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Abstract 

Origami tessellations are particular textured morphing shell structures. Their unique folding and 

unfolding mechanisms at a local scale aggregate and bring on large changes in shape, curvature and 

elongation at a global scale. The existence of these global deformation modes allows for origami 

tessellations to fit non-trivial surfaces. This paper characterizes the parametrization, curvature and 

metric of smooth surfaces that the eggbox pattern can fit asymptotically, i.e., when the eggbox unit cell 

parameter becomes infinitely small compared to the typical radius of curvature of the target surface. In 

particular, it is demonstrated that no finite region of a sphere can be fitted and a systematic method that 

allows to fit ruled surfaces is presented. As an application, the fitting of a one-sheeted hyperboloid is 

constructed. 

Keywords: Origami, metasurface, form finding, floppy modes, eggbox. 

1. Introduction 

Structured materials inspired from the art of paper folding, Origami, have proven useful in various fields 

spanning architecture, structural, aerospace and biomedical engineering as well as elastic and acoustic 

wave motion and control (see, e.g., Hochfeld [6],  Miura [7] and Resch and Christiansen [9]). Origami 

tessellations in particular offer numerous possibilities for the design of morphing shell structures. Their 

intricate folding and unfolding mechanisms are organized on both local and global scales and are capable 

of bringing on large deformations and considerable changes in shape, curvature and elongation. These 

global deformation modes allow origami tessellations to fit non-trivial curved surfaces even when they 

are made of an inextensible material, such as paper.  

When no folds are allowed, Euler [3] proved early that paper may only fit developable surfaces. The 

case of weavings as well as gridshells was investigated by Chebyshev [2,4]. Falling out of these contexts, 

origami tessellations require a specific analysis on their own. In the present work, we suggest an 

upscaling method which yields a macroscopic continuous description of the global deformation modes 

of a given origami tessellation fully detailed by the authors in reference [8]. The method characterizes 

the parametrization, metric and curvature of smooth surfaces that the discrete structure can fit. The 

theory is presented through a case study of a fairly generic example: the eggbox pattern (Schenk [10]). 

The proposed continuous model successfully predicts the existence of various fittings featuring large 

and finite changes in metric and curvature. In particular, we prove that the eggbox cannot fit any finite 

region of a sphere and present a systematic method that allows to fit any ruled surface. 



Proceedings of the IASS Annual Symposium 2017 

Interfaces: architecture.engineering.science 
 

 

 2 

2. The eggbox as a discrete structure 

The eggbox is a pyramidal truss where the orientation of the pyramids is alternated in a checkerboard 

pattern (Figure 1). Vertices are assumed to behave like pivots whereas edges are taken to be rigid. 

Though not an origami strictly speaking, the eggbox can be described by the same spherical joints 

mechanisms that govern origami. In that picture, facets are considered to be made of an inextensible 

material such as paper and edges are freely rotating hinges modeling creases. For our purposes, the truss 

model will prove more useful and is adopted in what follows. Also, for simplicity, we take all pyramids 

to be initially square-based with equilateral lateral facets. As a consequence, all edges are identical and 

keep a constant length 𝑟. 

2.1. One pyramid 

Before tackling complex constructs, it is wise to describe the elementary mechanism governing a single 

pyramid. Looking at Figure 2, it is seen that the position of the bipod (𝑢, 𝑣) controls unambiguously, up 

to orientation, the position of the whole pyramid. While 𝑢 and 𝑣 must be of length 𝑟, the unique 

deformation parameter at play is the angle 𝜃 given by cos 𝜃 = 〈𝑢, 𝑣〉/𝑟2 , 𝜃 ∈ [0,2𝜋/3]. Let us also 

define 𝑤 and 𝑤∗as the vectors initially placed on the diagonals of the pyramid basis and moving with 

the vertices in any subsequent motion. Clearly, 𝑤 = 𝑢 − 𝑣 whereas 𝑤∗ = 𝑤∗(𝑢, 𝑣) has a more complex 

expression that should not interest us here. Together with the pyramid’s apex, 𝑤 and 𝑤∗ form two 

isosceles triangles of heights 𝑟√1 − 𝑠2 and 𝑟√1 − 𝑠∗2, respectively, where 2𝑟𝑠 and 2𝑟𝑠∗ are the 

respective magnitudes of 𝑤 and 𝑤∗. Due to mirror symmetry, these two triangles belong to two 

orthogonal planes. Thus, injecting the apex of the pyramid into the dot product 〈𝑤, 𝑤∗〉 = 0 using 

Chasles’ relation readily implies the identity 

4(1 − 𝑠2)(1 − 𝑠∗2) = 1. 

Here too, due to our favoring one side over the other in choosing 𝑢 and 𝑣, 𝑠 admits a simple expression 

in terms of 𝜃, namely 𝑠 = sin(𝜃/2), but 𝑠∗ does not and needs to be deduced from the previous identity 

relating 𝑠 and 𝑠∗. In any case, we see that as 𝑠 increases, 𝑠∗ decreases and both remain comprised 

between 0 and √3/2. 

Concluding these preliminaries, a pyramid can be described, we say parametrized, by the giving of either 

one of the bipods (𝑢, 𝑣) or (𝑤, 𝑤∗). In case the latter is adopted, one needs to be careful choosing 

Figure 1: An eggbox in its reference state: (a) top view, (b) isometric view, (c) corner side view as indicated by 

the arrow. 
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compatible vectors 𝑤 and 𝑤∗ by making sure that they satisfy both necessary conditions given above, 

i.e., orthogonality and magnitude identity. 

2.2. 𝑵 × 𝑵 pyramids 

Now consider an eggbox composed initially of a square of 𝑁 × 𝑁 pyramids and consider the pyramids 

laying at one of its diagonals, say the one with positively oriented pyramids, called 𝐷0 (Figure 3). On 

𝐷0, pyramid number 𝑚 is parametrized by a bipod (𝑢𝑚,0, 𝑣𝑚,0) and given the series of bipods 

(𝑢𝑚,0, 𝑣𝑚,0), 𝑚 = 1 … 𝑁, one should be able to reconstruct the whole diagonal 𝐷0. In doing so, one 

would have constructed the bipods (𝑢𝑚,1, 𝑣𝑚,1), 𝑚 = 1 … 𝑁 − 1, of the next diagonal 𝐷1. Hence, it is 

possible to construct all pyramids located on 𝐷1. By iterating this process, in both directions, and 

alternating the orientation of the pyramids at each step, all bipods (𝑢𝑚,𝑛, 𝑣𝑚,𝑛) can be constructed. 

In conclusion, an 𝑁 × 𝑁 eggbox is uniquely parametrized by a series of 𝑁 bipods (𝑢𝑚,0, 𝑣𝑚,0) laying at 

its principal diagonal. That is, the motion of the principal diagonal determines unambiguously the 

motion of the whole eggbox. Note that we do not claim that any motion of the diagonal will be 

compatible with all of the geometric constraints within the eggbox but only that, in case it is, the dictated 

motion of the eggbox will be unique and unambiguous. In other words, an 𝑁 × 𝑁 eggbox has at most 

4𝑁 + 3 degrees of freedom. Finally, though it might be harder to visualize, we insist on the fact that it 

is equivalent to use the bipods (𝑤𝑚,0, 𝑤𝑚,0
∗ ) to parametrize the motion of the same eggbox. 

This algorithm was implemented in the language Python (libraries numpy and mayavi) and used to 

generate the 3D plots of this paper. 

3. The eggbox as a smooth surface 

3.1. Periodicity and scale invariance 

We say that the eggbox is periodic in the sense that it has a reference configuration that is invariant by 

two independent translations, 𝑤 and 𝑤∗. Integer combinations of 𝑤 and 𝑤∗ will be referred to as lattice 

vectors. Note that the eggbox is not invariant by translation along 𝑢 and 𝑣. 

Here, it is worth mentioning that the construction algorithm we described in the previous section still 

works even if the eggbox was not periodic, i.e., even if some of the pyramids were distorted. In contrast, 

the considerations of this section are deeply rooted in the periodicity assumption. 

In what follows, our aim is to describe the smooth surfaces that an eggbox can fit in the limit 𝑟 → 0. It 

is not clear however what that limit corresponds to physically since the eggbox has scale-invariant 

kinematics: if 𝑉 is a set of points that can be occupied by the vertices of an eggbox of edge size 𝑟 then 

𝛼𝑉 is a set of points that can be occupied by the vertices of an eggbox of edge size 𝛼𝑟, 𝛼 > 0. This 

means that the eggbox has no internal characteristic length scale compared to which 𝑟 will be infinitely 

small. Luckily, the target smooth surface typical radius of curvature 𝑅 still provides an external 

characteristic length scale and the limit 𝑟 → 0 is to be understood as 𝑟/𝑅 ≪ 1. 

Figure 2: A pyramid: (a) notations, (b) unique deformation mode. 
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3.2. Parametrization 

Let 𝑆 be a smooth surface that the eggbox asymptotically fits. We describe this surface through a 

parametrization 𝜙: ℝ2 → 𝑆 ⊂ ℝ3 so that when (𝑥, 𝑦) moves through ℝ2, 𝜙(𝑥, 𝑦) moves through 𝑆. 

With no loss of generality, we let 𝑥 and 𝑦 respectively be the coordinates along 𝑤 and 𝑤∗in the reference 

configuration. 

Derivatives of 𝜙 in the 𝑥 and 𝑦 directions, called 𝜙𝑥 and 𝜙𝑦, yield tangent vectors to 𝑆 and their scalar 

products define the metric, also called the first fundamental form, of 𝑆: 

𝐼 =  [
〈𝜙𝑥 , 𝜙𝑥〉 〈𝜙𝑥 , 𝜙𝑦〉

〈𝜙𝑥 , 𝜙𝑦〉 〈𝜙𝑦, 𝜙𝑦〉
]. 

Their normalized cross product, �̂�, is then normal to 𝑆 and allows to define the second fundamental form 

𝐼𝐼 =  [
𝐿 𝑀
𝑀 𝑁

] = [
〈𝜙𝑥𝑥 , �̂�〉 〈𝜙𝑥𝑦, �̂�〉

〈𝜙𝑥𝑦, �̂�〉 〈𝜙𝑦𝑦, �̂�〉
]. 

The curvatures in the directions 𝑥 and 𝑦 are then given by 

𝜅1 = 𝐿/‖𝜙𝑥‖2, 𝜅2 = 𝑁/‖𝜙𝑦‖
2

. 

See Ciarlet [1] for more details and for an introduction to the differential geometry of surfaces. 

The fact that 𝑆 can be asymptotically fitted by an eggbox yields a couple of identities that the forms 𝐼 

and 𝐼𝐼 must satisfy and are presented next. 

3.3. Convergence 

Before going any further, we need to agree on a definition of the convergence process. A poor definition 

of convergence is to require that the vertices of the eggbox indefinitely approach the points of 𝑆. Here, 

we demand much more: that equal lattice vectors converge to equal tangent vectors and that differences 

Figure 3: Illustration of the construction algorithm: given 𝐷0, 𝐷1 is uniquely determined. 
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between lattice vectors converge to derivatives of tangent vectors. This amounts to stating that as the 

eggbox fits 𝑆 asymptotically, it also fits its tangent planes and its osculating parabolas. 

More precisely, let 𝑃 be a point of 𝑆 of coordinates (𝑥, 𝑦). Then, let 𝑤𝑚,𝑛(𝑥, 𝑦) and 𝑤𝑚,𝑛
∗ (𝑥, 𝑦) designate 

all lattice vectors of the fitting that are in a neighborhood 𝜈 of radius 𝜌 centered on 𝑃. As 𝑟 goes to 0, it 

is possible to choose 𝜌 such that 𝑟 ≪ 𝜌 ≪ 𝑅 so that 𝜈 contains a significant number of pyramids of order 

𝑁 × 𝑁 with 𝑁 comparable to 𝜌/𝑟. Then, regarding first order derivatives, we have 

𝑤𝑚,𝑛(𝑥, 𝑦) = 𝑟𝜙𝑥(𝑥, 𝑦) + 𝑜(𝑟), 𝑤𝑚,𝑛
∗ (𝑥, 𝑦) =  𝑟𝜙𝑦(𝑥, 𝑦) +  𝑜(𝑟). 

Therefore, the 𝑁 × 𝑁 pyramids in the vicinity of 𝑃 are, to leading order in 𝑟, in a periodic configuration 

since all vectors 𝑤𝑚,𝑛(𝑥, 𝑦) (respectively 𝑤𝑚,𝑛
∗ (𝑥, 𝑦)) are equal to one another and to 𝑟𝜙𝑥(𝑥, 𝑦) 

(respectively 𝑟𝜙𝑦(𝑥, 𝑦)). It turns out that the eggbox admits such periodic configurations (other than its 

reference one). They are illustrated on Figure 4 and describe a flat-folding motion of the eggbox. Each 

periodic configuration is uniquely designated by the folding angle 𝜃 which is the same for all the 

pyramids. These periodic states can be constructed by initiating our construction algorithm with 𝑤𝑚,0 =
𝑟𝜙𝑥(𝑥, 𝑦) and 𝑤𝑚,0

∗ = 𝑟𝜙𝑦(𝑥, 𝑦), 𝑚 = 1 … 𝑁. In conclusion, the folding angle 𝜃(𝑥, 𝑦) at 𝑃 can be 

unambiguously defined through ‖𝜙𝑥‖ = 2𝑠 = 2sin (𝜃/2). We then also deduce that 

𝐼 =  [4𝑠2 0
0 4𝑠∗2], 

where dependence on (𝑥, 𝑦) has been dropped. 

Regarding second order derivatives, convergence requires 

𝑤𝑚+1,𝑛(𝑥, 𝑦) − 𝑤𝑚,𝑛(𝑥, 𝑦) =  𝑟2𝜙𝑥𝑥(𝑥, 𝑦) +  𝑜(𝑟2), 

𝑤𝑚,𝑛+1
∗ (𝑥, 𝑦) − 𝑤𝑚,𝑛

∗ (𝑥, 𝑦) =  𝑟2𝜙𝑦𝑦(𝑥, 𝑦) +  𝑜(𝑟2), 

𝑤𝑚,𝑛+1(𝑥, 𝑦) − 𝑤𝑚,𝑛(𝑥, 𝑦) =  𝑟2𝜙𝑥𝑦(𝑥, 𝑦) +  𝑜(𝑟2). 

It appears then that the periodic states of the eggbox are being infinitesimally perturbed. This 

perturbation is not arbitrary but rather uniform across the 𝑁 × 𝑁 pyramids. Yet our construction 

algorithm informs us that it is enough to know how the principal diagonal is perturbed to determine how 

the whole structure changes implying that 𝜙𝑥𝑥, 𝜙𝑦𝑦 and 𝜙𝑥𝑦 must satisfy some compatibility relation. 

Starting with an arbitrary periodic state and adding a uniform infinitesimal perturbation, it can be 

concluded that this compatibility relation is 

𝐿

1 − 𝑠2
=

𝑁

1 − 𝑠∗2
. 

See Nassar et al. [8] for more details. 

3.4. The fitting problem 

We are now ready to formulate the fitting problem on the macroscopic scale. 

Figure 4: Flat-folding motion of the eggbox. 
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Let 𝑆 be a smooth surface that can be asymptotically fitted by an eggbox. Then there exists a 

parametrization 𝜙 in which the first and second fundamental forms of 𝑆 read 

𝐼 =  [4𝑠2 0
0 4𝑠∗2] , 𝐼𝐼 =  [

𝐿 𝑀
𝑀 𝑁

], 

with 

𝑠, 𝑠∗ ∈]0, √3/2[, 4(1 − 𝑠2)(1 − 𝑠∗2) = 1,
𝐿

1 − 𝑠2
=

𝑁

1 − 𝑠∗2
.  (∗) 

In particular, using the frame equations, it is deduced that 𝜙 must satisfy the nonlinear vector wave 

equation 

𝜙𝑥𝑥

1 − 𝑠2
−

𝜙𝑦𝑦

1 − 𝑠∗2
= 0 

where, say, 𝑥 plays the role of space and 𝑦 the role of time. This result is the continuous version of our 

construction algorithm: by prescribing the “initial data” 𝜙𝑥(𝑥, 0) and 𝜙𝑦(𝑥, 0), a unique fitting can be 

constructed by solving the above motion equation with an iterative scheme for instance. 

Once a fitting 𝜙 is found, its discrete counterpart can be constructed by initiating the construction 

algorithm with 𝑤𝑚,0 = 𝑟𝜙𝑥(𝑚𝑟, 0) and 𝑤𝑚,0
∗ = 𝑟𝜙𝑦(𝑚𝑟, 0) for a small discretization step 𝑟. 

4. Examples 

Here, we exploit our results to describe how a few surfaces of interest, such as spheres and ruled 

surfaces, can or cannot be fitted. 

4.1. Local fittings and spheres 

Can any smooth surface be locally fitted by an eggbox? Locally, a smooth surface is characterized by 

its Gaussian curvature 𝐾 and its mean curvature 𝐻. In the parametrization 𝜙, these are given by 

𝐾 =
𝐿𝑁 − 𝑀2

16𝑠2𝑠∗2
, 𝐻 =

1

2
(

𝐿

4𝑠2
+

𝑁

4𝑠∗2
). 

Thus, 𝑆 can be locally fitted if and only if we can find real numbers (𝑠, 𝑠∗, 𝐿, 𝑀, 𝑁) that yield 𝐾 and 𝐻 

through the above equations while satisfying (∗). 

A solution (𝑠, 𝑠∗, 𝐿, 𝑀, 𝑁) can be constructed in the following manner. Letting 

2𝐴 =
𝐿

1 − 𝑠2
=

𝑁

1 − 𝑠∗2
, 𝑎 = 16𝑠2𝑠∗2 > 0, 𝑏 =

1 − 𝑠2

4𝑠2
+

1 − 𝑠∗2

4𝑠∗2
> 0, 

the equations to solve simply become 

𝐾 =
𝐴2 − 𝑀2

𝑎
, 𝐻 = 𝑏𝐴  

and can be inverted into 

𝐴 =
𝐻

𝑏
, 𝑀 = √

𝐻2

𝑏2
− 𝑎𝐾 

as long as we can find a value of 𝑠 such that 𝐻2/𝑏2 – 𝑎𝐾 ≥ 0, i.e., 1/(𝑎𝑏2 ) ≥ 𝐾/𝐻2. Note that since 

𝐾 and 𝐻 correspond to the determinant and half the trace of a symmetric matrix, the ratio 𝐾/𝐻2 is never 

larger than 1. Then, inspecting 1/(𝑎𝑏2) as a function of 𝑠, by plotting it numerically for instance, it is 
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seen that it increases from 0, at (𝑠 = 0, 𝑠∗ = √3/2, 𝜃 = 0), to 1, at  (𝑠 = √2/2, 𝑠∗ = √2/2, 𝜃 = 𝜋/2) 

and decreases back to 0, at (𝑠 = √3/2, 𝑠∗ = 0, 𝜃 = 2𝜋/3). 

In conclusion, there are three scenarios. 

 If 𝐾/𝐻2 < 0, i.e., for surfaces of negative Gaussian curvature, then any value 𝜃 ∈]0,2𝜋/3[ can 

achieve the local fitting. 

 If 0 ≤ 𝐾/𝐻2 < 1, then there exists an interval of values [𝜃1, 𝜃2] any of which can achieve the 

local fitting. This interval shrinks as 𝐾/𝐻2 increases. 

 If 𝐾/𝐻2 = 1, then there exists a unique value of 𝜃 that can achieve the local fitting, namely 

𝜃 = 𝜋/2. 

Note that these fittings are local and are only valid in the immediate vicinity of a given point 𝑃 of 𝑆. In 

other words, the fitting error will generally grow indefinitely as we move away from 𝑃. Even though 

we just proved that any smooth surface can be locally fitted by an eggbox, the existence of a global 

fitting, i.e., where the fitting error remains bounded and small across all of 𝑆, is a whole different story. 

In fact, a corollary to our discussion is that the eggbox cannot fit any finite region of a sphere for which 

𝐾/𝐻2 = 1. To see why, recall that such a fitting requires 𝜃 be a constant equal to 𝜋/2. This implies that 

the metric is a constant and that Gaussian curvature is 0 clearly in violation of 𝐾/𝐻2 = 1. 

4.2. Ruled surfaces 

A rather simple method for fitting ruled surfaces can be derived by letting 𝜃 indefinitely approach 0: 

𝜃(𝑥, 𝑦) = 𝛿𝜃0(𝑥, 𝑦), 𝛿 → 0. 

In that limit, 𝑠 approaches 0 as well whereas 𝑠∗ approaches √3/2. Thus, to avoid the appearance of a 

singular metric, we introduce a new coordinate system 𝑋 = 𝑥/𝛿, 𝑌 = 𝑦 so that, in the limit, the first and 

second fundamental forms become 

𝐼 =  [4𝑠0
2 0

0 3
] , 𝐼𝐼 =  [

𝐿0 𝑀0

𝑀0 0
]. 

These fundamental forms describe exactly all ruled surfaces. Note that 𝜙𝑌 which is aligned with 𝜙𝑦 is 

in the direction of the generatrix whereas 𝜙𝑋, parallel to 𝜙𝑥, is orthogonal to the generatrix. 

As an example, we construct the fitting of a one-sheeted hyperboloid 𝑆, say that of equation 𝑧3
2 + 1 =

𝑧1
2 + 𝑧2

2, (𝑧1, 𝑧2, 𝑧3) ∈ ℝ3. In a first step, we look for a curve 𝛹(𝑥) that belongs to 𝑆 and is orthogonal 

to the generatrix at all of its points. One such a curve is 

𝛹(𝑥) =
1

2
(𝑥 cos 𝑥 − 2 sin 𝑥 , 𝑥 sin 𝑥 + 2 cos 𝑥 , 𝑥 ). 

The corresponding tangent vectors aligned with 𝛹 and the generatrix respectively are 

𝑊(𝑥) =
1

2
(−𝑥 sin 𝑥 − cos 𝑥 , − sin 𝑥 + 𝑥 cos 𝑥 , 1), 𝑊∗(𝑥) =

1

√2
(cos 𝑥 , sin 𝑥 , 1). 

In a second step, we re-parametrize path 𝛹 using a small parameter 𝛼 in the spirit of the asymptotics 

presented above for ruled surfaces. Thus, we let 

𝜓(𝑥) =  𝛹(𝛼𝑥), 𝑤(𝑥) = 𝛼𝑊(𝛼𝑥), 𝑤∗(𝑥) = 2𝑠∗𝑊∗(𝛼𝑥), 

with 𝑠 = ‖𝑤‖/2 and 𝑠∗ = 𝑠∗(𝑠) as always. Third, let 𝑟 be the edge size of the fitting pyramids chosen 

small compared to the typical radius of curvature of 𝑆, say 𝑟 = 0.1. In the fourth and last step, we 

initialize our construction algorithm with the initial data 𝑤𝑚,0 = 𝑟𝑤(𝑚𝑟) and 𝑤𝑚,0
∗ = 𝑟𝑤∗(𝑚𝑟), for 𝑚 

spanning the integers between 0 and 2𝜋/(𝛼𝑟). 
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The resulting fitting is shown on Figure 5 for 𝛼 = 0.2 and 𝑥 ∈ [– 𝜋/𝛼, 𝜋/𝛼] so that all generatrices are 

spanned. Improving the quality of the fitting requires considering smaller values of 𝑟 and of 𝛼 whereas 

extending it requires taking larger 𝑥 intervals. 

5. Conclusion 

It is of interest to study other pin-jointed trusses and origami tessellations using the theory exemplified 

here. It turns out that Nexorades [5] as well as Ron Resch patterns [9,11] may only fit developable 

surfaces asymptotically. The method could benefit from improvements especially by taking boundary 

layers into account. These develop over length scales comparable to the unit cell parameter and thus 

necessarily escape the present approach. The importance of boundary layers in describing the kinematics 

of origami tessellations is perhaps best understood through the example of the Ron Resch pattern: it can 

only fit developable surfaces in the homogenization limit and yet can acquire significant positive 

Figure 5: Fitting of a one-sheeted hyperboloid: (a) the target hyperboloid is in gray and the fitting's mean surface 

(pyramids bases only) is in blue; (b) the fitting with unmarked edges; (c) a closeup look at the region surrounded 

by a dashed rectangle in (b) with edges marked in black. Edges belonging to the diagonal 𝐷0 with which the 

algorithm was initiated are highlighted in red. 
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curvatures through large deformations that initialize on the boundaries of any finite sample and remain 

localized at the unit cell scale. 
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