2012):

 max

min

)(
D

Dt dDDNN                (3)





max

min

max

min

3

4

)(

)(
D

D

D

D
m

dDDDN

dDDDN
D            (4)
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For the practical computation of these quantities (and the other ones), the integral is replaced 

by a summation over all the classes of diameter, i.e.:  

 
i

iii

D

D
DDNDfdDDNDf )()()()(

max

min
           (5)

Lastly the liquid water content ( in g.m-3) the horizontal reflectivity (Zh in mm6.m-3) 

and the specific differential phase (Kdp in °.km-1) are estimated with the help of the DSD from 

which they are basically various moments. These physical parameters are given by Jaffrain 

and Berne (2012a) and Leinonen et al. (2012): 

 




 max

min

3

3 2
)(

3

4

10

1 D

Dwl dD
D

DN                 (6)

With w,the liquid water density in g.m-3,





 max

min

)()(

1

1
;

2

2
5

4

,

D

D hBvh dDDDN

m

m
Z 




              (7)

  


max

min

)()()(Re
180010 3 D

D vvhhdp dDDNDSDSK



            (8)

Where hB;  (in mm2) is the backscattering cross session at horizontal polarization, and 

Re(Shh/vv) (in mm) is the real part of the forward scattering amplitude at horizontal/vertical 

polarization,  is the radar wavelength (in mm) and m the complex refractive index of water. 

The scattering coefficients were computed with the help of the Python PyTMatrix library 

(Leinonen 2014) which relies on the T-Matrix code by Mishchenko et al. (1996). 

Computations were carried out for a radar wave length equal to 53.5 mm corresponding to C-

band radars (this wave length was chosen to facilitate comparison with other studies, because 

it is the most widely used and corresponds to the radar currently mostly used by Western 

European meteorological services), a temperature of 20°C (m=8.633 +1.289i) and an oblate 

spheroids model for drop shape with an axis ratio - equivolumic diameter relation 

corresponding to the one implemented in the Parsivel2 rationale (Battaglia et al. 2010). The set
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up considered for drop orientation was the same as in Leinonen (2012); i.e. drops are partially

aligned and a normal distribution (mean and standard deviation respectively equal to 0° and 

7°, in agreement with the findings of Bringi et al. 2008) characterizes the angle of the 

symmetry axis.  

2.2) Methodology: UM framework 

The key elements of the theoretical framework of UM are presented here and the 

reader is invited to refer to Schetzer and Lovejoy (2011) for a recent review. In the following 

 denotes a conservative field at resolution , defined as the ratio between the observation 

scale l and the outer scale L (=L/l). Practically  is obtained simply by up-scaling (averaging

consecutive time steps) the measured field at the maximum resolution. If  is a multifractal 

field, then its statistical moment orders scale with resolution as:

)(qKq       (9)

Where K(q) is the moment scaling function that fully characterizes the variability across 

scales of the field . The quality of the scaling is investigated with the help of the Trace 

Moment (TM) analysis which simply consists in plotting equation 9 in log-log, the slope of 

the obtained straight line being K(q).

Most multiplicative processes converge toward Universal Multifractal which are fully 

characterized with the help of only two scale invariant parameters C1 and  (this a broad 

generalization of the central limit theorem, Schertzer and Lovejoy 1987, 1997). 

C1 is the mean intermittency co-dimension and measures the clustering of the (average) 

intensity at smaller and smaller scales (C1=0 for a homogeneous field).  is the multifractality
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index 20    and measures the clustering variability with regards to intensity level. In 

this specific framework which is implemented here K(q) is given by: 

 qq
C

qK 


 

 1
)( 1      (10)

The UM parameter are estimated in this paper with the help of the Double Trace 

Moment (DTM) technique (Lavallée et al. 1993).

A common framework to deal with a non-conservative field  (i.e. we have 1 )

is to assume it can written as 

H              (11)

where H is the non-conservation parameter (H=0 for conservative fields), and  a 

conservative field characterized by a moment scaling function Kc(q) depending only on UM 

parameters C1 and . More physically, this non-conservativeness means that the studied field 

 (the observations here) exhibits stronger correlations than the ones obtained with the help 

of a simple multifractal cascade and an additional fractional integration is needed to represent 

it. The moment scaling function K(q) of  is given by: 

HqqKqK c  )()(         (12)

H can be estimated with the help of (Tessier et al. 1993): 

)2(21 cKH      (13)

where  is the spectral slope. It is the exponent of the power law that characterizes over large 

range of wave numbers the power spectrum of a scaling field: 

 kkE )(       (14)  

Before going on let us clarify the relations between the notions of stationarity and 

conservation. For stochastic processes, stationarity refers to the fact that given statistics are 
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invariant with respect to time translations. When no given statistics are mentioned, it usually 

corresponds to the strongest case of stationarity, i.e. the probability itself is time translation 

invariant and therefore all the statistical moments are stationnary The classical case of 

“second order stationarity” is presumably the most cited case and is particularly important for 

additive processes. It corresponds to time translation invariance of the second order moments 

of the increments. For multiplicative processes, conservation means that a given statistic is 

strictly independent from scale, in general this statistic is the mean of the field (H=0 in Eq. 

11). The latter implies a given form of stationarity because at all scales the fluctuations remain

around this mean. However, these fluctuations are not only easily wilder than for an additive 

process, but their amplitude generally increases with smaller and smaller scales. Conversely, 

non-conservation implies a strong non stationarity, starting with the fact that the mean has a 

scaling behaviour (Eq. 11). For instance, a spectral analysis will detect the non conservation (

0H ), due to the departure of the spectral slope, which is a second order statistic, from that 

of “a pink noise” (k-1), where the exponent one corresponds here to the dimension of the 

embedding space (time series are studied here). With multifractal fields there is a further 

correction with the Kc(2) (Eq. 13) which is not negligible (in the range 0.1-0.4 for the 

retrieved UM parameters).

The TM and DTM techniques are designed for analysing conservative fields (H=0) 

and remain reliable as long as H<0.5. In case of greater H, they should be implemented not on

, but on the underlying conservative field . A fractional integration of order H (equivalent 

to a multiplication by kH in the Fourier space) is theoretically required to estimate  from . 

However a common approximation (Lavallée et al. 1993) which provides reliable results 

consists in taking at the maximum resolution simply equal to the renormalized absolute 

value of the fluctuations of the field i.e.: 
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)()1(

)()1(

ii

ii




 







        (15)

and then upscaling this field at other resolutions .

Spectral and multifractal analyses are implemented on ensemble average over various 

samples, i.e. each sample is considered as a realization of the process. For example it means 

that each sample is up-scaled and taken to the power q independently before taking the 

average in equation 9. The studied samples are extracted in the following way from the 

selected events: for each event (i) a sample size is chosen (necessarily a power of two); (ii) the

maximum number of samples for this event is computed; (iii) the portion of the event of 

length equal to the sample size multiplied by the number of samples found in (ii) with the 

greatest cumulative depth is extracted; (iv) the extracted series is cut into various samples. 

Given that the sample size is a power of two there is obviously some data lost during 

the selection process. Here the percentage of available data actually used is equal to 36, 65, 82

and 91% for samples of size 512, 256, 128 and 64 times steps of 30s respectively. The chosen 

sample size should result from a trade off between the width of the available range of scales 

which should be as great as possible, and the amount of wasted data which reduces the 

reliability of the estimates. Here we chose to analyse the scaling properties with samples of 

size 256 (approximately 2h, 46 samples available), and given that no scaling break was 

identified on the main studied fields, UM parameters were estimated with samples of size of 

64 (approximately 30 min, 259 samples available) to benefit from the use of more data. 

Finally it should be mentioned that since Dm is not defined when there are no drops, only the 

samples containing drops at all time steps are used for this field. 

3) Results and discussion 

3.1) Standard radar relationships
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Given that it was possible to retrieve both rain rates and radar parameters, it is possible

to analyse the validity, for this data set, of the standard power law relations that are commonly

assumed between these quantities: 

b
h aRZ      (16)

d
dpcKR      (17)

These relations will be used in the following sections to help in the interpretation of the 

observed scaling features exhibited by each quantity. Various authors (Campos and Zawadzki 

2000, Jaffrain and Berne 2012b, Verrier et al. 2013) noticed a strong sensitivity of the 

estimates of a and b on the method implemented to compute them. Here we performed an 

orthogonal linear regression, which does not assume any dependent variable, on the logs of 

Zh, R and Kdp. The regressions are performed only for the time steps for which Kdp >10-2 

because we noticed that small values in which we are not interested had a strong influence on 

the retrieved parameters. Figures 1.a and 1.b display the regressions for the two relations and 

both devices, and the retrieved values for a, b, c and d are shown in Table 1. It appears that the

quality of the fitting is comparable for the two relationships and slightly better for the 

PWS100 than for the Parsivel2 (r2 ~ 0.8 vs. 0.75). The estimates are similar for both devices. 

More precisely for the RZh   relation a is slightly greater and b slightly smaller for the 

PWS100 that for the Parsivel2, meaning that the effects of each other are compensating. For 

the dpKR  relationship c and d are both slightly greater for the PWS100, meaning a given 

value of Kdp will systematically yield greater estimates of R with the PWS100 values. The 

estimates of the exponents are in the range of those commonly observed (Jaffrain and Berne 

2012b, Figuras I ventura et al. 2013, Verrier et al. 2013). With regards to a values they are in 

agreement with those found by Verrier et al. (2013), and in the upper range of those reported 

by Jaffrain and Berne (2012b). The c values are similar to those found by Jaffrain and Berne 

(2012b). Relations 16 and 17 are studied only at the maximum resolution (30 s) and the strong
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scale dependency of the parameters a, b, c and d is not investigated here (see Verrier et al. 

2013 for an analysis of this issue for RZh   relation). Parameters are computed here taking 

into account all the events at once, meaning that “climatic” (keeping in mind only 4 months of

data are used) estimates are studied. An event based analysis will be discussed in future 

works. It is indeed not needed for the purpose of this paper, which is to quantify the scaling 

variability observed by the two disdrometers on various fields. 

Finally the influence of using the retrieved “climatic” parameters for computing rain 

rates from radar parameters is assessed. With this purpose, the rain rates computed either 

directly from raw data (R) or through the radar relations 16 and 17 (respectively RZR   and

dpKRR  ) once Zh and Kdp have been estimated with raw data are compared. Figure 1.c and 1.d

display, for the PWS100 data, a scatter plot for the RZh   and dpKR  relations 

respectively. Similar curves are obtained for the Parsivel2 data and not shown here. The 

scattering around the bisector is not negligible with a 30 s time step, and is more pronounced 

for the RZh   than for the dpKR   relation which means that the use of “climatic” values is 

less acceptable for the former. It should also be noted that there is a tendency of 

underestimating large rain rate with the dpKR  relation, indeed dpKRR   is systematically 

smaller than R for R>50 mm/h. The total rainfall depths between the three techniques are very

similar with roughly 3% or less differences. 

3.2) Scaling behaviour

The scaling features of the various fields are studied in this section. Figure 2.a displays

the spectral analysis (i.e. equation 14 in log-log plot) of the rain rate for the PWS100. A very 

good scaling (i.e. a straight line) is observed on the whole range of available scales (30s – 2h).
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The spectral slope is greater than the embedding dimension of the field (1 for time series) 

suggesting that R is non-conservative (this will be confirmed in the next session with the 

estimation of H). A practical consequence is that the TM analysis which assumes a 

conservative field should not be implemented on the field itself but only on its conservative 

part which can the approximated by the absolute value of its fluctuations (equation 15). The 

results are displayed on Fig. 2.b, where the good scaling with a unique regime is confirmed. 

The r2 for q = 1.5 which is taken as an indication of the quality of the scaling is greater than 

0.99. The same analysis carried out directly on the field yields non aligned points with a 

flattening for small scales (r2 = 0.94 for q = 1.5). Same curves for spectral and TM analyses 

for the Parsivel2 data are shown in Fig. 2.c and 2.d respectively. It appears that very similar 

results are found for the Parsivel2 data. Similar curves for both devices are also obtained for 

the other studied quantity (, Kdp, Zh, Nt, Dm), therefore in the following only the curves for 

PWS100 will be showed and discussed in this sub-section.

Very similar results are found for  and Kdp (Fig. 3) with a very good scaling on the 

whole range of available scales on both the spectra and the TM analysis, which also has to be 

conducted on the fluctuations of the field. The good scaling behaviour retrieved for Kdp is not 

surprising and was actually expected if relation 17 is correct. Indeed a power (Kdp here) of a 

multifractal field (R here) should also behave as a multifractal field (this is the basic concept 

behind the DTM technique). To the knowledge of the authors, the multifractal behaviour of 

Kdp has not yet been studied in time with disdrometer data this way, and it opens new 

perspectives. A potential one would be to compare these outputs with similar analysis 

performed in space with data provided by weather data. This would enable to study scaling 

relations in a spatio-temporal framework with a quantity directly measured by the radar (so 

far the only device providing “rather” high resolution space-time data of rain related fields) 
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without having to rely on tailored relations that may introduce biases in the scaling behaviour 

as it is the case for the rain rate. 

The situation for Zh is more complex. Indeed the energy spectrum (Fig. 4.a) is not 

linear and could be interpreted as exhibiting two breaks, one at roughly 6 min-1 and the other 

one (the minimum on the curve) at roughly 2 min-1. Authors do not have explanation for this 

behaviour which is not retrieved on R and Kdp. It was not expected and suggests that the 

“climatic” relation 16 does not hold very well. Indeed if it was true, a good scaling behaviour 

would be observed on the spectra. To confirm this, the same analysis were carried out on the 

quantity baR , where R is the rain rate studied before and a and b are the “climatic” values 

estimated in section 3.1. As expected for this analysis a good scaling behaviour is indeed 

retrieved on both the spectra (Fig. 4.c) and the TM analysis (Fig. 4.d). It should be mentioned 

that the greater scattering of the points for the RZh   than the dpKR  relation observed on 

Fig. 1 is consistent with the fact that we found a good scaling behaviour on R and Kdp and not 

Zh. Quite surprisingly the scaling breaks observed on the spectra are not visible on the TM 

analysis (Fig. 4.b) where a unique regime is observed. It was implemented on the fluctuations 

of the field (Eq. 15) for which there are a slightly better scaling than for the field itself. 

However given the lack of scaling observed in the spectral analysis, the TM analysis might be

not very reliable and should not be over-interpreted.

Finally we analysed the scaling features of Nt and Dm which are used to characterize 

the shape of the DSD. For Nt we find a good spectral behaviour but limited to the range 2 min 

–  2 h, as a flattening of the spectra is observed for small scales (Fig. 5.a). Similarly to the 

previously studied fields, a spectral slope greater that one is found meaning that the TM 

analysis should not be performed on the field directly but on its fluctuations (equation 15). It 

is displayed in Fig. 5.b and it appears that a good scaling behaviour is retrieved on a range of 

scales (4 min – 2 h) similar to the one observed on the spectra (Fig. 5.a). Considering the 
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whole range of scales would lead to a r2 for q = 1.5 equal to 0.96 whereas is of 0.99 on the 

limited range of scales. Similar scaling regimes are observed on Dm’s spectra (Fig. 6.a), but 

the slope is much lower meaning that the TM analysis should be conducted directly on the 

field. It yields a good scaling behaviour with a r2 for q = 1.5 equal to 0.99 (it is of 0.87 if the 

TM analysis is conducted on the fluctuations) (Fig. 6.b). The flattening of the spectra (almost 

a horizontal slope) for small scales corresponds to what would be observed for a white noise. 

This would suggest that Nt and Dm exhibit a scaling structure down to few minutes and behave

as a random homogeneous variable for smaller scales. It is not possible to confirm this 

interpretation with the help of this data. More data at higher resolution, which would extend 

the range of available small scales, would be needed to achieve this. A possible interpretation 

of this could simply be that the sampling uncertainty is more visible at smaller scales and for 

these quantities than the other ones. 

3.3) UM parameters

Estimates of UM parameters for the various studied fields and the two devices are 

reported in Table 2. It is timely to mention that the proportion of zeros is quite low (12 %, 

with a fractal dimension of 0.96), which means that estimates are not biased by the 

multifractal phase transition for small moment orders which is associated with them (see 

Gires et al., 2012 for a in-depth analysis of this effect). Given the low quality of the scaling in 

the spectral analysis for Zh, the values of  and H are not shown for this field since they are 

not reliable.

For all the fields we find H values greater than 0.5, except for Dm, which confirms that 

the studied fields are non-conservative, and that the UM parameters  and C1 should indeed 

be estimated on their fluctuations as it was done. The estimates of the characteristic scaling 
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parameters are very similar for the two devices. It means that despites a roughly 10% 

difference in terms of rain rate; they both record the same variability across scales. The 

estimates for the rain rate, which is the field that has been mostly studied, are comparable 

with the ones usually found for this range of scales by authors focusing the analysis on the 

rainy portions (de Montera et al. 2009, Mandapaka et al. 2009, Verrier et al. 2010, Gires et al. 

2013), although with slightly smaller values of  which were commonly reported to 1.8. With 

regards to Dm and Zh the differences between the two devices are more pronounced but it is 

harder to interpret this fact given that the lower quality of the scaling for these fields implies 

less reliable estimates.

It is possible to give an insight into radar relations 16 and 17 through the UM 

parameters estimates. Indeed if a field is multifracal, then as previously mentioned a power of 

it is also multiractal, and there is furthermore a relation between the  and C1 (Tessier et al. 

1993, Lovejoy et al. 2008) More precisely, if 
d

dpcKR  , we have: 

dpKR                    (18.a)

dpKR CdC ,1,1
            (18.b)

Here for both devices we find a roughly 0.2 difference between  computed for the two fields.

With regards to C1, for the PWS100 data 29.0/,1 R

PWSR dC 
 (the value is slightly smaller 

when considering dpK in the relation) which is in rather good agreement with the 0.23 

retrieved on the Kdp field. For the Parsivel2 data 35.0/,1 
ParsR dC  which yields a value 

greater than the 0.25 retrieved on the Kdp field. The same computations can be carried out for 

the RZh   relation. Indeed if b
h aRZ  , one expects: 

RZ h
           (19.a)
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RZ CbC
h ,1,1

       (19.b)

The difficulty here is that the agreement between the estimates of  is worse than for the

dpKR  relation and the scaling on Zh is not very good and reliable. With regards to C1 we 

have 32.0,1
, 

PWS

RPWS

RPWS Cb 
 (a slightly greater value is found using 

hZ ) which is quite 

close to 0.34 found on Zh, and 39.0,1
, 

Pars

RPars

RPars Cb 
 (a slightly greater value is found 

using 
hZ ) which is quite different from the 0.51 found on Zh. Finally it should be mentioned 

that the estimates of  and C1 on the field PWSb
PWSPWS Ra  (see Fig. 4.c and 4.d for scaling 

curves) are respectively 1.55 and 0.28 which is roughly in agreement with equation 19 (

32.0,1 
PWS

PWS

RPWS Cb 
). The differences noticed with regards to the underlying theoretical 

framework highlight the limitation of the “climatic” relations 16 and 17. The better agreement

in equations 18 and 19 for the PWS100 data is consistent with the greater quality of the fitting

of relations 16 and 17 for the PWS100 than for the Parsivel2 (Fig. 1). The fact the  are equal 

for R,  and Nt also suggests that a power-law relation between these quantities could be 

investigated, which is not surprising since these quantities correspond to various moments of 

the DSD (Sempere-Torres et al. 2000, Lee et al. 2004, Lovejoy and Schertzer 2008, Verrier et 

al. 2013), even more directly than Zh and Kdp, but this is beyond the scope of this paper.

4) Conclusions

In this paper the output data provided by two optical disdrometers is analysed; the 

Campbell Scientific PWS100 based on the analysis of the light refracted by drops and the 

17

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

17



OTT Parsivel2 based on the analysis of light occluded by drops. Not only the rainfall rate, but 

also the DSD parameters Nt and Dm, and the radar parameters Zh and Kdp are studied. 

Furthermore the analysis is not performed only at the maximum resolution as it is commonly 

done but across scales with the help of the theoretical framework of Universal Multifractals.

It appears that despite a roughly 10 % differences in terms of rain rate, the multifractal 

analysis yield very similar results for the two measuring devices, with a slightly worse scaling

observed on the Parsivel2 data. R exhibits a very good scaling on the whole range of available 

scales (30 s – 2h) with H=0.7, C1=0.2 and =1.5 which confirms findings of previous studies. 

A very good scaling is also retrieve on Kdp and UM parameters estimates are in rather good 

agreement with what would be expected if the standard relation 
d

dpcKR  is implemented 

with “climatic” parameters computed for this data set. The scaling of Zh is worse, especially 

on the spectra, which highlights some limitations of the power law relation b
h aRZ  . Finally 

the scaling behaviour only holds on the range few min – 2 h for Nt and Dm, and there are some

hints at a possible random uniform behaviour for smaller scales possibly associated with 

sampling uncertainty.

These results suggest new ways of comparing the outputs of disdrometers by using 

other fields than the rain rate, and also scaling analysis. The results are particularly promising 

for Kdp which is also directly measured by polarimetric weather radars, contrarily to the rain 

rate for which non-trivial transformations potentially biasing the observed scaling are 

implemented. Multifractal investigations in a spatio-temporal framework on Kdp radar data 

should be carried out to improve knowledge about rainfall as a space-time process. More data,

including spatial ones, should be analysed to confirm the possibility of characterizing DSD 

parameters with the help of UM, and hence the possibility of developing coupled multifractal 

cascades to actually simulate DSD fields. 
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Table: 

PWS100 Parsivel2

RZh  a 349 313
b 1.49 1.63

dpKR  c 17.3 15.3
d 0.72 0.66

Table 1: Parameters computed for the RZh   relation (Equation 16) and the dpKR   

relation (Equation 17)
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R  Kdp Zh Nt Dm

PWS100

 2.05 2.08 1.88 - 2.07 1.41
 1.51 1.53 1.35 1.72 1.58 1.66
C1 0.18 0.16 0.23 0.34 0.11 0.005
H 0.67 0.67 0.62 - 0.63 0.21

Parsivel2

 1.96 2.08 1.71 - 2.11 1.33
 1.57 1.54 1.33 2.00 1.60 2.10
C1 0.18 0.16 0.25 0.51 0.11 0.006
H 0.63 0.67 0.55 - 0.64 0.17

Table 2: Scaling parameters of the various studied fields for the PWS100 and Parsivel2 data

Figure caption list: 
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Figure 1: Computation of the parameters of the RZh   (a) and dpKR   (b) relations 

(equations 16 and 17 respectively in log-log plot). Scatter plot of RZR   (c) and dpKRR  (d) 

versus R for the PWS100 data

Figure 2: Scaling analysis for R measured by the PWS100: (a) Spectral analysis, i.e. equation 

14 in log-log plot; (b) Trace Moment (TM) analysis, i.e. equation 9 in log-log plot. (c) and (d) 

Same as (a) and (b) for R measured by the Parsivel2.
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Figure 3: Scaling analysis for Kdp measured by the PWS100: (a) Spectral analysis, i.e. 

equation 14 in log-log plot; (b) Trace Moment (TM) analysis, i.e. equation 9 in log-log plot

Figure 4: (a) – (b) Same as in Fig. 3 but for Zh measured by the PWS100, in (a) a break is 

considered for k = 20-30 (~ 6 min-1) and k = 60 (~ 2 min-1); (c) – (d) Same as in Fig. 3 but for

baR  measured by the PWS100 and “climatic” parameters a and b found in section 2. 
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Figure 5: Same as in Fig. 3 but for Nt measured by the PWS100, in (a) a break is considered 

for k=70 (~ 2 min-1), in (b) a break is considered for =32 (4 min)

Figure 6: Same as in Fig. 3 but for Dm measured by the PWS100, in (a) a break is considered 

for k=70 (~ 2 min-1), in (b) a break is considered for =32 (4 min)
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