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Abstract. We explore the advantages offered by the trifocal tensor in
the pose estimation of a triplet of cameras as opposed to computing the
relative poses pair by pair with the fundamental matrix. Theoretically,
the trinilearities characterize uniquely three corresponding image points
in a tighter way than the three epipolar equations and this translates in
an increasing accuracy. However, we show that this initial improvement
is not enough to have a remarkable impact on the pose estimation after
bundle adjustment, and the use of the fundamental matrix with image
triplets remains relevant.
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1 Introduction

The study of cameras and images has been a prominent subject since the begin-
ning of computer vision, one of the main focus being the pose estimation and
3D reconstruction. Based on the perspective projection induced by pinhole cam-
eras, there are constraints between the space points and their projections onto
the images. Taking two images, the triangulation of the space points is possible
from their projections when the poses are known. Eliminating 3D points from
this model, the fundamental matrix is an algebraic operator encoding the rela-
tion between corresponding image points, which gives a way to infer the relative
orientations and positions of a pair of camera viewpoints.

The natural extension is to consider three views and analyze the constraints
between points to find a similar operator. The solution is the trifocal tensor;
the algebraic constraints relating three corresponding image points are known
as trilinearities. It was shown that a general multi-view matrix can be found
for n views, but that the relations given by these n views depend only on the
constraints involving two or three views at a time [6]. Theoretically, no extra ge-
ometric information about three views comes from considering additional views
at once. Therefore, multi-view structure from motion pipelines always rely on
initial view pairs [7,14,15] or triplets [4,8].

The conventional wisdom advocates the use of the trifocal tensor with a
triplet of views rather than taking pairs and the fundamental matrix. We ques-
tion this assumption with a study of the trifocal tensor and its performance



against the fundamental matrix. In Sect. 2 we present its definition and param-
eterizations and in Sect. 3 its estimation and pose estimation. The experiments
to quantitatively measure its performance are in Sect. 4. We finally conclude in
Sect. 5 that the advantages of the trifocal tensor are marginal and not sufficient
to consider it superior to the fundamental matrix.

2 The Trifocal Tensor

Throughout the paper, the following notation is used: vectors are represented
by lowercase (v), matrices by uppercase (M) and tensors by uppercase bold
(T). The 3 × 3 matrix form of the cross product on the left by a 3-vector v is
denoted by [v]×, i.e., [v]×w = v × w. For a vector v, we note ‖v‖ its L2 norm,
and for a matrix or tensor the L2 norm of the vector built from its coefficients.
For a matrix M , ‖M‖ is knwon as the Frobenius norm, and for a tensor T
it represents, analogously, the square root of the sum of the squares of all its

elements, ‖T‖ :=
√∑

i,j,k(T jki )2. Finally, we note |M | the determinant of a

matrix M .

2.1 Definition

The Trifocal Tensor (TFT) associated to three views is a 3× 3× 3 tensor T =
[T1, T2, T3] usually defined for three canonical projective cameras P1 = (Id3|0),
P2 = (A|a4), P3 = (B|b4) with each slice Ti the 3× 3 matrix

Ti = aib
>
4 − a4b>i , (1)

where ai and bi are the columns of A and B. A more general definition for non
canonical cameras can be found in [3].

The TFT has 27 parameters, is unique up-to-scale for any 3-view configura-
tion and invariant by projectivity. Still, the degrees of freedom of a set of three
projective cameras up-to-projectivity is 18 [3]. Hence, the parameters of the tri-
focal tensor must satisfy some constraints reducing the 8 remaining degrees of
freedom of the trifocal tensor. However, the missing constraints are not obvious
nor easily derivable. Section 2.3 presents several minimal parameterizations and
constraints developed over the years.

2.2 Trilinearities

At its origin, the TFT is derived from the relation between the projections of
the same 3D line in the three images. Other incidence relations can be found
for this tensor, in particular, the following equation for triplets of corresponding
image points x1, x2, x3 (in homogeneous coordinates) is satisfied:

[x2]×

(∑
i

(x1)iTi

)
[x3]× = 03×3 . (2)



Among the 9 scalar equations in (2), only 4 are linearly independent. They are
linear on the trifocal tensor parameters and trilinear on the image coordinates.

Considering the views pairwise, the incidence relations given by the funda-
mental matrices for the same corresponding triplet x1, x2, x3 are a set of 3
equations linear on the fundamental matrices parameters and bilinear on the
image points

x>2 F21x1 = 0, x>3 F31x1 = 0, x>3 F32x2 = 0 . (3)

The involved fundamental matrices are

F21 = [a4]×A, F31 = [b4]×B, F32 = [b4 −BA−1a4]×BA
−1 . (4)

2.3 Minimal Parameterizations and Constraints

Many possible minimal characterizations for the trifocal tensor have been pro-
posed in the literature [1,2,10,11,12,13,17]. We chose to focus on four represen-
tative ones that can be efficiently implemented in the pose estimation process.

Ressl The minimal parameterization of the trifocal tensor proposed by Ressl in
his thesis [13] is based on algebraic constraints of the correlation slices. It involves
20 parameters and 2 constraints. With this parameterization it is possible to
completely characterize the trifocal tensor for three views. The three matrices
of the trifocal tensor Ti can be parameterized in the following minimal form:

Ti =
[
si, vsi +mie31, wsi + nie31

]>
i = 1, 2, 3 (5)

where si ∈ IR3 are such that
∥∥∥(s1 s2 s3)∥∥∥ = 1, e31 ∈ IR3 with ‖e31‖ = 1, and

v, w,mi, ni ∈ IR.

This parameterization is directly related to the epipoles since e31 = b4 cor-
responds to the epipole, projection of the first camera center in the third image,
and the epipole in the second image e21 = a4 is proportional to (1, v, w)>. It
is also related to an equivalent parameterization of three canonical projective
matrices.

Nordberg The trifocal tensor can also be parameterized by three 3× 3 orthog-
onal matrices U , V and W that transform the original tensor into a sparse one,
T̃, with only 10 non-zero parameters up-to-scale [10]:

T̃ = T(U ⊗ V ⊗W ) ⇒ T = T̃(U> ⊗ V > ⊗W>) (6)

where the tensor operation corresponds to the matrix operation on the slices
T̃i = V >(

∑
m Um,iTm)W . The scale can be fixed by imposing ‖T̃‖ = 1. For



canonical cameras, such orthogonal matrices can be computed as:

U0 = (A−1a4, [A−1a4]×
2
B−1b4, [A−1a4]×B

−1b4), U = U0(U>0 U0)−
1
2 (7)

V0 = (a4, [a4]×AB
−1b4, [a4]×

2
AB−1b4), V = V0(V >0 V0)−

1
2 (8)

W0 = (b4, [b4]×BA
−1a4, [b4]×

2
BA−1a4), W = W0(W>0 W0)−

1
2 (9)

and each one can be parameterized by 3 parameters. Therefore, the trifocal
tensor T is parameterized in this case by a total of 19 parameters and one
constraint fixing the scale of T̃.

A main disadvantage of this specific parameterization is that the matrices
U0, V0 and W0 become singular when the three camera centers are collinear
and, therefore, no orthogonal matrix can be computed from them. It is then a
parameterization only valid for non-collinear centers.

Faugeras and Papadopoulo In [2] a set of 12 algebraic equations are pre-
sented as sufficient constraints to characterize a trifocal tensor. It consists of 3
constraints of degree 3 corresponding to the determinant of the slices being zero,
|Ti| = 0 for i ∈ {1, 2, 3}, and 9 more constraints of degree 6 combining several de-
terminants of the elements of T, for j1, j2, k1, k2 ∈ {1, 2, 3} with j1 6= j2, k1 6= k2

|tj1k1. tj1k2. tj2k2. | |tj1k1. tj2k1. tj2k2. |−
|tj2k1. tj1k2. tj2k2. | |tj1k1. tj2k2. tj1k2. | = 0 (10)

where tjk. represents the vector
(
T jk1 , T jk2 , T jk3

)>
.

This set is not minimal since only 9 constraints should be enough for the
characterization of a valid trifocal tensor. The authors give an outline of how to
obtain a minimal parameterization using the constraints that requires to solve a
polynomial of degree 2, thus giving two possible tensors. We considered best to
use the minimization of the constraints instead of the minimal parameters for a
more straightforward implementation.

Ponce and Hebert Π matrices A completely different approach to charac-
terize the 3-view model has been explored in [12]. Through the study on the
incidence of three lines on space, a set of three matrices (related to the principal
lines) that give constraints on the correspondence of three image points can be
defined. These matrices have a total of 27 parameters and play a role similar to
the TFT. Given three cameras with non-collinear centers and three image points
x1, x2, x3 there exist three 4 × 3 matrices up-to-scale Πi = (π1i, π2i, π3i, π4i)

>

with πii = (0 0 0)> and verifying:

x>1 (π41π
>
32 − π31π>42)x2 = 0 (11)

x>1 (π41π
>
23 − π21π>43)x3 = 0 (12)

x>2 (π42π
>
13 − π12π>43)x3 = 0 (13)

(π>21x1)(π>32x2)(π>13x3) = (π>31x1)(π>12x2)(π>23x3) (14)



if, and only if, the xi form a triplet of corresponding points. Ponce and Hebert
propose the 6 homogeneous constraints:

π1
21 = π2

32 = π3
13 = 0, π2

31 = π3
41, π3

12 = π1
42, π1

23 = π2
43 (15)

that can be achieved by a projective transformation of the space. This reduces
the parameters to 21 and with 3 norm constraints on the matrices, ‖Πi‖ = 1,
the minimal representation is attained.

Just like with the trilinearities (2) in the trifocal tensor case, these parameters
give 4 equations describing the incidence relation for image points. Here, (11)
to (13) are bilinear on the points and completely equivalent to the epipolar
equations given by the fundamental matrices. Equation (14) is trilinear on the
image points and it is key to the characterization of the correspondence of three
points, which the fundamental matrices fail to achieve when one of the points lies
on the line joining two epipoles. This is precisely the geometric contribution of
taking three views instead of individual pairs to the characterization of matches.

Similarly to the parameterization of the trifocal tensor by Nordberg, the
main drawback of the Π matrices is that they are only valid for non-collinear
camera centers. For collinear camera centers, Ponce and Hebert[12] also proposed
equivalent matrices with one extra trilinear constraint.

3 Pose Estimation

From a trifocal tensor T we can extract the epipoles, projections of the first
camera center in the second and third images. The epipole e31 can be computed
as the common intersection of the lines represented by the right null-vectors of
T1, T2 and T3. Analogously, the epipole e21 can be computed as the common
intersection of the lines represented by the left null-vectors of T1, T2 and T3.
Then the fundamental matrices can be computed:

F21 = [e21]×[T1e31, T2e31, T3e31] ,

F31 = [e31]×[T>1 e21, T
>
2 e21, T

>
3 e21] .

(16)

From the fundamental matrices and the calibration matrices Ki, the essential
matrices can be obtained as [tij ]×Rij = Eij = K>i FijKj , from which the rela-
tive orientations (R21, t21) and (R31, t31) can be retrieved by the singular value
decomposition of E21 and E31, each translation vector being up to unknown
scale. The overall scale is fixed by setting ‖t21‖ = 1 and the relative scale λ of
t31 can be computed by using a triangulation of the space points {Xn}n from
the projections in the first two cameras and minimizing the algebraic error with
respect to the third image:

arg min
λ∈IR

N∑
n=1

∥∥∥∥xn3 × (K3(R31X
n + λ

t31
‖t31‖

)
)∥∥∥∥2 , (17)

which admits a closed form solution.
So either from the trifocal tensor or the fundamental matrices, we have a

way to compute the camera poses.



3.1 Linear Estimation of the Trifocal Tensor

The TFT can be estimated from a linear system given by the trilinearities of (2).
From each triplet we get 9 equations linear on the parameters of the tensor, from
which only 4 are linearly independent. At least 7 correspondences are needed to
solve the linear system if we also impose ‖T‖ = 1. If more triplets are available,
a solution minimizing the algebraic error can be found by SVD. The resulting
trifocal tensor will not necessarily be a valid tensor. To fix it, we can compute a
valid trifocal tensor in the following way: extract the epipoles e21 and e31, find
matrices A and B that minimize (1) (resulting in linear systems), and finally
compute a valid tensor.

Analogously, following the classical “normalized 8-point algorithm” specified
in [3], the fundamental matrices can be computed linearly from the epipolar
equations (3) and valid matrices can be found by imposing rank deficiency using
SVD.

3.2 Optimization with Minimal Parameterization

Section 2.3 detailed four ways to parameterize minimally the 3-view model. All
parameterizations involve non-linear constraints, so to be able to estimate the
parameters an initialization is necessary. The linear solution from Sec. 3.1 can
be used as an initial guess to estimate the different initial minimal parameteriza-
tions. Once the correct parameters of the initial model have been found they can
be optimized by reinforcing the constraints and minimizing the Gold standard
error (maximum likelihood estimator) with the Gauss-Helmert algorithm [9].
This algorithm finds a local optimum of the constrained least-square problem

arg min
x,p
‖x− x0‖2 s.t. f(x, p) = 0, g(p) = 0 (18)

by linearizing at each iteration the constraints f and g. The variables in vector
x0 are the observations, in p the parameters to optimize and in x the variables
fitting the model, i.e., verifying f .

In the 3-view or 2-view models, the observations x0 correspond to the match-
ing image points and the main constraints f are the trilinearities and epipolar
equations. In Table 1 the parameters and constraints to use for each minimal
parameterization are summarized, as well as the ones to use to optimize a fun-
damental matrix.

3.3 Optimization with Bundle Adjustment

A common last step in pose estimation is a refinement of the orientations by
Bundle Adjustment. It minimizes the square reprojection error over the possible
cameras orientations and space points: For N correspondences and M = 3 cam-
eras,

min
{Rj ,tj}j ,{Xi}i

ε2 ε2 =

N∑
i=1

M∑
j=1

d(xij ,Kj(RjX
i + tj))

2, (19)



Table 1: Parameters and constraints to use in the Gauss-Helmert algorithm for
the different minimal parameterizations of the 3-view model and the 2-view
model.

parameterization p # f g #

Ressl si, mi, ni

e31, v, w
20 (2) ‖(s1, s2, s3)‖ = 1,

‖e31‖ = 1
2

Nordberg T̃, U, V,W 19 (2) ‖T̃‖ = 1 1

Faug.-Papad. T 27 (2) |Ti| = 0, (10) 12

Ponce-Hebert Πi 21 (11)–(14) ‖Πi‖ = 1 3

Fundamental F21 9 (3) ‖F21‖ = 1, |F21| = 0 2

with xij the homogeneous coordinates of the observed image point. The distance d
is the Euclidean distance of points expressed in homogeneous coordinates:

d
(

(x, y, z)
>
, (t, u, v)

>
)2

=

(
x

z
− t

v

)2

+
(y
z
− u

v

)2
. (20)

The optimization can be carried out by the Levenberg-Marquardt algorithm [5].

4 Experiments and Discussion

We implemented and evaluated the results of the pose estimation for synthetic
and real data using the trifocal tensor and also using the fundamental ma-
trix. 1 In the first case, we compute the tensor linearly (TFT-L) and applying a
Gauss-Helmert optimization with the minimal parameterizations of Ressl (TFT-
R), Nordberg (TFT-N), Faugeras and Papadopoulo (TFT-FP) and Ponce and
Hebert (TFT-PH). For the fundamental matrix we compute it linearly (F-L) and
with a Gauss-Helmert optimization (F-O). One last result is represented for the
minimum found by the bundle adjustment (BA) initialized by any of the other
methods. Indeed, we found that all the initializations gave the same final pose
after the minimization in almost all our experiments, an important observation
of our tests that we discuss later.

4.1 Synthetic Data

We tested the trifocal tensor and the fundamental matrix pose estimation on
synthetic data for different configurations The standard scene for our experi-
ments is composed of a set of space points contained in a cube of side 400mm
centered at the world’s origin (see Fig. 1). Points are projected onto three views
and Gaussian noise is added to the image points with σ = 1 pixel, if not stated

1 The Matlab code to reproduce these experiments is available at the GitHub repos-
itory https://github.com/LauraFJulia/TFT_vs_Fund.git.

https://github.com/LauraFJulia/TFT_vs_Fund.git


otherwise. A sample of 12 points is used for the computations of the different
models. The image size is 1800×1200 pixels, corresponding to a 36mm×24mm
sensor and the focal length is set to 50mm. The cameras all point at the origin.
Results are averaged over 20 simulations of data.

y
C1 = (0,−1400, 400)

C2 = (−400,−1000, 0)

C3 = (600,−800,−200)

x

z

-200 200

200

Fig. 1: Synthetic data.

The angular error in the estimated rotations and translation directions against
Gaussian noise level added to the data points is shown in Fig.2. The experiments
reveal that the pose estimation based on the trifocal tensor is consistently more
accurate than the fundamental matrix pose estimation. All different methods op-
timizing the trifocal tensor with a minimal parameterization manage to improve
the initial linear solution and end up in the same minimum. In the same way, the
optimization of the fundamental matrix decreases the error of the linear solu-
tion. All these improvements, while clear, have no consequence on the minimum
found by the bundle adjustment, which is reached even when initialized by the
simplest method (F-L). Also in Fig. 2, a plot of the computational time spent on
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Fig. 2: Average errors for rotations (-R) on the left, for translation directions (-t)
on the center, and computational time on the right, when varying the Gaussian
noise added to the image points.



each initial estimation is shown.2 As expected, linear methods (TFT-L, F-L) are
faster than methods involving optimization, since the former are prerequisites
for initialization of the latter. However, from the latter group, the fastest one is
F-O, which involves two consecutive optimizations for two fundamental matrices.

Figure 3 tests the effect of changing the number of corresponding points
used for the pose estimation. It shows how the fundamental matrix is much
more affected by using a minimal set of correspondences than any trifocal tensor
estimators but TFT-FP. The Faugeras-Papadopoulo minimal parameterization
not only fails to improve the pose given by the linear estimation of the tensor
for the minimal set of 7 correspondences but it returns a much worse estimation.
For initial sets of more than 7 triplets, however, it performs as well as the other
TFT methods. For sets with more than 15 triplets, all models start to stabilize.
On the time plot in Fig. 3 we can see that linear methods maintain a constant
computation time while optimization methods increase linearly with the number
of initial points used.
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Fig. 3: Average angular errors for rotations (-R) on the left, for translation direc-
tions (-t) on the center, and computational time on the right, when the number
of corresponding points is varied.

Long focal lengths are known to make difficult the camera pose estimation
with the fundamental matrix. We studied the effect of increasing the focal length
of our synthetic scene (while also proportionally getting the cameras farther
away from the point cloud and from each other). Figure 4a shows that even
if all methods get worse results in a similar way, the methods based on the
fundamental matrix have an unstable higher increase of iterations for the bundle
adjustment to converge after f = 200mm. Still, the final estimation remains the
same, whatever the initialization method.

In all these experiments, all TFT-based methods generally give the exact
same results, showing the equivalence of all parameterizations. However, there is

2 based on the Matlab code run on an Intel Xeon E5-2643 CPU at 3.3 GHz with
192 GB of RAM.
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Fig. 4: On the left (a), average number of iterations needed in bundle adjust-
ment to reach a minimum for different focal lengths. On the right (b), average
reprojection error of the pose estimation when making camera centers collinear.

a degenerate case specific for the Ponce-Hebert and Nordberg parameterizations:
collinear camera centers. Alongside all the previously presented methods, we
implemented and tested the collinear parameterization of the Πi matrices given
by Ponce and Hebert (TFT-PH(Col)). We tested all methods gradually moving
the camera centers of the scene in order to make them align. The measure of

collinearity is the angle Ĉ2C1C3 (180◦ when collinear). Figure 4b shows the
reprojection error, that is the error minimized in (19), with the estimated poses,
for 100 points not used in the estimation. The results show an increasing accuracy
on the collinear method, starting to be comparable to the others at 176◦, the
same point where the non-collinear parameterizations suffer a jump on the error,
much greater for TFT-N than for TFT-PH. After 178◦ the initial poses given by
the non-collinear parameterizations are no longer able to find the right minimum
through bundle adjustment.

Based on these results and the instability of the Faugeras-Papadopoulo pa-
rameterization with a minimal set of initial points, the trifocal tensor param-
eterization of Ressl seems to be the most robust to degenerate scenes and the
most recommended for pose estimation using the TFT.

4.2 Real Datasets

To evaluate the performance of these methods in real settings, we chose to use
two scenes from the EPFL dense multi-view stereo test image datasets [16] that
come with a reliable ground truth. These datasets consist of images of size
3072×2048 pixels taken with a 35mm equivalent focal length. The first scene
is the fountain-P11 dataset which has 11 images. We tested 70 of the possible
image triplets and the averages of the results are shown in Table 2. The second
scene is the Herz-Jesu-P8 dataset which consists of 8 images, from which we
tested 50 possible image triplets. The averages of the obtained errors are shown



in Table 3. For each triplet of images and method tested, the pose estimation is
computed from a set of Ninit = 100 triplets of correspondences chosen randomly
from the total N inlier correspondences. The bundle adjustment optimization
is carried out using a subset of NBA = 50 correspondences from the initial set.
The reprojection error,

√
ε2/(M N) in (19), is evaluated on all N inliers.

Table 2: Average results over 70 triplets of images (one such triplet is shown)
from the EPFL fountain-P11 dataset.

repr. error (px) R error (◦) t error (◦) init. time (s) iter. BA

TFT-L 2.395 0.125 0.405 0.063 3.81

TFT-R 2.047 0.116 0.400 2.037 3.83

TFT-N 2.133 0.133 0.403 1.896 3.86

TFT-FP 2.365 0.119 0.403 2.063 3.84

TFT-PH 2.122 0.117 0.401 1.824 3.84

F-L 1.967 0.115 0.372 0.043 3.77

F-O 1.953 0.113 0.366 0.908 3.80

BA 0.281 0.064 0.074

Table 3: Average results over 50 triplets of images from the EPFL Herz-Jesu-P8
dataset.

repr. error (px) R error (◦) t error (◦) init. time (s) iter. BA

TFT-L 4.806 0.459 0.871 0.062 4.06

TFT-R 3.479 0.397 0.668 1.591 4.00

TFT-N 4.093 0.540 0.692 1.480 4.04

TFT-FP 4.506 0.446 0.833 1.887 4.06

TFT-PH 4.306 0.421 0.672 1.249 4.00

F-L 3.762 0.414 0.772 0.040 4.00

F-O 3.650 0.420 0.765 0.858 4.02

BA 0.372 0.063 0.068

On the one hand, the results confirm that Ressl’s parameterization is the
most robust and better performing of all TFT-based methods getting the small-
est error in all metrics. On the other hand, Nordberg’s parameterization fails
to improve the linear estimation since it gets a higher angular error in rota-
tion. This might be due to the near-collinearity of some triplets (2 triplets in
fountain-P11 and 4 in Herz-Jesu-P8 have a maximum angle between camera cen-



ters greater than 175◦) which can cause great instability in the pose estimation
of this methods as seen in the synthetic experiments (Fig. 4b).

We also notice how the fundamental-based methods get comparable results
or even outperform the TFT-based methods in both datasets. What is more,
they achieve it with less initial computation time and a similar average number
of iterations to converge to the minimum in the bundle adjustment (two last
columns of Tables 2 and 3).

In fact, all methods manage to reach the same minimum in the bundle adjust-
ment optimization with around 4 iterations on average. The difference between
the errors corresponding to the optimum reached and the errors from any method
is much greater than the difference in the errors of the optimization-based meth-
ods and the linear methods. Therefore, one can conclude that the advantage of
using an optimization to reinforce the constraints or minimal parameterization
of the model before carrying out a bundle adjustment is negligible. The other
lesson is that the bundle adjustment, even if performed with a small subsets of
points for reduced computation time, is highly beneficial according to all error
metrics.

Although not all known parameterizations of the trifocal tensor were covered
by our tests, they all involve non-linear constraints admitting no closed form
solution. As a consequence, they require also an initialization phase through
the linear estimation of Sect. 3.1 and the possible initial benefits in terms of
reduced error are likely to be erased by the bundle adjustment; the extra com-
putation time would not make them advantageous alternatives to the standard
fundamental matrix computation.

5 Conclusion

We reviewed methods of estimation of trifocal tensor and of the pose of three
views. Compared with the pose estimation obtained by the fundamental ma-
trices from the pairs of views, our experiments show that the trifocal tensor
does not offer enough improvement to be considered the preferred choice. By
its simplicity and lower computation time, the recommended option is to con-
sider only pairwise constraints through the fundamental matrix, provided some
bundle adjustment is used at the end (which is also highly recommended, as
it can routinely decrease the error by a significant factor). In other words, the
only usage of points viewed in image triplets, in the initialization phase of that
approach, is to determine the relative scales of translations. Still, it would be
interesting to study whether the use of the trifocal tensor improves results when
n > 3 views are considered. However, in such a multi-view stereo pipeline, the
way the image pairs and triplets are integrated is likely to have a preponderant
importance. This research brought also another issue to our attention: observing
that the bundle adjustment optimization is able to reach a correct minimum,
even when starting from a far initial position, motivates us to study in future
work the possible extended local convexity of the minimized energy.
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