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 9 

Abstract 10 

In this paper we suggest to innovatively use scaling laws and more specifically 11 

Universal Multifractals (UM) to analyse simulated surface runoff and compare the retrieved 12 

scaling features with the rainfall ones. The methodology is tested on a 3 km2 semi-urbanised 13 

with a steep slope study area located in the Paris area along the Bièvre River. First Multi-14 

Hydro, a fully distributed model is validated on this catchment for four rainfall events 15 

measured with the help of a C-band radar. The uncertainty associated with small scale 16 

unmeasured rainfall, i.e. occurring below the 1km x 1km x 5min observation scale, is 17 

quantified with the help of stochastic downscaled rainfall fields. It is rather significant for 18 

simulated flow and more limited on overland water depth for these rainfall events. Overland 19 

depth is found to exhibit a scaling behaviour over small scales (10 m - 80 m) which can be 20 

related to fractal features of the sewer network. No direct and obvious dependency between 21 

the overland depth multifractal features (quality of the scaling and UM parameters) and the 22 

rainfall ones was found. 23 
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 24 

1) Introduction 25 

 26 

The combined effects of a growing urbanisation - approximately 80% of Europe’s 27 

population will live in cities by 2020 (EEA, 2014) -  and potential increase of extreme events 28 

as a consequence of climate change (IPCC, 2013) expose more and more people to surface 29 

pluvial flooding. Pitt (2008) carried out a review on flood events in the United Kingdom and 30 

showed that two thirds of the flood related damages were caused by surface water flooding. 31 

Urban flooding has become a growing concern in Europe, hence a significant number of 32 

European research projects address this issue, along with national counterparts. The purpose 33 

of these projects is to increase the resilience of urban areas through improvement of both real 34 

time management of extreme events and long term planning. We can cite FP7 SMARTesT 35 

(http://floodresilience.eu/), CORFU (http://www.corfu-fp7.eu/), Climate KIC Blue Green 36 

Dream (www.bgd.org.uk) or the INTERREG IV RainGain project (http://www.raingain.eu) 37 

among others.  38 

There is a need to improve the understanding of urban surface flow. Indeed, there is a 39 

growing interest for 2D models in urban environment for both operational and research 40 

applications (Bolle et al., 2006; Carr and Smith, 2006; Chen et al., 2007; Deltares, 2013; DHI, 41 

2011; Giangola-Murzyn et al., 2014; Innovyze, 2012, 2103; Phillips et al., 2005; XP 42 

Solutions, 2012). Such models aim at actually modelling processes in a physically based 43 

manner, while the most commonly used semi-distributed models take them into account 44 

through tailored lumped models. In case of overflow they simply consider a volume output 45 

from the sewer system and deduce a local water depth, but the dynamical behaviour of the 46 

water added on the ground is not addressed. Basically, urban surface flow is not commonly 47 

perceived as a geophysical process and is therefore not addressed with geophysical tools 48 
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capable of grasping its intrinsic complexity visible across all scales. Indeed, it results from the 49 

non-linear interactions between the highly spatially and temporally variable rainfall field, the 50 

topography and the strongly inhomogeneous land use cover. 51 

In this paper we suggest to use multifractal tools, which are commonly used in 52 

geophysics to characterise and simulate fields extremely variable over a wide range of scales; 53 

such as wind turbulence, rainfall, river flow or topography (see Schertzer and Lovejoy, 2011 54 

for review). Such tools have seldom been used in an urban context. Gires et al. (2013, 2014b) 55 

used them to downscale rainfall to quantify the uncertainty associated with small scale rainfall 56 

variability, or to characterise the variability across scales of simulated flow in conduits 57 

(sewer). To the knowledge of the authors it has never been used to study either surface runoff 58 

flow (urban drainage) or surface flow in general including stream rivers. Investigating the 59 

potential multifractal features of surface flow and notably whether it inherits rainfall features 60 

is the main purpose of this paper and constitute its main novelty. In addition, this case study 61 

will also be used to quantify the uncertainty associated with small scale rainfall variability, 62 

not only on the simulated flow which has already been done on other catchments, but also on 63 

the surface flow.  64 

Given the lack of measurements of distributed data of surface runoff, outputs of a 65 

numerical model are analysed. The model used is Multi-Hydro (El Tabach et al., 2009 for an 66 

initial version and Giangola-Murzyn, 2014 for a recent one) developed at the Ecole des Ponts 67 

ParisTech. It is implemented on a 3.017 km² peri-urban catchment in Jouy-en-Josas (South-68 

East of Paris), which exhibits steep slopes and both forest and urbanised areas. Achieving 69 

such an analysis is relevant only if a distributed rainfall field is used as model input. Météo-70 

France radar mosaics with a resolution of 1 km in space and 5 min time (Tabary, 2007; 71 

Tabary et al., 2007) for four events that occurred between 2009 and 2011 are used. When 72 
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needed, the rainfall field is downscaled both in space and time from the raw radar data, in 73 

order to simulate the improvement that could be made with higher radar resolution. 74 

 The model and the study area data for its implementation are presented in details in 75 

section 2.  The multifractal framework and analysis methods are presented in section 3. 76 

Results are discussed in section 4 and 5. More precisely, the validation of the model and 77 

quantification of the uncertainty associated with small scale unmeasured rainfall variability on 78 

both simulated sewer flow and maximum water depth is carried out in section 4. Multifractal 79 

characterization of overland water depth is addressed in section 5. Main conclusions are 80 

highlighted in section 6. 81 

 82 

 83 

2) Model and catchment 84 

 85 

2.1) The Multi-Hydro model 86 

 87 

Multi-Hydro is a multi-module model whose goal is to model and predict the impacts 88 

of rainfall events in urban and peri-urban areas. In this paper, there is an emphasis on heavy 89 

rainfall events. Following the approach of various recent developments of hydrological 90 

models (Djordjevic et al., 1999; Fletcher et al., 2013; Hsu et al., 2000; Jankowfsky, 2011; 91 

Rodriguez et al., 2008); it makes different modules interact, each of them echoing a portion of 92 

the water cycle in urban areas (surface runoff, infiltration, ground water flow, sewer flow). 93 

Each of the modules integrated in Multi-Hydro relies on open-source software 94 

packages that have already been widely used and validated by the scientific community. The 95 

surface module is based on TREX (Two dimensional Runoff, Erosion and eXport model, 96 

Velleux et al., 2011) which solves fluid mechanics equations for surface flow (diffusive wave 97 
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approximation of 2D Saint-Venant, see p. 6-7 of the TREX user manual) and infiltration 98 

(simplification of Green and Ampt equation). The sewer or drainage module, which is based 99 

on SWMM developed by the US Environmental Agency (Storm Water Management Model, 100 

Rossman, 2010), is a 1D-model dealing with sewer flows through numerical solutions of 101 

Saint-Venant 1D equations in pipes. The interactions between the surface and sewer flow is 102 

handled through the gully pixels. These interactions (input or output of water) between the 103 

surface and sewer flow are carried out every 3 min. When there is no overflow, gully pixels 104 

are considered to have an infinite infiltration rate, and the water passing through them is 105 

directly inputted into the corresponding node of the sewer model. This way of modelling 106 

implies that a large transport capacity is assumed for gully, especially with 10 m pixel size as 107 

in this paper (see below). Future developments of Multi-Hydro will enable to improve the 108 

model with regards to this coarse assumption. They could notably rely on the experimental 109 

and computational studies of gully inflow capacity, including 3D CFD studies, which analyse 110 

phases in the flow, inlet capacity, reverse flow when the piezometric level in the sewer is 111 

beyond the ground level (Despotovic et al., 2005; Djorjevic et al., 2005). In case of sewer 112 

overflow through a node, the corresponding gully pixel is converted into a road pixel and the 113 

water exiting the node is inputted on this pixel (considered as a source in TREX). There is 114 

also a module handling ground water flow which was not included in this study to limit 115 

computation time.  116 

In order to run Multi-Hydro, data needs to be shaped in a standard format. Commonly 117 

available Geographical Information System (GIS) data, such as land use and topography 118 

provided in France by IGN (the French agency producing geographical information) are 119 

inputted to MH-AssimTool (Richard et al., 2014). This software formats the inputs with the 120 

desired resolution and makes Multi-Hydro a transportable model, rather easy to implement on 121 

a new catchment. Once a resolution is chosen, one has to affect an elevation and a land use 122 
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class to each pixel. The elevation is obtained by an interpolation of the raw available data. 123 

With regards to the land use, a priority order has been determined to assign a unique land use 124 

class for a given pixel according to the hydrological importance of the given class instead of 125 

the surface represented by this class:  if a gully is located on a pixel, the entire pixel will be 126 

considered as a gully. This process is repeated in the following order for this case study: 127 

roads, houses, forest, grass, and water surface. See Ichiba et al. (2017) for a comparison with 128 

other possible strategies. 129 

In this paper, the model was implemented with pixels of size 10 m x 10 m. Given the 130 

obtained results discussed below it was not found necessary to run it at higher resolution 131 

which makes computation time too long. For an in-depth analysis of the relation between the 132 

selected pixel size and simulated flow, which is not the purpose of this paper, refer to Ichiba 133 

(2016). Multi-hydro was not calibrated, i.e. standard values for the parameters describing a 134 

land use class are used (hydraulic conductivity, capillary suction, moisture deficit, Manning’s 135 

coefficient, depth of interception). Raw or downscaled radar data are used as input of the 136 

model. 137 

 138 

2.2) Presentation of the study area 139 

 140 

The catchment studied in this article is located in Jouy-en-Josas (Yvelines County, 141 

South-west of Paris). It occupies a 3.017 km² area, mainly on the left bank of the Bièvre 142 

River. A small portion of the right bank near the river bed is also included. The remaining 143 

portion of the right bank is drained to a small river that flows into the Bièvre River 144 

downstream the outlet of the studied catchment. The Bièvre River is a tributary of the Seine 145 

River which it meets in Paris. It flows through increasingly urbanised areas along its 33 km 146 

path. This has led to strongly modify its natural bed, both in underground pipes which are 147 
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integrated in the storm water sewer system, or in a highly artificial open air bed. An effort is 148 

currently undertaken to restore its “natural” aspect. 149 

A striking feature of this catchment is that, unlike the previous ones studied with 150 

Multi-Hydro (Giangola-Murzyn et al., 2014; Gires et al., 2014a), it exhibits steep slopes. 151 

There is a difference of approximately 100 m between the plateau in the north of the 152 

catchment, and the outlet of the catchment (Fig. 1). The downhill portion strengthens overland 153 

runoff, and the combination of pluvial and fluvial processes on the river bank has led to 154 

severe flooding in 1973 and 1982. Some details are available on the SIAVB (Syndicat 155 

Intercommunal d’Assainissement de la Vallée de la Bièvre, the local authority in charge of 156 

urban drainage of the area) website http://www.siavb.fr/gestion_des_crues.aspx. Urbanisation 157 

and imperviousness are concentrated along the river bank, and on a housing estate along one 158 

major North-South road. The remaining of this semi-urban catchment is mainly made of 159 

forests. The sewer system is a separate one, and the storm water is routed into the Bièvre 160 

River.  161 

Following the severe flooding, the SIAVB has created 15 storage basins (integrated in 162 

the landscape) along the Bièvre River to mitigate flooding risks. One, the Bassin des Bas Près, 163 

is located just upstream the Jouy-en-Josas catchment. The outlet of this basin is equipped with 164 

flow and height gauges operated in real time. There is a second measuring point of water 165 

depth, few meters upstream the outlet of the catchment, at the “Pont de Pierre” (Fig. 1). This 166 

gauge has been installed to monitor the river level and to protect a music school by triggering 167 

a warning system in case of elevated height. Given the position of the two measuring points, 168 

Multi-hydro will only be validated on the area drained by the sewer network represented in 169 

green in Fig. 1. The forest corresponds approximately to 60% of the catchment (~ 2 km2). 170 

Although it is only possible to validate the implementation of the model on a portion of the 171 

catchment, the whole area is modelled to ensure the accuracy of flow over the areas actually 172 
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used for validation. The river is part of the storm water sewer system in Jouy-en-Josas and is 173 

modelled as a pipe in Multi-Hydro drainage module. Indeed, through the city, the river bed is 174 

highly artificial or even underground. The long and West – East oriented pipe located in the 175 

South of the Basin (Fig. 1, left) is actually the Bièvre River. 176 

 177 

2.3) Fractal dimensions of the impervious surfaces and of the sewer system 178 

 179 

The studied catchment is located in a semi-urbanised area. The impervious surfaces 180 

are highly relevant for hydrology since they basically correspond to areas where runoff is 181 

quickly active during a storm event. Thanks to the determination of land use per pixel in MH-182 

AssimTool, the evaluation of the impervious areas can be done in an apparent simple way by 183 

calculating the number of pixels of roads, buildings and gullies (since the water falling on 184 

gully pixels is immediately routed to the sewer network, they are considered as impervious). 185 

This impervious surface depends on the resolution at which it is computed. Indeed, an 186 

imperviousness of 55%, 50%, 42%, 32% and 25% is obtained with pixels of size 20, 15, 10, 187 

5, 2 m respectively. This is due to the priority order set in the data assimilation tool that 188 

affects a land use for each pixel. This order prioritizes impervious areas (Fig. 2). Obviously 189 

these values strongly depend on the approach implemented to affect a land use class to a 190 

pixel. As previously mentioned, comparison with other approaches can be found in Ichiba et 191 

al. (2017). Investigations on the possibility of having different pixel size according to the land 192 

use should also be envisaged in the future, in order to for instance refine the pixels for roads 193 

and gullies and coarser them for forests. Coming back to the imperviousness percentages 194 

found in this paper, it is possible to use the notion of fractal dimension, which is scale 195 

invariant, to explain these figures. The fractal dimension DF of a geometrical set (here the 196 

impervious pixels) is obtained with the help of the following equation:  197 
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FDN λλ ≈          Eq. 1 198 

where Nλ is the number of impervious pixels, and λ is the resolution defined as the ratio 199 

between the outer scale L of the phenomenon and the observation scale l ( l

L=λ ). It 200 

characterizes the space occupied by a geometrical set in a scale invariant way. The symbol ≈ 201 

denotes an asymptotic convergence and absorbs slowly varying prefactors. 202 

For the studied catchment, it appears that the impervious areas exhibit a fractal 203 

dimension. Indeed Eq. 1 is plotted in log-log for the geometrical set consisting of the 204 

impervious pixels at the 2-m resolution (imperviousness of 25 %), and a straight line is 205 

retrieved on the whole range of scales, i.e. 2m-2048m (Fig. 3.a). This a basic feature of the 206 

catchment. The fact that the points corresponding to the catchment representation at 20, 15, 207 

10, 5, 2 m obtained with MH-AssimTool are along this straight line (circled cross on Fig. 3.a) 208 

is simply a consequence of the priority order set for affecting a land use class to a pixel 209 

(impervious classes are prioritised over pervious ones). This confirms the fact that even 210 

though the represented imperviousness varies with scale, a feature (the fractal dimension) is 211 

conserved and provides a quantification of the level of urbanisation. We find DF equal to 1.73 212 

for this catchment. In a previous study Gires et al. (2014a), found that for a highly urbanised 213 

area in Seine-Saint-Denis (North-East of Paris), the fractal dimension was of 1.85 from on 214 

scales ranging from 1 m to 1024 m. Given that this catchment is less urbanised, it was 215 

expected to obtain a smaller fractal dimension.  216 

The same study was performed on the sewer system (Fig. 3.b). In this case, the 217 

geometrical set studied is the “rasterised” sewer system. If a pixel is crossed by a conduit 218 

belonging to the storm water sewer network, then it is considered as part of the sewer system.. 219 

Two scaling regimes can be identified: from 10 m to 80 m the fractal dimension is 1.03 and 220 

from 80 m to 1280 m it is 1.76. For small scales, the dimension is close to 1, and it simply 221 

reflects the 1D intrinsic nature of the sewer system. For large scales, the structure of the 222 
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network becomes apparent, and exhibits a scaling behaviour. For large scales the value is 223 

slightly smaller than the 1.85 found on the Seine-Saint-Denis catchment in Gires et al. 224 

(2014a) which is consistent with the fact that this one is less urbanised. The similarity 225 

between both fractal dimensions (imperviousness and large scale sewers) indicates that it is a 226 

relevant way of quantifying a level of urbanisation for the area. See Gires et al. (2017) for an 227 

extension of this approach to 10 areas in 5 European countries.  228 

 229 

2.4) Rainfall data 230 

 231 

Four rainfall events, which occurred between 2009 and 2011, are studied in this paper. 232 

Simulations are performed using Météo-France radar mosaic, which provides a spatially 233 

distributed data with a resolution of 1 km x 1 km x 5 min (the closest radar is the C-band one 234 

of Trappes located 15 km West). For three events the data recorded with the help of a rain 235 

gauge operated by the SIAVB located a few hundred meters south of the catchment at the 236 

“Bassin des Bas Près” is also available. Because of (i) the standard 0.2 mm discretization 237 

issue of the tipping bucket rain gauge (data is number of tips equal to 0.2 mm) which prevents 238 

it from providing reliable intensity, (ii) the gap between the observation scales of the two 239 

measuring devices (see Gires et al., 2014b, for an in-depth analysis of this issue) and (iii) the 240 

fact that the rain gauge is furthermore outside of the catchment; it is not possible to use the 241 

rain gauge data for other purpose than a rough check of the accuracy of radar data. It is done 242 

by comparing the cumulative volumes of rainfall for each studied event which are displayed 243 

in Table 1 along with their main features. Gires et al. (2014b) used data from dense network 244 

of point measurement devices (rain gauges or disdrometers) distributed over 1 km2 and 245 

showed that the cumulative depth differences between devices could reach more than 40 % 246 

for individual rainfall events (of the same order of magnitude as the one discussed here). They 247 
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showed with the help of numerical simulations that similar values were found simply taking 248 

into account small scale rainfall variability. Here the maximum observed differences are 34%, 249 

which suggests that the agreement between the two devices is acceptable, i.e. smaller than 250 

expected uncertainty simply due to the scale gap between the two measuring devices. Authors 251 

did not have access to longer time series of both radar and rain gauge to perform a more in-252 

depth evaluation of the radar versus rain gauge measurement for this specific point, which 253 

would be the topic of another study. The temporal evolutions of the radar rain rate averaged 254 

over the catchment are displayed in Fig. 4. These events were selected because they are heavy 255 

ones. However they are not extreme ones, indeed over durations of 1 h and 4 h, only the 14 256 

July 2010 event has a return period greater than 1 year (data from a rain gauge located in the 257 

Paris area that was available to the authors was used to obtain these estimates). For the July 258 

event, the return period is of about 1 year for a duration of 1 h and of about 2 years for a 259 

duration of 4 h. 260 

 261 

3) Methods 262 

3.1) Multifractal framework  263 

The Multifractal framework is used for several purposes throughout this paper to 264 

characterize the variability across scales of fields, and is therefore presented here in a generic 265 

way. Only basic properties are discussed here, and interested readers are referred to the recent 266 

review by Schertzer and Lovejoy (2011) for more details. The general assumption of 267 

multifractal fields is that they are generated by an underlying scale invariant multiplicative 268 

cascade process. In such process, a structure at a given scale is divided into smaller structures 269 

at smaller scale and the value of a child structure is equal to the value of the parent structure 270 

multiplied of a random increment. The process is scale invariant in the sense that the way 271 

structures are divided into sub-structures and the probability distribution of the random 272 
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multiplicative increments are the same at all scales. A consequence is that statistical 273 

properties of such fields are conserved across scales. More precisely let us denote ελ a field at 274 

resolution λ (=L/l, where l is the observation scale and L the outer scale of the phenomenon as 275 

for the fractal dimension definition). The probability of exceeding a given threshold (λγ), 276 

defined with the help of the scale invariant notion of singularity γ (the thresholds depend on 277 

the observation scale, but not the singularity), 278 

)()Pr( γγ
λ λλε c−≈≥         Eq. 2, 279 

and the moment of order q, 280 

K(q)q
λ

λε ≈             Eq. 3, 281 

exhibit a power law relation with regards to the resolution at which they are computed. As for 282 

Eq. 1, the symbol ≈ denotes an asymptotic convergence and absorbs slowly varying 283 

prefactors. Equations 2 and 3 define respectively the codimension function c(γ) and the 284 

moment scaling function K(q), which both fully characterize the variability across scales of 285 

the field. c(γ) and K(q) contain the same information and are related by a Legendre transform 286 

(Parisi and Frish, 1985). Eq. 2 can be understood from the simpler notion of fractal dimension 287 

(Eq. 1). Indeed, an intuitive interpretation of a multifractal field is that the geometrical sets 288 

made of each portion of the field greater than given thresholds are fractal and characterized by 289 

fractal dimensions. To be mathematically more rigorous the notion of threshold is replaced by 290 

the scale invariant one of singularity. 291 

By generalizing the central limit theorem Schertzer and Lovejoy (1987) showed that 292 

any conservative scale-invariant multiplicative processes converge toward Universal 293 

Multifractals (in a similar way as re-normalized sum of identical and independent random 294 

variables converge toward normal distribution as long as their variance is defined). For 295 

Universal Multifractals (UM), i.e. this limit behaviour, K(q) and c(γ) functions are defined 296 
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with the help of only two relevant parameters with a physical interpretation. They are known 297 

as UM parameters C1 and α: 298 

- C1 is the mean intermittency which measures the average sparseness of the field. C1=0 for a 299 

homogeneous field. 300 

- α is the multifractality index ( 20 ≤≤α ) and measures how fast the intermittency evolves 301 

when considering level of activity slightly different from the average one. 302 

Great values of α and C1 corresponds to strong extreme. A common tool to assess the 303 

extremes of a field is the scale invariant notion of maximum probable singularity γs 304 

observable (Hubert et al., 1993; Douglas and Barros, 2003; Royer et al., 2008; Gires et al., 305 

2014a). It is defined for a unique sample by  306 

dc s =)(γ             Eq. 4 307 

Where d is the dimension of the embedding space, i.e. 1=d  for time series and 2=d  for 308 

maps. 309 

 The power spectrum (Fourrier transform of the auto-correlation function) of such 310 

multifractal field exhibits a scaling relation with wave number k:  311 

β−≈ kkE )(            Eq. 5 312 

where β is the spectral slope. 313 

 314 

3.2) Uncertainty associated with small scale rainfall 315 

The purpose of this section is to explain the approach implemented to quantify the 316 

uncertainty associated with small scales rainfall variability, i.e. which is occurring below the 1 317 

km x 5 min scale currently provided by the C-band radar operating in this area. The same 318 

methodology as in Gires et al. (2013, 2014a) is implemented, and only basic ideas are 319 

explained here. Firstly, an ensemble of downscaled rainfall fields is generated, then each 320 

realisation is inputted into the numerical model and finally the disparities within the ensemble 321 
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of outputs, which reflect the studied uncertainty, are analysed and quantified. 100 sample 322 

ensembles are used. The downscaling technique relies on the Universal Multifractal 323 

framework. It basically consists in stochastically continuing a space-time cascade process that 324 

has been validated on the available range of scales. The resolution of the downscaled rainfall 325 

field is 12 m in space and 20 s in time starting from the original 1 km and 5 min of the 326 

available radar data. The process has been validated down to such small scales (Gires et al., 327 

2014b). 328 

The disparities among the simulated ensembles are quantified with the help of quantile 329 

analysis. Let us first illustrate this with the flow output, but the same is done for maximum 330 

water depth at each pixel. For each time step the 5, 25, 75 and 95 % quantiles are computed, 331 

and give the envelop curves Q0.05, Q0.25, Q0.75, and Q0.95, respectively. The width between 332 

these curves characterizes the uncertainty interval on simulated flow. It is quantified with the 333 

help of two pseudo-coefficients of variation computed as: 334 

radar

radarPFradarPF

PF

tQtQ
CV

*2

)()(
' ,05.0,95.0

95

−
=         Eq 6.a 335 

radar

radarPFradarPF

PF

tQtQ
CV

*2

)()(
' ,25.0,75.0

75

−
=           Eq 6.b 336 

where radarPFt ,  is the time of the peak flow simulated with the raw radar data 337 

(PFradar).. 338 

 339 

3.3) Multifractal analysis of overland water depth maps 340 

There is no distributed data available for overland water depth over large areas, but it 341 

is possible to study the fields obtained with the help of numerical simulations with spatially 342 

distributed rainfall as input. Maps of water depth during runoff at the end of each 3 min 343 

Multi-Hydro loop are studied.  344 
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Technically, in this paper an area of 128 x 128 pixels of size 10 m x 10 m is extracted 345 

from the map of the catchment to carry out the analysis. Both ensemble analysis (i.e. 346 

considering all successive maps as independent realisations of the same process and upscaling 347 

them individually before taking the mean in Eq. 2 and 3) and individual time step analysis 348 

(i.e. to obtain temporal evolutions of the various parameters) are performed. Finally, analyses 349 

are done in 2D on the maps but also in 1D on the columns or the lines of pixels over the 350 

catchment, in a North-South direction and in an East-West direction respectively (Fig. 5). The 351 

purpose of this is to monitor a possible influence of the slope over the generated runoff 352 

scaling properties. 353 

 354 

 355 

4) Implementation of the Multi-Hydro model on the Jouy-en-Josas catchment 356 

 357 

4.1) Validation with raw radar data 358 

 359 

The validation of the model is achieved by comparing the water height measured at the 360 

Pont-de-Pierre gauge with the simulated one. Before going on authors would like to highlight 361 

that a proper validation on this case study is not possible given the available data, and will 362 

therefore limit this section to checking that the model approximately behaves well. The main 363 

reasons for this problem are: 364 

- Only one measuring point is available for the whole catchment taking into account 365 

approximately an area of 2 km2. 366 

- The uncertainty associated with this water level gauge is high. Indeed, it is not operated for 367 

accurate hydraulic measurement but to trigger an alarm to evacuate a music school located 368 

nearby. The main issue is that the shape of the river bed cross section at this point is not 369 
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available. The width was estimated at around 1.80 m, using aerial photography from IGN and 370 

an approximate measure from few meters away. In order to correctly model the pipe, we used 371 

Multi-Hydro and tested various types of conduits. Finally, we chose to model the Bièvre as a 372 

circular pipe, with free surface of 2 m diameter, which is close to the approximate 373 

measurement. This choice is only an approximation which does not take into account the 374 

variations in time of this shape due the fact that the bottom of the river bed is not flat and 375 

contains moving rocks and changing vegetation. 376 

- There is a lack of available data on initial soil saturation which is one of main sources of 377 

uncertainty and can biased runoff (see Shah et al., 1996; Zehe et al., 2005) especially at the 378 

beginning of the event. In this paper, dry conditions were considered at the beginning of each 379 

event. A sensitivity test was conducted by considering a saturated soil at the beginning. A 380 

slight increase (few percent) of simulated flow was noted only during approximately the first 381 

hour (not shown here). Having longer rainfall time series would enable to simulate the 382 

catchment’s behaviour some time before the event and limit the uncertainties associated with 383 

this issue.  384 

- The uncertainties on the water input in the Bièvre River at the outlet the Bas-Près storage 385 

basin upstream the catchment are not quantified. 386 

- Obviously there are some uncertainties on the radar rainfall measurement itself. 387 

The simulation and measurement at the “Pont de Pierre” point for the selected rainfall 388 

events are displayed in Fig. 6. For the 09-02-2009 event we observe a clear overestimation at 389 

the beginning of the event. For the 14-07-2010 event Multi-Hydro with the radar rainfall data 390 

reproduces well the two main peaks, but overestimates the first local maximum of rainfall 391 

intensity and misses the second one. The 15-08-2010 event shows a greater variability in the 392 

first half of the simulation (variations are more pronounced on the model than on the 393 

measurements) but reproduces well the last peak. Finally, for the 15-12-2011 event, the Multi-394 
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Hydro model reproduces well the first peak, but the flow decreases more rapidly than the 395 

observations.  396 

Given the available data on a limited number of events it is difficult to attribute the 397 

observed discrepancies to one or several of the previously mentioned sources of uncertainty. 398 

Proper validation would indeed require the analysis of much longer time series and more 399 

accurate measurements with better position of sensors. Nevertheless, the obtained results do 400 

not highlight strikingly wrong behaviour of simulated water heights in conduit, and enable to 401 

partially reproduce observations. Finally, it seems that for some events the simulated flows 402 

might be too noisy compared with observed water levels. This should not affect the UM 403 

analysis that follows because the analyses carried out in this paper are spatial ones, i.e. maps 404 

are studied and not time series so the potential effect should be limited. Keeping in mind the 405 

previously mentioned limitations, results suggest that it remains relevant to use this 406 

implementation of Multi-Hydro with a rather coarse 10 m resolution for testing its sensitivity 407 

to small scale rainfall variability and analysing surface runoff with the help of multifractals. 408 

The authors acknowledge that further investigations on other catchments with more 409 

accurately validated models would be needed to fully confirm the findings discussed after.  410 

 411 

4.2) Uncertainty associated with small scales rainfall variability 412 

The envelop curves Q0.05, Q0.25, Q0.75, and Q0.95 are displayed in Fig. 7 for the 09-02-413 

2009 event for 5 conduits selected from upstream to downstream, which enables to analyse 414 

the effect of the position of the conduit within the network. Link #4 corresponds to the Pont-415 

de-Pierre measurement, and #5 to the outlet of the catchment. As it can be seen in Fig. 7, link 416 

#4 and #5 are located along the Bièvre River, and they take into account the significant base 417 

flow in the river coming from upstream the Jouy-en-Josas catchment. It means that they are 418 

obviously less sensitive to local rainfall variability. Similar curves were also generated for 419 
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water height (not shown) at the Pont-de-Pierre. The computed uncertainty is small and 420 

certainly does not explain the discrepancies between simulations and measurements noticed in 421 

Fig. 6, which are hence not simply due to effects of small scale rainfall variability.  422 

CV’95 and CV’75 values computed for the selected conduits (Fig. 7) and the four events 423 

are displayed in Table 2. As expected they decrease while considering more and more 424 

downstream conduits. There is a sharp decrease in CV’ when the Bièvre River is reached 425 

because the base flow of the river dampens the effect of local small scale rainfall variability 426 

occurring over the 3 km2 catchment, but the uncertainty only associated with this effect 427 

remains of roughly 10 % at the outlet whatever the event. The values for up-stream and mid-428 

stream pipes are great for all events, even for CV’75 which highlights a significant impact of 429 

small scale rainfall variability on the simulated flow. The variability observed in the simulated 430 

flow is basically due to the disparities in the simulated downscaled rainfall fields which are 431 

transferred through the hydrological model (see Gires et al. 2012 for more detailed analysis of 432 

this issue). Small scale rainfall data is needed to understand better, and plan better, some local 433 

flooding due to sewer overflows which have been reported in some areas, notably the street 434 

parallel to the Bièvre River bed in the city (just North of it), There does not seem to have a 435 

straightforward relation between the computed uncertainty and the strength of the event (in 436 

terms of maximum rainfall peak intensity over 5 min). Indeed, the tendency that could be 437 

observed on the 09-02-2010, 15-08-2010 and 15-12-2011 (not a linear one as for example the 438 

peak rainfalls are equal to approximately 7 and 24 mm.h-1 for respectively the 15-08-2010 and 439 

15-12-2011 event while the computed uncertainties are close) is not confirmed by the results 440 

for the 14-07-2010 event (see Tab. 2). Finally, these values are comparable to the ones that 441 

were obtained on a 1.5 km2 highly urbanised catchment located 40 Km North-East on the 442 

other side of the Paris area in Gires et al. (2014a). For this catchment, CV’95 values were 443 

ranging from 21 to 56%, 26 to 94% and 22 to 50% from downstream to upstream for the same 444 
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09-02-2009, 15-08-2010 and 15-12-2011 events respectively (at a different location). The 445 

values are slightly smaller for this catchment and this is likely to be due to lower level of 446 

imperviousness resulting in a smaller portion of rainfall becoming immediately active. 447 

 448 

In this paper, the uncertainty is computed not only on the simulated flow, but also on 449 

the water depth in streets. As for the flow, for each realisation of downscaled rainfall field, the 450 

maximum water depth over the whole simulation is retrieved for each pixel. A sample is 451 

shown in Fig. 8.a for the 15-12-2011 event. The known hot spots are visible, although with 452 

too high values. For example, the modelled maximum water depth reaches more than 15 cm 453 

in the street along the Bièvre River bank in the city and the parallel street just north of it 454 

(already mentioned in the previous paragraph). Although some flooding is regularly reported 455 

by citizens to the SIAVB for these streets, such height was not reported for this event. In the 456 

urbanized portion of the catchment the street network is visible on the maximum water depth 457 

map, meaning the maximum values of water depth maps are reached on the corresponding 458 

pixels. Lower values are found on the on roads/streets located on the steep portion of the 459 

catchment because water moves faster in these areas. Same patterns and numerical values are 460 

obtained for other realisations of the same event. Similar plots are obtained for the other 461 

events with lower depths for the 09-02-2009 and 15-08-2010 (for which a lower cumulative 462 

rainfall depth was recorded) and greater depths for the 14-07-2010 event. Then, as for the 463 

flow analysis previously carried out, the uncertainty on this maximum water depth is 464 

computed with the help of the 5 and 95% quantiles for each pixel and a pseudo-coefficient of 465 

variation. Illustrations of the quantiles maps are shown in Fig. 8.b and 8.c for the 15-12-2011 466 

event. Similar patterns are observed on the two maps, notably for the hotspots previously 467 

mentioned which are visible on both maps. Maps of CV’95 for maximum depth are displayed 468 

in Fig. 9 for the four rainfall events. It appears that the uncertainty is lower for the areas 469 
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where the greatest maximum depths are found (i.e. on roads) and is also lower for the heaviest 470 

rainfall events. It reaches only few percents on the hottest points. The values (Fig. 9) are 471 

anyway much smaller than those found for sewer flow (Table 2 and Fig. 7). This apparent 472 

contradiction is likely to be due to the fact that most of the rain water is properly handled by 473 

sewers and overflows are limited for these events. It means that for these events disparities in 474 

local amounts will not be visible on ground levels, whereas they are indeed in sewer flows 475 

and water depths. Further investigations with heavier rainfall events should be carried out to 476 

confirm or not this interpretation. The areas with the greatest uncertainty are found in gardens 477 

for the weakest event (09-02-2009), and correspond to places with a very small maximum 478 

depth (smaller that 1mm), meaning that the hydrological relevance is not very high. 479 

 480 

 481 

5) Multifractal characterization of overland water depth 482 

 Multifractal analyses of overland water depth during rainfall event are presented in 483 

this paper for the 14-07-2010 and 15-12-2011 events which are the two heaviest ones in terms 484 

of maximum rainfall intensity over 5 min (see Table 1). 485 

Figure 10.a displays the spectral analysis of the water depth for the 14-07-2011 event. 486 

Maps of water depth for each time steps during the event are used to carry out 2D ensemble 487 

analyses. The quality of the scaling is low, with a coefficient of determination for the linear 488 

regression equal to 0.42. The fact that the spectral slope is close to zero (β is found roughly 489 

equal to 0.2) indicates that the field is conservative, i.e. its mean is conserved across scales. It 490 

is therefore possible to implement directly on the field a Trace Moment (TM) analysis, which 491 

consists in assessing the validity of Eq. 4 by plotting it in log-log. Perfect UM fields would 492 

lead to straight lines. Figure 10.b shows the TM ensemble analysis performed over all the 493 

time steps of the same 14-07-2011 event. Two scaling regimes can be identified: a small 494 
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scales regime from 10 m to 80 m (right part of Fig. 10.b) and a large scales regime from 80 m 495 

to 1280 m (left part of Fig. 10.b). The coefficient of determination r2 of the linear regression 496 

for q=1.5 in Fig. 10.b is taken as an indication of the quality of the scaling. The scaling from 497 

small scales (10 m - 80 m) is much more robust than for large scales (80 m to 1280 m), as 498 

illustrated by the r2 equal to respectively 0.99 and 0.91. Given the low quality of the scaling 499 

for large scales, UM parameter estimates will not be reported and discussed for this regime 500 

because they are not reliable. Furthermore, small scales are crucial for surface runoff because 501 

it is at these scales that it is generated into the drainage system. The location of this break at 502 

approximately 80 m indicates a possible physical interpretation. Indeed, it is the same location 503 

as the break in the fractal analysis of the sewer network and corresponds roughly to the inter-504 

distance between roads. This would mean that this break is driven by the influence of the 505 

collection of water by sewer network. The more robust scaling behaviour for surface flow is 506 

found for the scales for which the sewer network does not behave yet as network but as 507 

isolated linear pipes. Before going on, it should be mentioned that numerous pixels have very 508 

small depth (see Fig. 8 for an illustration), for which the model uncertainties might be great. 509 

These zeros values or spurious ones close to zero will affect the scaling analysis for small 510 

moments (typically q < 0.5) through a multifractal phase transition (see Gires et al., 2012, for 511 

a detailed analysis of this issue). Here the influence of this bias does not extend to moments 512 

close to 1 around which the estimates of UM parameters are carried out, meaning that they are 513 

not affected by this issue.  514 

 515 

Although intrinsically less robust since scaling properties are statistical ones requiring 516 

numerous data to be properly observed, TM analyses were also carried out independently on 517 

each sampling time step of Multi-Hydro (3 min in this paper). The purpose is to see whether 518 

there is an impact of the current rainfall rate on it. Figure 11 displays for the 14-07-2010 event 519 
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the temporal evolution of both the rainfall rate and the r2 for q=1.5 in the TM analysis for the 520 

two regimes identified in the ensemble analysis, i.e. small (10 m – 80 m) and large scales (80 521 

m – 1280 m). For this event, two rainfall peaks are observed, and they both result in a sudden 522 

loss of the scaling quality, more pronounced for large scales than small ones. For the first 523 

peak (yellow bars on Fig. 11) the decrease of r2 lasts approximately 20 min, while it lasts only 524 

few minutes for the second peak (red bars on Fig 11). In both cases the quality of the scaling 525 

behaviour improves again over few tens of minutes. The physical meaning of such loss is not 526 

clear, but could be due to a bad representation of the surface flow process during intense 527 

rainfall (it might take some time to retrieve a realistic surface flow simulation following a 528 

sudden change in rainfall input), a bias in the geometrical repartition, or an intrinsic feature of 529 

the process. For the latter, a possibility is that during intense rainfall period, the surface flow 530 

exhibits more directly the rainfall features than its intrinsic ones which are retrieved once the 531 

flow process has “adapted” to the new conditions. This would explain both the loss of scaling 532 

quality and why scaling properties closer to rainfall ones are observed during these short 533 

periods. Analysis with a higher resolution model would be needed to further investigate this 534 

issue, which would also enable to have access to a wider range of small scales. 535 

 Similar features are retrieved for the other studied event (15-12-2011). Finally, it 536 

should also be mentioned that similar results are also found when performing the analysis on 537 

the North-South or West-East 1D-samples, which means that the preferential slope of the 538 

catchment (North-South) does not seem to have an influence on the scaling features of the 539 

simulated water depth. In terms of scaling quality, very similar results are also found with raw 540 

radar data, or downscaled rainfall fields suggesting a limited impact of small scale rainfall 541 

variability on these features. The same downscaling process as in section 2 is used. 542 

 543 
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UM parameters retrieved on the maximum water depth were computed for small 544 

scales, and are displayed in Table 3 for the two events (14-07-2011 and 15-12-2012) and for 545 

simulations with raw radar data and also a realisation of downscaled rainfall field with α=1.8 546 

and C1=0.1 (other realisations yield very similar results). The temporal evolutions of α and C1 547 

for the 14-07-2011 event are shown in Figures 12.  548 

It appears that the UM parameters are also affected by the “jumps” that were noticed 549 

on r2 in Fig. 11. Indeed after an intense period, sharp increase of α and decrease of C1 are 550 

noticed. These pronounced variations mean that the values obtained with ensemble analyses 551 

should not be over-interpreted. Nevertheless few comments can be made. First the values of 552 

C1 are much greater than the ones reported for rainfall (typically 0.1-0.3 at small scale) 553 

meaning that significant levels of water depth are much more concentrated than the rainfall 554 

field, which reflects the influence of the physical processes associated with surface flow on 555 

the transferred field, notably the flow concentration. The most relevant one is the topography 556 

that routes water through specific paths and tends to concentrate it. Second the values of UM 557 

parameters are quite different between the two events. These differences are much greater 558 

than the ones observed on the rainfall fields (see Ichiba, 2016, for a detailed analysis of these 559 

storms) at small scales. This suggests that the large scales rainfall pattern has a strong 560 

influence on the retrieved parameters. Indeed, the topography and small scale rainfall features 561 

are the same between the two simulations; the only difference is the large scale rainfall 562 

features. Thirdly the values of γs are rather similar for both events (the differences between α 563 

and C1 tend to compensate themselves).  564 

 The temporal evolutions of the UM parameters obtained by inputting raw and 565 

downscaled rainfall data are very similar. The differences are slightly more pronounced on the 566 

values computed on ensemble analysis but as previously said this should not be over-567 

interpreted given the strong variations visible in the temporal analysis. This similarity 568 
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highlights the low influence of small scale rainfall variability on the retrieved parameters 569 

which seems to be more dependent on features associated with surface flow process itself or 570 

large scale rainfall. 571 

 572 

In order to test the sensitivity of the results to small scales rainfall features, synthetic 573 

rainfall fields with various sets of known parameters are used as input to Multi-Hydro 574 

simulations. More precisely the pseudo-events tested last 30 min with an average intensity of 575 

10 mm/h. Three pairs (α; C1) of parameters are tested: (1.8; 0.1), (1.8; 0.05), (1.4; 0.1). Figure 576 

13 displays the temporal evolutions of the rain rates, r2, α and C1 for water depth for the three 577 

synthetic rainfall events.  578 

The temporal evolution shows the same general tendency as the one observed with the 579 

real events. A loss of scaling quality is observed during the event itself, and it improves 580 

afterwards. α and C1 have a constant behaviour during the rainfall, while they decrease and 581 

increase respectively after the rainfall has stopped. The comparison of the UM parameters for 582 

the overland maximum water depth shows that they do not seem to depend on the small scale 583 

rainfall variability in this case. α is constant around 1.4 while C1 is constant around 0.6 during 584 

the rainfall. γs is again constant around 1.7 on average. The rainfall UM parameters do not 585 

seem to modify the structure of the overland flow, and its geometrical distribution. Successive 586 

simulations with the same parameters for synthetic rainfall yielded same results. A physical 587 

explanation of the C1 parameter could be that during the rainfall, the surface flow is more 588 

homogenous due to a ubiquitous input of water. UM parameters on water depth are thus 589 

closer to the rainfall ones (small C1). However after the rain has stopped, the disparities of 590 

simulated water depth are increased due to predominant pathways (roads) or topographic 591 

depressions where the water can accumulate. The greater C1 after the event could reflect this 592 
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fact. The smaller values of α mean that the disparities among the areas where water remains 593 

tend to decrease after the rainfall event. 594 

This study seems to highlight the fact that UM parameters α and C1 for water depth are 595 

rather relying on the large scale structure of the rainfall and on the catchment features, while 596 

the maximum observable singularity γs is conserved for all events. Further studies could 597 

infirm or confirm the fact that γs depends on the studied catchment. The temporal evolutions 598 

of the UM parameters also deeply rely on the rainfall rate. Synthetic events with block 599 

structures enabled to stand out rather simple general tendencies. They become more complex 600 

with real rainfall, when the intensity has a higher temporal variability.  601 

The temporal evolutions of the UM parameters also enable to quantify a catchment 602 

response time. Due to the sampling time step of the simulations, the uncertainty associated 603 

with the response is of 3 min. Still, it can be noted that in urban catchments (or semi-urban 604 

here), the response time of water depth UM parameters to the beginning of a rainfall or to an 605 

important peak of intensity is almost non-existent. This is due to the presence of impervious 606 

area over which rainfall directly transfer into surface runoff. 607 

 608 

 609 

6) Conclusions 610 

 611 

The Multi-Hydro model was implemented on the Jouy-en-Josas catchment in the Paris 612 

area. This 3 km2 semi-urbanised catchment exhibits sharp slopes, and a dense area along the 613 

Bièvre River bed. It has often been damaged by major pluvial and fluvial flooding, before the 614 

construction of storage basins along the river path. The model was validated on this new 615 

catchment on four rainfall events with the help of the data from a height gauge near the outlet. 616 

Rainfall radar data with a resolution of 1km x 1km x 5min was used. 617 
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Then ensembles of downscaled rainfall fields were used to quantify the sensitivity of 618 

the model outputs to small scales unmeasured rainfall variability, i.e. occurring below the 619 

resolution of the available raw radar data. It appears that it is rather significant on flow 620 

simulated in conduits with pseudo coefficients of variations ranging from 90 % upstream to 621 

10% downstream. This confirms previous results obtained on a 1.5 km2 flat highly urbanised 622 

catchment also in the Paris area. The methodology was extended here to simulated water 623 

depth, and it was found that the sensitivity was much lower than for conduits’ flow. This is 624 

likely to be due to the fact that the sewer system is mainly able to cope with the storm water 625 

for these events limiting the amount of surface runoff. 626 

After using them to downscale the radar data, Universal Multifractals are used in an 627 

innovative way to characterize the surface flow process -through simulated water depth for 628 

each 10 m x 10 m pixel over 3 min time steps- during rainfall events. UM parameters α and 629 

C1, and the composite parameter γs are evaluated on the outputs of Multi-Hydro. Two scaling 630 

regimes are identified for this field and estimates are only reliable for small scales, i.e. 10m -631 

80m, and related to the fractal feature of the sewer system which exhibits a scale break at the 632 

same scale. There is a loss of the quality of the scaling during intense rainfall periods and UM 633 

parameters get closer to rainfall ones. A possible interpretation is that during this short period, 634 

a mixture of the scaling behaviour of both surface flow and rainfall is observed. After the 635 

event scaling is improved and features more specific to surface flow processes are retrieved 636 

with a field strongly concentrated and variability among the wet areas dampened (C1 greater 637 

than 1 and α smaller than 1). Small scale rainfall features do not seem to strongly influence 638 

the results which depend more on large scales rainfall spatio-temporal patterns for these 639 

events which do not trigger much sewer overflow. 640 

The conclusions found with the help of this innovative methodology are not as 641 

straightforward as the authors would have hoped. Further investigations with other rainfall 642 
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events, other catchments, notably with denser monitoring network including in-sewer 643 

measurements, should be carried out to strengthen the results. Higher resolution models 644 

should also be tested to extend the range of available scales for the small scales regime to 645 

obtain more reliable estimates of scaling features. Such new analysis would enable to 646 

generalize the behaviour of the scaling and of the UM parameters which describes the surface 647 

flows, and eventually to link them to other geometrical features of the catchment, such as the 648 

fractal dimension of its impervious surface, of the roads (which are the preferential path for 649 

surface flows) or of the sewer system. This paper should be seen as a promising first step that 650 

hints at innovative techniques relying on scale invariance properties to analyse how the 651 

rainfall extremes are either dampened or enhanced by hydrological models and also to 652 

quantify the extremes at very high spatial resolution (typically 1 m) without having to run the 653 

model at these resolutions which would require too much time especially for real time 654 

applications. 655 

 656 
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 774 

 775 

Tables: 776 

 777 

 
Radar rain depth 

(mm) 

Rain gauge depth 

(mm) 
Duration (min) 

Peak 

intensity 

over 5 min 

(mm/h) 

09-02-2009 9.4 Unavailable 725 5.12 

14-07-2010 43.2 35.2 1020 52.06 

15-08-2010 27.8 20.8 1745 7.56 

15-12-2011 26.2 29.6 785 24.26 

Table 1: Main features for the four studied rainfall events. Cumulative depth are computed 778 

over the whole event. For the radar data averages over the catchment are displayed. 779 
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 780 

  781 

Event / Link #1 #2 #3 #4 #5 

09-02-2009 63 / 16 35 / 15 10 / 7.2 4.0 / 1.7 4.8 / 2.1 

14-07-2010 76 / 22 27 / 13 7.1 / 3.6 7.5 / 3.2 7 / 3.1 

15-08-2010 70 / 20 38 / 16 26 / 12 9.3 / 3.9 8.5 / 3.8 

15-12-2011 60 / 23 50 / 22 28 / 12 11 / 4.1 8.7 / 3.9 

Table 2: CV’95 and CV’75 in % (first and second figure respectively) for the five selected 782 

conduits and four rainfall events. 783 

 784 

 785 

 786 

Event Rainfall input α C1 γs 

Raw radar data 1.55 0.62 1.52 14-07-2010 

Downscaled rainfall 1.25 0.90 1.68 

Raw radar data 0.95 1.42 1.74 15-12-2011 

Downscaled rainfall 0.99 1.22 1.65 

Table 3: UM parameters for small scales (10 m – 80 m) computed with the help of a 2D 787 

analysis with either raw radar data or a realisation of downscaled rainfall field (with α=1.8 788 

and C1=0.1) as rainfall input for the 14-07-2010 and 15-12-2011 events. 789 

 790 

 791 

 792 

 793 

 794 
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Figure captions:  795 

 796 

 797 

 798 

Figure 1: Maps of the Jouy-en-Josas catchment: (left) aerial photography and sewer system 799 

(The green portion of the sewer network corresponds to the portion over which validation is 800 

possible), (right) elevation in m. 801 

 802 

Figure 2: Map of the land use obtained with the help of MH-AssimTool over the Jouy-en-803 

Josas catchment for two different resolutions. 804 
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 805 

Figure 3: (a) Evaluation of the fractal dimension of the impervious area for the studied 806 

catchment (Eq. 1 in log-log plot). The circle points correspond to the figures obtained from 807 

the map generated with the help of MH-AssimTool at various resolutions. (b) Evaluation of 808 

the fractal dimension of the sewer system. 809 

 810 
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 811 

Figure 4: Average over the catchment of the rainfall radar intensity in mm/h over 5 min time 812 

steps for the four events: (a) 09-02-2009, (b) 14-07-2010, (c) 15-08-2010, (d) 15-12-2011 813 

 814 

Figure 5: Illustration of the samples studied in the multifractal analysis of overland water 815 

depth at the end of each 3-min Multi-Hydro loop: (a) 2D maps, (b) 1D vertical columns (N-S 816 

direction), (c) 1D horizontal rows (W-E direction). 817 
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 818 

Figure 6: Water height simulated with the help of Multi-Hydro using raw radar data as rainfall 819 

input, and measurements at the Pont-de-Pierre for the four events: (a) 09-02-2009, (b) 14-07-820 

2010, (c) 15-08-2010, (d)15-12-2011 821 
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 822 

Figure 7: Simulated flow with the raw radar data (black), Q0.25 and Q0.75 (dark pink colour), 823 

Q0.05 and Q0.95 (light pink colour) for 5 conduits of the studied catchment for the 09-02-2009 824 

event. 825 

 826 

Figure 8: For the 15-12-2011 event. (a) Map of the computed maximum water depth for a 827 

realisation of the downscaled rainfall field. (b) 5% quantile map of the maximum water depth 828 

over 100 realisations. (b) 95% quantile map of the maximum water depth over 100 829 

realisations. Unit is m. 830 
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 831 

Figure 9: Map of CV’95 (in %) for the maximum water depth for the 09-02-2009 (a), 15-08-832 

2010 (b) and 15-12-2011 (c) events. 833 

 834 
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 835 

Figure 10: For the 14-07-2010 event and 2D ensemble analysis over all the time steps: (a) 836 

Spectral analysis, i.e. Eq. 5 in log-log plot; (b) TM analysis, i.e. Eq. 3 in log-log plot. 837 

 838 

Figure 11: For the 14-07-2010 event: (a) Temporal evolution of the rain rate; (b) Temporal 839 

evolution of the r2 for q=1.5 in the TM analysis for the two regimes identified in Fig. 10. 840 
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 841 

Figure 12: Temporal evolution of the UM parameters α and C1 of the maximum water depth 842 

field over 3 min for small scales (10 - 80 m) for the 14-07-2010 rainfall event.  843 

 844 
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 845 

Figure 13: For three synthetic rainfall events with different sets of UM parameters; temporal 846 

evolution of the average rain rate over the catchment (a), and for the simulated overland 847 

maximum water depth, r2 (b), α (c) and C1 (d) for small scales (10 m-80 m). 848 

 849 


