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Abstract

In the present paper, the influence of periodic gaps between lamellas of Cross Laminated Timber (CLT) on the panel’s elastic
behavior is analyzed by means of a periodic homogenization scheme for thick plates having periodic geometry. Both small gaps,
due to the fabrication process of not-gluing lateral lamellas, and wider gaps are investigated. The results obtained with the periodic
homogenization scheme are compared to existing closed-form solutions and available experimental data. It appears that the plate
bending stiffness can be well predicted with both homogenization and simplified methods, while only the homogenization approach
is in agreement with the experimental in-plane and out-of-plane shear behavior. The influence of several properties of CLT lay-up
on the mechanical response is pointed out as well.
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1. Introduction

Cross Laminated Timber (CLT) panels are engineered wood
products with a market share in construction that has sharply in-
creased during the last decade. They consist in lumber layers
stacked and glued crosswise. Each layer has a thickness be-
tween 6 and 45 mm in Europe [1] and between 16 and 51mm in
North America [2]. The total thickness of commercial products
is usually up to 300 mm, while the span and the width can be up
to 15 m and 3 m. Their thick and orthogonal structure allows the
application of such panels as full size walls or floors. The ease
of assembly between panels and their low weight allows pre-
fabrication, reducing construction times. The low environmen-
tal impact and high mechanical performance of CLT encourage
their use in modern residential and commercial buildings in-
stead of mineral-based materials such as concrete or masonry,
as highlighted recently in a comprehensive state-of-the-art re-
port [3].

Each layer of CLT is made of lamellas placed side by side
and glued on their upper and lower faces. The lamellas may
be also glued or not on their narrow edges, depending on the
fabrication process. In the non-glued case, each layer features
gaps between lamellas (Figure 1a). The recent European [1]
and North-American [2] standard requirements for CLT allow
the not-gluing of lateral lamellas (gaps allowed up to 6 mm
in [1]). However, several experimental and numerical studies
have pointed out the non-negligible influence of the gaps on
the mechanical response. Indeed, dealing with the out-of-plane
behavior, the studies of Hochreiner et al. [4], Flores S. et al.

[5], Franzoni et al. [6] have shown that the presence of small
gaps reduces the strength of cross layers, while the influence on
the global bending stiffness is low. Furthermore, the effects of
small gaps are significant on CLT in-plane shear and torsional
stiffness. This was shown experimentally by Brandner et al. [7]
and Sebera et al. [8], who observed a reduction of the stiffness
of laterally unglued CLT. In order to predict the reduced in-
plane shear stiffness due to unglued narrow edges, a simplified
closed-form solution was developed by Moosbrugger et al. [9]
and Bogensperger et al. [10]. This method is a simpler approach
than a more rigorous closed-form modeling [11] but it returns a
good approximation [12]. However, for gaps up to 5 mm such
closed-form solution deviates from the experimental evidence,
as pointed out by Brandner et al. [7]. The actual influence of
small lateral gaps on CLT mechanical response is still to be de-
termined and a reliable model for predicting the effects on the
out-of-plane shear behavior is still missing.

Additionally, innovative lighter timber panels can be ob-
tained when increasing the gaps between lateral lamellas up to
hundreds of millimeters. The resulting space-frame like struc-
ture is a timber panel having regular voids along the two direc-
tions (Figure 1b) which can be filled by services or insulating
material. Such innovative panels show therefore an improved
acoustic and thermal efficiency, as well as better fire resistance,
as recent industrial fire tests has established. The insulating ma-
terial is less prone to falling and yields slower charring rates
than with CLT. Moreover, the low volume fraction of wood
within these panels allows a better exploitation of the raw ma-
terial. The development of such new engineered wood prod-
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(a)

(b)
Figure 1: (a) Cross Laminated Timber panels with small gaps up to 6 mm as
described in EN 16351 [1] and (b) innovative timber panels with large gaps

ucts is still limited because of the lack of knowledge about their
mechanical behavior. Indeed currently there are no specific de-
sign methods for these products. However, several simplified
design theories for standard panels exist. For instance, deal-
ing with out-of-plane loads, the shear analogy method [13] is
based on lamination theory for plates under cylindrical bending
and can return a good estimate of plate bending and shear force
stiffnesses. Such method can be extended to panels with large
gaps reducing the mechanical properties of wood by the ratio
wood/void within each layer, as Blass and Gorlacher [14] did
for the shear force stiffness of timber floors with regular gaps.
However, being a simplified approach, it has to be verified by
means of a comparison with a more accurate modeling. Con-
cerning in-plane shear, the closed-form solution of Moosbrug-
ger et al. [9] derived for CLT with small gaps may be extended
to larger gaps. This simplified approach has to be compared to
a more refined approach and to available experimental results.

The influence of small gaps on CLT behavior has been al-
ready studied by the authors in Franzoni et al. [6]. In this first
study, a discontinuous equivalent CLT layer has been defined
by means of simplifying hypotheses on the not-glued layer me-
chanical behavior. The simplified layer behavior was combined
with the exact 3D closed-form solution for laminates in bend-
ing [15] and the predicted results were in good agreement with
a reference test of the literature [4]. However, the actual effects
of small gaps on CLT behavior needed to be more accurately
investigated, especially the in-plane behavior. Moreover, a reli-
able method for the structural analysis of innovative panels with
large periodic gaps is still missing.

The aim of this paper is to study the influence of large and

small gaps between lateral lamellas on the mechanical behavior
of CLT and innovative panels by means of modeling and tests.
The modeling is based on a homogenization scheme handled
by a higher-order plate theory [16, 17]. This theory for thick
laminated plates, called the Bending-Gradient theory, was suc-
cessfully applied to highly anisotropic laminates under cylin-
drical bending with various material configurations [18]. The
Bending-Gradient theory was extended to plates having peri-
odic geometry by means of a homogenization scheme, that has
been successfully applied to sandwich panels [19] and beam
lattices [20]. In this paper, this theory is applied to CLT pan-
els having short or large periodic gaps within each layer. The
investigated elastic behavior is related to the out-of-plane and
torsional behavior of floors and to the in-plane shear behavior
of diaphragms or shear walls.

The paper is organized as follows: first, in Section 2, the
experimental out-of-plane and in-plane behavior of regularly
voided timber panels is presented. Then, in Section 3, the Bending-
Gradient plate theory, its related homogenization scheme and
their application to the case study are summarized. Finally,
Section 4 presents the comparison between the predicted and
experimental behavior.

2. Bending and in-plane shear tests of CLT and panels with
regular gaps

Few experimental studies on the mechanical behavior of
CLT with gaps are present in the literature. An experimental
campaign of 4-point bending tests was performed by the authors
and presented in this section. Moreover, the in-plane shear tests
conducted by Brandner et al. [7] are presented as well. Out-of-
plane loads (involving bending and shear force stiffness) and in-
plane shear loads are investigated since they represent the loads
involved in practice on floors and shear walls, respectively.

2.1. Out-of-plane behavior

The influence of gaps on the out-of-plane behavior was in-
vestigated by the authors by means of 4-point bending tests on
both standard CLT and innovative panels with gaps. The panels
were commercial products made from Norway spruce timber
with a moisture content between 8% and 14% [2].

The standard 5-ply CLT panel had a span L of 4.65 m, a total
thickness H of 100 mm and the gaps between lateral lamellas
were s = 5 mm on average. The lamellas of the standard CLT
had a width of w = 140 mm and a thickness of h = 20 mm,
leading to an aspect ratio w/h = 7.

The innovative panels with wide gaps had a span L of 5.9 m
and were made by 7 layers of equal thickness of h = 30 mm.
The width of the lamellas was w = 100 mm, leading to an as-
pect ratio w/h = 3.33. Two configurations of innovative panels
(Figure 2) were tested, a configuration with gaps s = 150 mm
and a second configuration with s = 300 mm. Therefore they
had volume fractions of respectively λ = 0.4 and λ = 0.25,
where λ = w/w+s. Figure 2 and Table 1 present respectively a
part of typical cross section of timber panel with gaps and the
geometric properties of the tested panels.
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Figure 2: Part of a typical cross section of an innovative timber panel with
regular gaps (s = 150mm, w = 100 mm, h = 30 mm)

s=5 mm s=150 mm s=300 mm
L [m] 4.65 5.9 5.9
b [m] 1.25 1.31 1.26
H [mm] 100 210 210
layers 5 7 7
h [mm] 20 30 30
w [mm] 140 100 100
λ 0.95 0.4 0.25

Table 1: Properties of the tested panels

The voids of specimens with large gaps were filled with
insulating material (glass wool) having negligible mechanical
properties compared to wood. The specimens were simply sup-
ported on two sides and submitted to a symmetric 4-point bend-
ing. The measurement system was based on vertical LVDTs
to measure the panel’s curvature. Figure 3 shows the 4-point
bending set-up.

The panel’s bending stiffness has been derived from the
measured curvature between the loading devices. Then, know-
ing the bending stiffness and the global mid-span deflection,
the shear force stiffness and the ratio between shear deflection
and bending deflection α = Ushear/Ubending can be also obtained (for
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Figure 3: 4-point bending test set-up and position of LVDTs

(a)

(b)

Figure 4: Failure modes of panels with regular gaps: (a) longitudinal tensile
failure on bottom layer of s=150 mm panel and (b) shear failure of cross lamel-
las of s=300 mm panel

more details see Franzoni et al. [28]).
A first cycle of load/unload up to 20% of the expected fail-

ure load was performed, with a following increase of load un-
til failure of the panel. Two specimens for each configuration
shown in Table 1 were tested. Table 2 presents the experimental
results in terms of failure load, failure mode, bending (b · D11)
and shear force stiffness (b · F11). As detailed in Section 2, D11
is the plate bending stiffness in direction x1 and b · D11 is thus
the corresponding beam bending (EI) stiffness. Similarly, F11
is the thick plate shear force stiffness and b ·F11 the correspond-
ing beam shear (GA) stiffness. Note that, due to the heterogene-
ity of the panel, the stiffness moduli (E,G) may not be directly
separated from the geometric quantities (I, A) which motivates
this specific notation. The failure mode denoted RS stands for
the rolling shear failure due to shear stress in the wood Radial-
Tangential plane which yields a rotation of wood’s fibers (see
for instance [14, 6, 25]).

Table 2 shows that when enlarging the gaps within CLT lay-
ers, the failure load and the panel’s stiffness decreases. At the
same time, enlarging the gaps leads to increasing shear com-
pliance, increasing the shear contribution to the deflection α
(Table 2) and changing the failure mode. Indeed, while the
standard CLT and the s = 150 mm panel failed in traction in
the bottom layers due to bending stresses (Figure 4a), the most
spaced configuration with s = 300 mm failed in rolling shear
with a rotation of cross lamellas (Figure 4b).

2.1.1. Small-scale tests
The raw timber of the panels (Norway spruce) has been

subsequently tested in tension, compression and shear in or-
der to determine the wood elastic moduli. Standard and in-
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s = 5 mm s = 5 mm s = 150 mm s = 10 mm s = 300 mm s = 300 mm
(1) (2) (1) (2) (1) (2)

Fmax [kN] 77 82 72 65 34 33
Failure mode TL TL TL TL RS RS
Global stiffness [kN · mm] 485 490 850 810 430 390
b · D11 [kN · m2] 890 900 3600 3340 2025 1790
b · F11 [kN] 12300 12700 5800 5700 1850 1790
α = Ushear/Ubending 0.03 0.03 0.17 0.16 0.29 0.27

Table 2: Main results of 4-point bending tests. The gaps s are in mm. TL= tensile failure in longitudinal direction of bottom layer; RS= rolling-shear failure in
middle layer

novative panels were supplied by two different producers and
the respective raw woods were graded following two different
systems. According to the producers’ declaration, the standard
panels were made up of S10 timber following the German vi-
sual classification [22], while the timber of innovative panels
were certified as C24 following EN 338 [23].

Wood is an orthotropic material with three principal axes:
the first one is aligned with the fiber or trunk direction (longitu-
dinal direction L) while in the transverse plane, the remaining
two axes are orthogonal to the annual rings (radial direction,
R) and tangential (tangential direction, T) (Figure 5). However,
the local variation of the annual rings within CLT lamellas as
well as the related actual position of orthotropic coordinates are
unknown. Hence, a lamella’s reference frame (L,N,Z) instead
of orthotropic coordinates (L,T,R) (Figure 5) is considered in
this study. The radial and tangential coordinates are therefore
mixed into the two generalized transverse directions N and Z,
independently from the annual rings pattern.

The small-scale tests were performed with respect to (L,N,Z)
reference frame and Table 3 shows the obtained elastic proper-
ties, in agreement with several studies in the literature [24, 25,
26]. Due to a lack of material, it was possible to determine
only the rolling-shear GZN modulus of standard CLT and not
the GLZ shear modulus. Moreover, the thinness of the lamel-
las prevented shear tests in the LN plane, hence the wood shear
modulus GLN is considered to equal shear GLZ modulus in the
modeling. More details about the small-scale tests on the raw
timber of panels can be found in [27] and [28].

2.2. In-plane shear behavior

The in-plane shear behavior of CLT has been the object of
a recent experimental campaign performed by Brandner et al.
[7]. The authors tested portions of CLT panels rotated 45◦ and
submitted to a uni-axial compression in order to obtain a stress
state close to pure in-plane shear in the CLT conventional refer-
ence frame. The aim of this experimental work was to develop
a new testing configuration and to study the influence on in-
plane shear behavior of several parameters such as the lay-up,
the width of the lamella and the manufacturing of the gap. The
latter turned out to be the most influential parameter on CLT in-
plane shear behavior. Indeed, the reduction of the in-plane shear
stiffness when passing from glued to unglued lateral lamellas
was about 30% and even 50% for a 5 mm gap. Table 4 shows

the properties of the so-called “series A” tested by Brandner et
al. [7] and the obtained in-plane shear stiffnesses.

3. Modeling

In this section, we first briefly introduce the Bending-Gradient
plate theory. Full details about this theory can be found in [16,
17, 18]. Then, the application of the plate theory to a periodic
geometry is presented, with focus on CLT and panels with reg-
ular gaps.

3.1. Summary of the Bending-Gradient model
CLT with small gaps as well as aerated CLT may be con-

sidered as in-plane periodic structures since they consist of a
repetitive pattern. Finite element modeling of such structures
requires a very fine mesh. Hence, in order to spare compu-
tational burden, it is convenient to seek an equivalent mem-
brane and plate model for these 3D structures by means of a
homogenization scheme. Additionally, according to the sig-
nificant shear effects found during the experimental investiga-
tions (see Table 2), knowing the deflection related to transverse
shear effects is also necessary for engineering applications of
CLT and innovative products with gaps. This suggests apply-
ing the Bending-Gradient theory which is an extension of the
well known Reissner-Mindlin thick plate theory to the case of
heterogeneous plates.

Let us recall that the usual generalized stresses for the Reissner-
Mindlin plate are the membrane stress Nαβ, the bending mo-
ment Mαβ, and the shear force Qα. These generalized stresses
are respectively dual with the membrane strain eαβ, the curva-
ture χαβ, and the transverse shear distortion γα. Assuming the
plate is symmetric with respect to its mid-plane, these variables
are related through the following constitutive equations:



N = A : e, (1a)
M = D : χ, (1b)
Q = F · γ, (1c)

where A is the membrane fourth order stiffness tensor, D is
the bending fourth order stiffness tensor and F is the shear
force second order stiffness tensor. The simple, double and
triple contraction products are hereinafter defined as follows:
X · Y = XαYα, X : Y = XαβYβα and X ... Y = XαβγYγβα, with
Greek letters that stand for the in-plane coordinates (x1, x2).
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Figure 5: Geometry of the small-scale timber specimens (dimensions in mm) and lamella’s reference frame (L,N,Z) considered instead of wood’s orthotropic
coordinates (L,T,R)

EL EN EZ GZN GLZ νZN νLZ νLN

Innovative panels
number of samples 21 6 5 10 6 5 8 8
Mean [MPa]/[1] 12500 530 400 110 580 0.71 0.35 0.51
COV [%] 16 25 7 27 14 6 16 12
Standard panels
number of samples 17 6 5 8 - 5 8 8
Mean [MPa]/[1] 10000 620 440 75 - 0.69 0.38 0.49
COV [%] 11 28 6 25 - 10 14 6

Table 3: Obtained elastic properties of the raw wood. Poisson’s ratios ν are unit-less
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A1 A2 A3
h [mm] 30 30 30
w [mm] 160 160 160
layers 3 3 3
s [mm] glued 0 5
In-plane shear modulus [MPa] 650 475 310

Table 4: Properties of the tested specimen and measured in-plane shear stiffness
by Brandner et al. [7]

Whereas the derivation of A and D is well established in the
literature for laminated plates (Classical Lamination Theory) as
well as for periodic plates [29, 30]; the derivation of F raised
many difficulties. Indeed, when the plate is heterogeneous, ad-
ditional variables are required to describe accurately transverse
shear deformations.

In the Bending-Gradient theory, the conventional shear force
Q with two degrees of freedom is replaced by the generalized
shear force R with six degrees of freedom. The generalized
shear force is a third order tensor. With this new set of vari-
ables, the constitutive equation becomes:



N = A : e, (2a)
M = D : χ, (2b)
R = H ... Γ, (2c)

where Γ is the generalized shear distortion and H the general-
ized shear force sixth-order stiffness tensor. In case H is not
invertible, R and Γ are restricted to a specific vector space de-
tailed in [31, 32]. These equations may be written in terms of
compliance as follows:



e = a : N, (3a)
χ = d : M, (3b)
Γ = h ... R, (3c)

where a, d and h are respectively the membrane, bending and
generalized shear force compliance tensors (reciprocals of A,
D and H).

Depending on the plate micro-structure, the Bending-Gradient
theory may be turned into the Reissner-Mindlin plate theory.
For instance, this is the case when the plate is homogeneous.
In [16], the relative distance between both plate theories was in-
troduced as 0 ≤ ∆RM/BG < 1. When ∆RM/BG = 0, the Bending-
Gradient theory exactly reduces to a Reissner-Mindlin theory
and we have the following direct estimation of Reissner-Mindlin
shear force stiffness moduli as function of the Bending-Gradient
ones for an orthotropic plate:

1
h111111

= F11 and
1

h222222
= F22. (4)

When dealing with laminated plates it is possible to derive
A, D and h directly from the constitutive material behavior.
However, with periodic plates this requires a homogenization
procedure which is detailed in the next section.

3.2. Homogenization scheme

Let us consider a plate generated by periodicity of a unit-
cell Y according to the in-plane Directions x1 and x2. The upper
face ∂Y+

3 and the lower face ∂Y−3 are traction free and the lateral
faces ∂Yl connect adjacent unit-cells. AY is the area of the unit-
cell cross section with the plate mid-plane. x = (x1, x2, x3) is
the set of coordinates in the unit-cell reference frame.

Finding A, D and h requires the resolution of unit-cell prob-
lems. The membrane A and bending D stiffness tensors are
derived by means of a first unit-cell problem which also gives
the corresponding stress states. Then solving a second unit-cell
problem is necessary for deriving h.

3.2.1. Membrane and thin plate unit-cell problem
Homogenization of periodic plates at leading order was first

established by Caillerie [29]. The unit-cell problem is stated as
follows:

P(e,χ)



div σ(e,χ) = 0, (5a)
σ(e,χ) = C (x) : ε(e,χ), (5b)
ε(e,χ) = ê + x3χ̂ + grads uper, (5c)
σ · e3 = 0 on free faces ∂Y±3 , (5d)
σ · n skew-periodic on ∂Yl, (5e)
uper(x1, x2, x3) (x1, x2)-periodic on ∂Yl, (5f)

where uper is the 3D displacement vector, ε is the linearized
strain second-order tensor, σ is the Cauchy stress second-order
tensor, C is the 3D stiffness fourth-order tensor. Furthermore,
grads is the symmetric part of the 3D gradient operator, div is
the 3D divergence and n is the outer normal to the boundary of
the unit-cell.

This problem enforces the membrane strains e and the cur-
vatures χ on average on the unit-cell while taking into account
periodicity in the (x1, x2)-plane and traction-free conditions on
the upper and lower faces of the plate. In Equation (5), ê and χ̂
denote the out-of-plane extension of the in-plane tensors e and
χ:

e =


e11 e12 0
e21 e22 0
0 0 0

 and χ =


χ11 χ12 0
χ21 χ22 0
0 0 0

 . (6)

Solving the problem for each individual component of e and χ
leads to the localization stress fields s(e) and s(χ) such that the
total stress σ(e,χ) solution of the problem P(e,χ) is recovered by
linear combinations:

σ
(e,χ)
i j = s(e)

i jαβ(x)eβα + s(χ)
i jαβ(x)χβα. (7)

Hence, σ(e,χ) is the stress state inside any unit-cell when the
periodic plate is subjected to given uniform membrane strain
and curvature.

The membrane and thin plate stiffness tensors are then eval-
uated as follows:

A =
〈

Ts(e) : C−1 : s(e)
〉
, D =

〈
Ts(χ) : C−1 : s(χ)

〉
(8)
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where:
〈 f 〉 =

1
AY

∫

Y
f (x)dY (9)

is the normalized average (surface average) on the unit-cell and
the superscript T stands for the transpose operator. Finally,
using the inverted plate constitutive law of Equation (1a) and
Equation (1b) and localization tensors s(e) and s(χ), it is possi-
ble to write the local stress field generated by the membrane
stress and the bending moment as:

σ(N) = s(N) : N =
(
s(e) : a

)
: N, (10)

σ(M) = s(M) : M =
(
s(χ) : d

)
: M. (11)

3.2.2. The generalized shear force unit-cell problem
The generalized shear auxiliary problem on the unit-cell is

defined as:

P(R)



div σ(R) + f (R)(x) = 0, (12a)
σ(R) = C (x) :

(
grads u(R)

)
, (12b)

σ(R) · e3 = 0 on free faces ∂Y±3 , (12c)
σ(R) · n skew-periodic on ∂Yl, (12d)
u(R)(x1, x2, x3) (x1, x2)-periodic on ∂Yl, (12e)

where the load related to the generalized shear force is written
as:

f (R)
i = s(M)

iαβγ (x) Rγβα. (13)

Solving P(R) for each component of R leads to the localization
stress field s(R)

i jαβγ associated with R. The overall stress is ob-
tained by the linear combination:

σ(R)
i j = s(R)

i jαβγ(y)Rγβα. (14)

It is then possible to identify the Bending-Gradient compliance
tensor as:

h =
〈T(

s(R)
)

: C−1(x) : s(R)
〉
. (15)

3.3. Application to CLT and timber panels with regular gaps
A unit-cell of a 5-ply timber panel with gaps is shown in

Figure 6. The lateral faces are periodic along the x1 and x2 di-
rections, the upper and lower faces are free and the layers are
rigidly connected. The investigated lay-ups in this study are
3, 5 and 7-ply panels. Moreover, the studies of Moosbrugger
et al. [9] and Silly [33] highlighted the great influence of the
lamella aspect-ratio width to thickness w/h. Therefore two dif-
ferent lamella aspect-ratios w/h are also analyzed: w/h = 3.33
and w/h = 10. This is achieved by fixing the width at 100 mm,
while the considered thicknesses are 30 or 10 mm (Figure 6)
which is within the standard range from 6 to 45 mm for CLT
layers’ thickness established in EN 16351 [1].

The auxiliary problems are solved by means of a finite el-
ements software in order to obtain the elastic strain energy of
the unit-cell. Solid C3D8 linear elements in ABAQUS are cho-
sen [34]. When the gaps are very narrow, the size of an element
should be smaller than the gap width. A convergence study, not
detailed here, led to a mesh of minimum twelve elements per

gap width, as shown in the detail of Figure 7, and of minimum
six elements per layer’s thickness. This is in order to limit the
stiffness relative error to 1%. The timber elastic engineering
constants for the FEM modeling are taken from Table 3.

In this paper, the unit-cell of the considered panels features
three planes of symmetry. It is possible to study only one eighth
of the unit-cell as shown in Figure 6, reducing the computa-
tional costs.

Furthermore, these planes of symmetry allow simple sym-
metric or skew-symmetric boundary conditions on lateral faces,
instead of the periodic boundary conditions required in the gen-
eral case. The load of the thin-plate and membrane homog-
enization are both imposed membrane e and curvature χ dis-
placements on the boundaries and are detailed in Figure 8 de-
pending on the considered unit load.

Similarly, the generalized shear force unit-cell problem is
parametrized by the six components of R and the corresponding
boundary conditions are detailed in Figure 9.

The symmetries of the investigated panels lead also to sim-
plifications of the constitutive equations. When the unit-cell is
unchanged through a π angle rotation with respect to a vertical
axis, then the membrane and thin-plate stresses (N, M) are un-
coupled from R. When the unit-cell follows the mirror symme-
try with respect to the mid-plane, membrane stress are uncou-
pled from bending moments. Finally, the plate is orthotropic
when the unit-cell is invariant through a vertical plane symme-
try. When all these symmetries occurs, there remain 4 moduli
for membrane stress, 4 moduli for bending moments and 12
moduli for the bending gradient [18] and the plate moduli A, D
and h have the following form, in Kelvin notation:

A =


A1111 A1122 0

A2222 0
sym 2A1212

 =


A11 A12 0

A22 0
sym A33

 , (16)

D =


D1111 D1122 0

D2222 0
sym 2D1212

 =


D11 D12 0

D22 0
sym D33

 , (17)

h =



h111111 h111112 0 0 0
√

2h111221
h221122 0 0 0 h221221

2h121121
√

2h121211
√

2h121222 0
h112211 h112222 0

sym h2222222 0
2h122221



=



h11 h12 0 0 0 h16
h22 0 0 0 h26

h33 h34 h35 0
h44 h45 0

sym h55 0
h66


.

(18)

4. Results

In this section, results from the plate homogenization pro-
cedure are presented and compared to simplified approaches as
well as to available experimental data. First, the variation of
plate moduli is plotted as a function of the size of gaps s within
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Figure 6: Complete (left) and one-eighth (middle) unit-cell of 5-ply timber panel with gaps and investigated ratios w/h of lamellas (right)

x1 x2

x3

Figure 7: FE mesh of one eighth 3-ply unit-cell with zoom on half a gap (5 mm)
mesh

the panel. Experimental or computed values of a plate stiffness
K are normalized with the corresponding stiffness K∗ of a con-
tinuous panel having the narrow edges glued, derived from the
plate homogenization scheme. Finally, the predicted variation
of the stress inside the panel as a function of gaps is compared
to the experimental results of 4-point bending tests.

4.1. Bending stiffness

The measured bending stiffness of the tested panels is now
compared to the stiffness predicted with the plate homogeniza-
tion procedure (D11) and with the Classical Lamination Theory
combined with the reduced properties of wood by the volume
fraction coefficient λ. The normalized bending stiffness of CLT
and innovative panels is plotted in Figure 10, where a very good
agreement is found both with homogenization and closed-form
approaches. Similar results were found for the membrane stiff-
nesses A11 and A22 and also for the bending stiffness D22. The
comparison was also made for 3-,5 and 7-ply and several aspect
ratios with similar observations.

It is not surprising that the Classical Lamination Theory
weighed with the volume fraction already yields good result
since either glued or not, cross lamellas have a very small con-
tribution to the bending stiffness. The homogenization proce-
dure confirms this observation. A very small influence of free
narrow edges is to be noted for small gaps in Figure 10 where
the homogenized stiffness slightly deviates from the closed-
form approach.

(a) Symmetric loadings e11, e22, χ11, χ22

(b) Skew-symmetric loadings e12, χ12

u1 = (e11 + x3χ11) L1
1

u2 = (e22 + x3χ22) L2
2

Free face
u1 = 0u2 = 0

u3 = − x2
1
2 χ11 − x2

2
2 χ22

Free face
{

u1 = e12 + x3χ12
L2
2

u3 = −x1χ12
L2
2


u2 = (e12 + x3χ12) L1

2
u3 = −x2χ12

L1
2

{
u2 = 0
u3 = 0

x1
x2

x3

L2/2 L1/2

x1x2

x3

L2/2 L1/2 

u1 = x2 x3
L2
2 χ12

u2 = x1 x3
L1
2 χ12

u3 = −x2 x1χ12

{
u1 = 0
u3 = 0

Figure 8: Applied boundary conditions on 1/8 of the unit-cell for the bending
and membrane loadings. Symmetric (a) and skew-symmetric (b) loadings.
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(a) R111, R221, R122

(b) R121, R112, R222
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Figure 9: Applied boundary conditions on 1/8 of the unit-cell for the general-
ized shear loadings: R111, R221, R122 loadings (a) and R121, R112, R222 loadings
(b)
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Figure 10: Comparison between the experimental and predicted bending stiff-
ness D11 of timber panels with gaps

4.2. In-plane shear and torsional stiffnesses

Deformed unit-cells of a panel having narrow and wide gaps
under in-plane shear strain e12 and torsion strain χ12 are shown
in Figure 11. The torsion behavior is for instance associated
with floors supported on three sides and under out-of-plane loads.
It is also involved in torsion deformation of simply supported
floors in cases where the load is not symmetric.

When dealing with these generalized strains, all layers con-
tribute to the stiffness of the panel. In the case of laterally
glued CLT, global in-plane shearing or torsion of the panel oc-
cur and the continuous geometry ensures the stress transmission
through the entire thickness. In the case of discontinuous CLT
panels with gaps within each layer, the presence of free edges
prevents the direct transmission of stresses between lamellas,
leading to stress singularities (Figure 11a). As a consequence,
the stresses increase due to the decrease of the net cross section
(as also highlighted in [35] and [10]) and the global stiffness de-
creases. Such decrease of stiffness is also due to an additional
compliance mechanism of rotation between the upper and lower
lamellas that appears when the lateral edges are not glued. The
reduction of in-plane stiffness becomes more significant in the
case of large gaps, where all lamellas are submitted to bending
in their plane due to their slenderness (Figure 11b).

Moosbrugger et al. [9] derived a simplified closed-form so-
lution for predicting the in-plane shear stiffness of CLT panels
having short gaps. According to this method, the stiffness of
a glued panel is reduced by a “torsion-like” mechanism, de-
pendent on the ratio w/h, that appears when the lamellas are
not laterally glued to each other. This is in order to take into
account the additional mechanisms of relative rotation under
in-plane shear described above. The derivation of this simpli-
fied method is based on a CLT representative volume of a sub-
element (RVSE) composed by two lamellas and therefore as-
suming an infinite number of layers. Hence, according to this
method, the reduction of in-plane shear stiffness is independent
from the number of layers. Moreover, Moosbrugger et al. [9]
considered the gaps to be short beams and their bending and
shear compliance are taken into account. Hence, since increas-
ing the gaps means increasing the span of beams represented
by gaps, such a simplified approach may also predict the stiff-
ness for large gaps within the panel. The closed-form solution
returns directly the reduction G/G∗, where G is the reduced
stiffness of spaced CLT and G∗ is the in-plane shear stiffness of
solid wood (GLN) that equals the stiffness of a continuous later-
ally glued CLT. This closed-form solution is compared in this
section with the predicted A33 and D33 moduli normalized with
the stiffnesses of a continuous CLT panel.

In Figure 12, the comparison between the experimental re-
sults of Brandner et al. [7] on the in-plane shear behavior of
CLT with gaps and the predicted reduction of the modulus A33
is presented. Both results from the plate homogenization pro-
cedure and from the closed-form solution [9] are shown. The
experimental values are normalized with the reference experi-
mental in-plane shear stiffness of a CLT having laterally glued
lamellas, also given in [7]. Since in [7] the lamellas elastic
properties were not provided, the in-plane shear stiffness is pre-
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(a)

(b)

(c)

(d)

Figure 11: Deformed unit-cell of panels with gaps under in-plane shear at short (a) and large (b) gaps and under torsion at short (c) and large (d) gaps

dicted using the obtained timber properties showed in Table 3
and normalized with the corresponding stiffness as well.

When the lateral edges are not glued to each other, the mech-
anism of relative in-plane rotation of lamellas yields a sharp
drop of in-plane shear stiffness that can be well predicted by
the homogenization approach, while the closed-form approach
underestimates the reduction of the stiffness by about 25%.

As the study of Silly [33] has shown, the in-plane shear and
torsional stiffnesses of CLT featuring gaps are influenced by
the aspect ratio w/h. Therefore, Figure 13-16 plot the variation
of normalized in-plane shear stiffness A33 and torsional stiffness
D33 as a function of the gaps for CLT made up of lamellas hav-
ing aspect ratio w/h = 3.33 and w/h = 10. Within each plot, the
influence of the number of layers is highlighted as well.

Both the aspect ratio w/h and the number of layers influence
the in-plane shear and torsional stiffness of panels with gaps.
Indeed, increasing the number of layers and the value of the
ratio w/h yields a lower drop of in-plane shear stiffnesses. The
worst case of a 3-ply panel having lamellas with w/h = 3.33
shows a 40% reduction of A33 when the panel is not laterally
glued and a 50% reduction for 6 mm gaps. For small gaps,
the torsional stiffness D33 shows higher reduction than the in-
plane shear stiffness and the same dependency on the number of
layers. Interestingly, this trend is reversed when enlarging the
gaps, where higher values of D33 are found for 3-ply lay-ups
and especially for high values of the ratio w/h.

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0 1 2 3 4 5 6
0.0

w/h = 5.33

Moosbrugger et al. (2006)

Homogenization

s[mm]

Test, Bandner et al. (2015)

A33
A∗33

0.1

Figure 12: Comparison between test results and in-plane shear stiffness reduc-
tion A33

A∗33
for a 3-ply predicted with homogenization and closed-form solution
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Figure 13: Variation of normalized in-plane shear stiffness A33
A∗33

for narrow (left) and wide (right) gaps for ratio w/h = 3.33 of lamellas and for 3, 5 and 7 layers
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Figure 14: Variation of normalized in-plane shear stiffness A33
A∗33

for narrow (left) and wide (right) gaps for ratio w/h = 10 of lamellas and for 3, 5 and 7 layers
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Figure 15: Variation of normalized torsional stiffness D33
D∗33

for narrow (left) and wide (right) gaps for ratio w/h = 3.33 of lamellas and for 3, 5 and 7 layers
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Figure 16: Variation of normalized torsional stiffness D33
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for narrow (left) and wide (right) gaps for ratio w/h = 10 of lamellas and for 3, 5 and 7 layers
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Figure 17: Distance between Reissner-Mindlin and Bending-Gradient plate
models as a function of the width of the gaps and for different lay-ups

4.3. Thick-plate homogenization

The relative distance between the Reissner-Mindlin and the
Bending-Gradient plate theories is plotted in Figure 17 as func-
tion of the size of gaps s and for different lay-ups. As intro-
duced in Section 3.1, if this distance is close to 1 the Bending-
Gradient model is needed for a correct estimate of the shear
force stiffness and stress distribution, while for distances close
to 0, a Reissner model may still be a reasonable approximation.
The distance is not always small and is strongly influenced by
the lay-up of the panel. For very large gaps all relative distances

tend to 2
√

2
3 as predicted in [20], and it is the 3-ply configuration

that goes more rapidly to this limit value. Additionally, thick
lamellas (w/h = 3.33) yield lower values of the relative distance
than thin lamellas (w/h = 10). However, except for the 3-ply lay-
up, the relative distance remains moderate for the range of gaps
interesting for practical applications. This allows the use of the
more conventional Reissner-Mindlin plate theory.

Finally, the tested panels in 4-point bending were simply
supported on two sides with the longitudinal layers aligned with
the bending direction 1, which is also called a cylindrical (or
uni-axial) bending configuration. The relevant Reissner shear
force stiffness F11 is estimated from the Bending-Gradient the-
ory as: F11 = 1/h111111 = 1/h11 [32] and is investigated in this
section.

Deformed unit-cells of CLT and panels with regular gaps
under the cylindrical part of the generalized shear force R111
are shown in Figure 18. In both cases, free edges lead to stress
singularities close to interfaces. Further analysis revealed that
an interaction between rolling-shear stresses (σ13) and perpen-
dicular to grain stresses (σ22 and σ33) is present. Such interac-
tion have been proven to reduce the strength of lamellas having
free narrow edges in recent experimental and numerical stud-
ies [4, 25]. However, being a very localized phenomenon, the
contribution of stress concentrations to the shear force stiffness
is limited.

In this Section, the chosen simplified method for the predic-
tion of the shear force compliance of spaced CLT is the shear
analogy method derived by Kreuzinger [13] combined with the
reduced properties using the wood volume fraction λ. In Fig-
ures 19 and 20 and Table 5, the normalized shear force stiffness
h∗11
h11

predicted with the thick-plate homogenization and the vol-
ume fraction approach are compared to the shear force stiffness
measured in 4-point bending tests. The shear force stiffness for
short gaps within the panel predicted with the volume fraction is
globally in agreement with experimental results and thick-plate
homogenization (Figure 19). This is because when the gaps are
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(a)

(b)

Figure 18: Deformed unit-cell under R111 generalized shear force in the case of
short gaps (a) (w=100, h=10, s=6) and large gaps (b) (w=100, h=30, s=150).
The contour plot shows the transverse shear strain ε13.

0.822

0.844

0.866

0.888

0.911

0.933

0.955

0.977

1.0

0 1 2 3 4 5 6
0.80

h∗11
h11

Kreuzinger, 1999 (λ)

5ply, w/h=7

Homogenization

s[mm]

Test results

Figure 19: Variation of normalized shear force stiffness
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for short gaps and
comparison with test results for the 5-ply
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Figure 20: Variation of normalized shear force stiffness
h∗11
h11

for large gaps and
comparison with test results for the 7-ply

short the dominant contribution to the shear strain energy still
derives from the rolling-shear of cross layers (see Figure 18a),
exactly as in the case of laterally glued CLT. Figure 20 points
out that the shear analogy method combined with the volume
fraction strongly overestimates the shear force stiffness of pan-
els having large gaps, while the thick-plate homogenization is
in agreement with test results. This derives from the additional
compliance mechanism caused by the longitudinal lamellas be-
having as beams under simple bending, like a Verendeel beam
(Figure 18b). Hence, this additional compliance mechanism
cannot be taken into account in the simplified approach of vol-
ume fraction but only in the homogenization procedure.

In Figure 21 is plotted the variation of the shear force stiff-
ness as function of increasing gaps and for two different aspect
ratios w/h. As Figure 21a shows, already at short spaces there
is a small drop of normalized shear force stiffness because of
the free edges. This effect cannot be predicted by the volume
fraction approach.
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h∗11/h11 Test result Homogenization Kreuzinger [13] & λ

s = 5 mm (1) 0.8574 0.8768 0.8874
s = 5 mm (2) 0.8872 0.8768 0.8874
s = 150 mm (1) 0.1272 0.1321 0.3925
s = 150 mm (2) 0.1251 0.1321 0.3925
s = 300 mm (1) 0.0392 0.0397 0.2453
s = 300 mm (2) 0.0381 0.0397 0.2453

Table 5: Variation of normalized shear force stiffness
h∗11
h11

for small and wide gaps and comparison with test results
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Figure 21: Variation of the normalized shear force compliance
h∗11
h11

for a 7-ply at short (left) and large (right) gaps for different lamella ratio w/h

More precisely, in this case the number of free edges per
unit length increases with the aspect ratio w/h. Hence, a higher
drop of stiffness is observed with w/h=3.33 than with w/h=10
in Figure 21a. Enlarging the gaps means increasing the span
of the longitudinal beams connected to cross lamellas. When
such beams have small thickness, their slenderness further in-
creases and their bending stiffness decreases. Therefore, as
highlighted in Figure 21b and contrary to the small gaps case,
panels having wide gaps and made of lamellas having high val-
ues of w/h present lower shear force stiffness than panels with
thicker lamellas.

4.4. Influence of predicted stresses on the variation of failure
modes

The results presented in the previous sections concerned the
variations of plate elastic moduli as a function of the size of
gaps. The presence of wider gaps influences also the failure
modes, as test results of Section 2 show. In addition to the
global elastic energy stored in the unit-cell, the homogeniza-
tion scheme predicts the 3D stress field inside the unit-cell. The
actual stress field generated by the bending moment and the
shear force can be rebuilt according to Equations (11) and (14).
The predicted stress fields on a unit-cell have been success-
fully compared to a complete 3D FE simulation of the whole
panel submitted to 4-point bending but not reported in this pa-
per. When computing the stress field generated in the unit-cell
by the failure load found experimentally, the stresses at failure

σmax
11 and σmax

13 presented in Figure 22 can be found. Indeed the
shear force R111 is dominant close to supports and there is pure
bending M11 between loading forces.

Figure 22 shows that when the gaps between lateral lamel-
las are wider, the bending failure stress decreases while the
rolling shear failure stress increases. The 4-point bending tests
pointed out the transition between tensile parallel to grain fail-
ure of longitudinal layers to rolling shear failure of cross lamel-
las when enlarging the width of the gaps. Therefore, the pre-
dicted longitudinal and shear failure stresses may be compared
to tensile parallel to grain and rolling-shear strength values of
spruce. The mean tensile strength parallel to grain has been
found to be approximately 30 MPa by Stapel and van de Kuilen
[36], Ranta-Maunus et al. [37] by means of tensile tests on
thousands of spruce graded and ungraded lamellas having di-
mensions in the range of the lamellas of the panels tested in
4-point bending. Rolling-shear strength is considered to be in-
dependent from timber natural variability, as a recent compre-
hensive study pointed out [39], and mean rolling-shear strength
of spruce has been found to be 1.6 MPa by a previous study by
the authors [27] with symmetric double-lap shear test and 1.8
MPa with two-plates shear test by Ehrart et al. [25].

Table 6 summarizes the predicted longitudinal and rolling-
shear stresses at failure for the three tested configurations in
4-point bending.

For the CLT (s = 5 mm), the predicted σmax
11 stress is close

to the mean tensile strength of spruce, while the rolling-shear
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Figure 22: Variation of longitudinal σmax
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13 (left) stresses under experimental failure bending moment Mmax
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111 for
the three tested configurations
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Predicted σmax
11 [MPa] Predicted σmax

13 [MPa] Failure mode in tests
s = 5 mm (1) 37 0.52 TL
s = 5 mm (2) 39 0.55 TL
s = 150 mm (1) 26 0.97 TL
s = 150 mm (2) 24 0.88 TL
s = 300 mm (1) 18 1.37 RS
s = 300 mm (2) 18 1.42 RS

Table 6: Variation of predicted longitudinal and rolling-shear stresses at failure of tested panels [MPa]. TL = tensile longitudinal, RS = rolling-shear

failure stress is lower than the respective strength. This is in
agreement with the experimental tensile failure of the bottom
layer. The s = 150 mm configuration failed in tension in the
bottom layer, even if the predicted σmax

11 decreases and σmax
13

increases, compared to the standard configuration. This is be-
cause of the presence of an isolated knot that led to tensile fail-
ure of both s = 150 mm panels (see Figure 4a). Indeed, stan-
dard CLT is characterized by a “system” effect that increases
timber strength thanks to the glued surfaces between upper and
lower lamellas, limiting the propagation of cracks due to local
defects [6, 38]. This effect is progressively reduced when en-
larging the gaps, due to the increase in free unglued parts of the
upper and lower lamellas, where the cracking of isolated knots
is no longer mitigated. Finally, the rolling-shear stress predicted
at failure of s = 300 mm panel in cross lamellas is very close
to rolling-shear strength, while the predicted σmax

11 is lower than
the tensile strength. This is in agreement with the experimental
shear failure of cross lamellas of the s = 300 mm panel.

5. Conclusions

In the present paper, the elastic response of CLT panels and
timber panels with regular gaps has been investigated by means
of a thick plate homogenization scheme. The predicted results
have been compared to experimental data and simplified closed-
form solutions. Both cases of narrow gaps allowed in standard
panels and wide gaps in innovative timber products have been
analyzed.

The experimental investigation pointed out the increasing
influence of elastic and failure shear effects while enlarging
the gaps between lamellas. This motivates the choice of the
Bending-Gradient thick plate theory for a precise estimation of
shear effects. The plate theory has been applied to the inves-
tigated configurations by means of a periodic homogenization
scheme.

When increasing the gaps between lamellas, the reduction
of the bending stiffness follows exactly the wood volume frac-
tion within the panel. As consequence, the influence of narrow
gaps is very small and the bending stiffness can be predicted,
even for wide gaps, by the volume fraction approach. On the
contrary, the reduction of in-plane shear and torsion stiffness
does not follow the volume fraction and already at narrow gaps
the reduction of stiffness is significant. The plate homogeniza-
tion procedure returns a good agreement with in-plane shear
test results from the literature. The reduction of the in-plane

shear and torsional stiffness due to the gaps is influenced by
the number of the layers and by the lamella’s aspect ratio w/h.
Increasing the number of layers as well as the aspect ratio w/h

leads to standard CLT and innovative panels with higher values
of in-plane shear and torsional stiffness.

Regarding the out-of-plane shear behavior, the reduction of
the shear force stiffness when enlarging the gaps cannot be pre-
dicted with the volume fraction approach due to an additional
compliance mechanism related to simple bending of longitudi-
nal lamellas. Therefore only the homogenization method can
accurately predict the experimental results, while the volume
fraction approach strongly overestimates the shear force stiff-
ness. The presence of free edges in timber panels with gaps
introduces an interaction between rolling-shear stress and trac-
tion perpendicular to the grain, leading to potential mixed fail-
ure modes in cross lamellas, as highlighted by the conducted
4-point bending tests. In standard CLT with unglued edges, the
governing effect is rolling-shear of cross layers and therefore,
for a fixed total thickness of the panel, the thicker the lamellas,
the more shear compliant is the panel. On the contrary, con-
cerning innovative panels with wide gaps, the simple bending
of longitudinal layers due to shear force yields stiffer panels
when the lamellas are thick.

The predicted values of longitudinal and rolling-shear fail-
ure stresses are in agreement with the experimental variation of
failure modes and strength values from the literature, even if the
natural variability of raw wood has not been taken into account
and may be the subject of more accurate modeling.

In some cases, the existing closed-form approaches for pre-
dicting the mechanical behavior of both standard CLT and in-
novative panels are not appropriate. Nevertheless, the periodic
homogenization presented in this paper requires the numerical
solution of auxiliary problems by means of a FE software, that
limits its implementation in practical applications. Hence, the
derivation of closed-form solutions for predicting the elastic be-
havior of standard CLT and innovative panels is the object of
on-going studies.
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