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Abstract—Microgrids are integrated systems that gather and
operate energy production units to satisfy consumers demands.
This paper details different mathematical methods to design the
Energy Management System (EMS) of domestic microgrids. We
consider different stocks coupled together — a battery, a domestic
hot water tank — and decentralized energy production with solar
panel. The main challenge of the EMS is to ensure, at least
cost, that supply matches demand for all time, while considering
the inherent uncertainties of such systems. We benchmark two
optimization algorithms to manage the EMS, and compare them
with a heuristic. The Model Predictive Control (MPC) is a well
known algorithm which models the future uncertainties with
a deterministic forecast. By contrast, Stochastic Dual Dynamic
Programming (SDDP) models the future uncertainties as prob-
ability distributions to compute optimal policies. We present a
fair comparison of these two algorithms to control microgrid.
A comprehensive numerical study shows that i) optimization
algorithms achieve significant gains compared to the heuristic, ii)
SDDP outperforms MPC by a few percents, with a reasonable
computational overhead.

I. INTRODUCTION

A. Context

A microgrid is a local energy network that produces part
of its energy and controls its own demand. Such systems
are complex to control, because of the different stocks and
interconnections. Furthermore, at local scale, electrical de-
mands and weather conditions (heat demand and renewable
energy production) are highly variable and hard to predict;
their stochastic nature adds uncertainty to the system.

We consider here a domestic microgrid (see Figure 1),
equipped with a battery, an electrical hot water tank and a solar
panel. We use the battery to store energy when prices are low
or when the production of the solar panel is above the electrical
demand. The microgrid is connected to an external grid to
import electricity when needed. Furthermore, we model the
building’s envelope to take advantage of the thermal inertia of
the building. Hence, the system has four stocks to store energy:
a battery, a hot water tank, and two passive stocks being the
building’s walls and inner rooms. Two kind of uncertainties
affect the system. First, the electrical and domestic hot water
demands are not known in advance. Second, the production
of the solar panel is heavily perturbed because of the varying
nebulosity affecting their production.

We aim to compare two classes of algorithms to tackle the
uncertainty in microgrid Energy Management Systems (EMS).
The renowned Model Predictive Control (MPC) algorithm
views the future uncertainties with a deterministic forecast.
Then, MPC relies on deterministic optimization algorithms
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Figure 1. Electrical microgrid

to compute optimal decisions. The contender — Stochastic
Dual Dynamic Programming (SDDP) — is an algorithm based
on the Dynamic Programming principle. Such algorithm com-
putes offline a set of value functions by backward induction;
optimal decisions are computed online as time goes on, using
the value functions. We present a balanced comparison of these
two algorithms, and highlight the advantages and drawbacks
of both methods.

B. Litterature

1) Optimization and energy management systems: Energy
Management Systems (EMS) are integrated automated tools
used to monitor and control energy systems. The design of
EMS for buildings has raised interest in recent years. In [1],
the authors give an overview concerning the application of
optimization methods in designing EMS.

The well-known Model Predictive Control (MPC) [2] has
been widely used to control EMS. We refer notably to [3], [4],
[5] for applications of MPC in buildings. Different solutions
are investigated to tackle uncertainties, such as Stochastic
MPC [3] or robust optimization [6].

2) Stochastic Optimization: as we said, at local scale, elec-
trical demand and production are highly variable, especially
as microgrids are expected to absorb renewable energies. This
leads to pay attention to stochastic optimization approaches.
Apart from microgrid management, stochastic optimization
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has found some applications in energy systems (see [7] for
an overview). Historically, stochastic optimization has been
widely applied to hydrovalleys management [8]. Other appli-
cations have arisen recently, such as integration of wind energy
and storage [9] or insulated microgrids management [10].

Stochastic Dynamic Programming (SDP) [11] is a gen-
eral method to solve stochastic optimal control problems.
In energy applications, a variant of SDP, Stochastic Dual
Dynamic Programming (SDDP), has proved its adequacy for
large scale applications. SDDP was first described in the
seminal paper [8]. We refer to [12] for a generic description
of the algorithm and its application to the management of
hydrovalleys. A proof of convergence in the linear case is
given in [13], and in the convex case in [14].

With the growing adoption of stochastic optimization meth-
ods, new researches aim to compare algorithms such as SDP
and SDDP with MPC. We refer to the recent paper [15].

C. Structure of the paper

We detail a modelling of the microgrid in Sect. II, then
formulate an optimization problem in Sect. III. We outline the
different optimization algorithms in Sect. IV. Finally, we pro-
vide in Sect. V numerical results concerning the management
of the microgrid.

II. ENERGY SYSTEM MODEL

In this section, we depict the physical equations of the
energy system model described in Figure 1. These equations
write naturally in continuous time t. We model the battery
and the hot water tank with stock dynamics, and describe
the dynamics of the building’s temperatures with an electrical
analogy. Such physical model fulfills two purposes: it will be
used to assess different control policies; it will be the basis of
a discrete time model used to design optimal control policies.

A. Load balance

Based on Figure 1, the load balance equation of the
microgrid writes, at each time t:

φpv(t) + fne(t) = f b(t) + f t(t) + fh(t) + del(t) . (1)

We now comment the different terms. In the left hand side of
Equation (1), the load produced consists of

• the production of the solar panel φpv(t),
• the importation from the network fne(t), supposed non-

negative (we do not export electricity to the network).

In the right hand side of Equation (1), the electrical demand
is the sum of

• the power exchanged with the battery f b(t),
• the power injected in the electrical heater f t(t),
• the power injected in the electrical hot water tank fh(t),
• the inflexible demands (lightning, cooking...), aggregated

in a single demand del(t).

B. Energy storage

We consider a lithium-ion battery, whose state of charge at
time t is denoted by b(t). The state of charge is bounded:

b ≤ b(t) ≤ b . (2)

Usually, we set b = 30% × b so as to avoid empty state of
charge, which proves to be stressful for the battery. The battery
dynamics is given by the differential equation

db

dt
= ρc(f

b(t))+ − 1

ρd
(f b(t))− , (3)

with ρc and ρd being the charge and discharge efficiency
and f b(t) denoting the power exchange with the battery. We
use the convention f+ = max(0, f) and f− = max(0,−f).

As we cannot withdraw an infinite power from the battery
at time t, we bound the power exchanged with the battery:

− f b ≤ f b(t) ≤ f b . (4)

C. Electrical hot water tank

We use a simple linear model for the electrical hot water
tank dynamics. At time t, we denote by Th(t) the temperature
inside the hot water tank. We suppose that this temperature is
homogeneous, that is, that no stratification occurs inside the
tank.

At time t, we define the energy h(t) stored inside the tank
as the difference between the tank’s temperature Th(t) and a
reference temperature T ref

h(t) = ρVhcp
(
Th(t)− T ref

)
, (5)

where Vh is the tank’s volume, cp the calorific capacity of
water and ρ the density of water. The energy h(t) is bounded:

0 ≤ h(t) ≤ h . (6)

The enthalpy balance equation writes

dh

dt
= βhf

h(t)− dhw(t) , (7)

where

• fh(t) is the electrical power used to heat the tank,
satisfying

0 ≤ fh(t) ≤ fh , (8)

• dhw(t) is the domestic hot water demand,
• βh is a conversion yield.

A more accurate representation would model the stratification
inside the hot water tank. However, this would greatly increase
the number of states in the system, rendering the numerical
resolution more cumbersome. We refer to [16] and [17] for
discussions about the impact of the tank’s modeling on the
performance of the control algorithms.
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D. Thermal envelope

We model the evolution of the temperatures inside the
building with an electrical analogy: we view temperatures as
voltages, walls as capacitors, and thermal flows as currents. A
model with 6 resistances and 2 capacitors (R6C2) proves to
be accurate to describe small buildings [18]. The model takes
into account two temperatures:
• the wall’s temperature θw(t),
• the inner temperature θi(t).

Their evolution is governed by the two following differential
equations

cm
dθw

dt
=
θi(t)− θw(t)

Ri +Rs︸ ︷︷ ︸
Exchange

Indoor/Wall

+
θe(t)− θw(t)

Rm +Re︸ ︷︷ ︸
Exchange

Outdoor/Wall

+ γf t(t)︸ ︷︷ ︸
Heater

+
Ri

Ri +Rs
Φint(t)︸ ︷︷ ︸

Radiation
through windows

+
Re

Re +Rm
Φext(t)︸ ︷︷ ︸

Radiation
through wall

, (9a)

ci
dθi

dt
=
θw(t)− θi(t)
Ri +Rs︸ ︷︷ ︸

Exchange
Indoor/Wall

+
θe(t)− θi(t)

Rv︸ ︷︷ ︸
Ventilation

+
θe(t)− θi(t)

Rf︸ ︷︷ ︸
Windows

+ (1− γ)f t(t)︸ ︷︷ ︸
Heater

+
Rs

Ri +Rs
Φint(t)︸ ︷︷ ︸

Radiation
through windows

, (9b)

where we denote
• the power injected in the heater by f t(t),
• the external temperature by θe(t),
• the radiation on the wall by Φext(t),
• the radiation through the windows by Φint(t).

The time-varying quantities θe(t), Φint(t) and Φext(t) are ex-
ogeneous. We denote by Ri, Rs, Rm, Re, Rv, Rf the different
resistances of the R6C2 model, and by ci, cm the capacities of
the inner rooms and the walls. We denote by γ the proportion
of heating dissipated in the wall through conduction, and by
(1− γ) the proportion of heating dissipated in the inner room
through convection.

E. Continuous time state equation

We denote by x = (b, h, θw, θi) the state, u = (f b, f t, fh)
the control, and w = (del, dhw, φpv) the uncertainties. The
continuous state equation writes

ẋ = F (t, x, u, w) , (10)

where the function F is defined by Equations (3)-(7)-(9).

III. OPTIMIZATION PROBLEM STATEMENT

Now that we have described the physical model, we turn
to the formulation of a decision problem. We aim to compute
optimal decisions that minimize a daily operational cost, by
solving a stochastic optimization problem.

A. Decisions are taken at discrete times

The EMS takes decisions every 15 minutes to control the
system. Thus, we have to provide decisions in discrete time.

We set ∆ = 15mn, and we consider an horizon T0 = 24h.
We adopt the following convention for discrete processes:
for t ∈ {0, 1, · · · , T = T0

∆ }, we set xt = x(t∆). That is, xt
denotes the value of the variable x at the beginning of the
interval [t∆, (t + 1)∆[. Otherwise stated, we will denote by
[t, t+ 1[ the continuous time interval [t∆, (t+ 1)∆[.

B. Modeling uncertainties as random variables

Because of their unpredictable nature, we cannot anticipate
the realizations of the electrical and the thermal demands. A
similar reasoning applies to the production of the solar panel.
We choose to model these quantities as random variables (over
a sample space Ω). We adopt the following convention: a
random variable will be denoted by an uppercase bold letter Z
and its realization will be denoted in lowercase z = Z (ω). For
each t = 1, . . . , T , we define the uncertainty vector

W t = (Del
t ,D

th
t ,Φ

pv
t ) , (11)

modeled as a random variable. The uncertaintyW t takes value
in the set Wt = R3.

C. Modeling controls as random variables

As decisions depend on the previous uncertainties, the
control is a random variable. We recall that, at each discrete
time t, the EMS takes three decisions:
• how much energy to charge/discharge the battery F bt ,
• how much energy to store in the electrical hot water

tank F ht ,
• how much energy to inject in the electrical heater F tt .

We write the decision vector (random variable)

U t = (F bt ,F
h
t ,F

t
t ) , (12)

taking values in Ut = R3.
Then, between two discrete time indexes t and t + 1, the

EMS imports an energy F net+1 from the external network. The
EMS must fulfill the load balance equation (1) whatever the
demand Del

t+1 and the production of the solar panel Φpv
t+1,

unknown at time t. Hence F net+1 is a recourse decision taken
at time t+ 1. The load balance equation (1) now writes as

F net+1 = F bt + F tt + F ht + Del
t+1 −Φpv

t+1 P− a.s. , (13)

where P − a.s. indicates that the constraint is fulfilled in the
almost sure sense. Later, we will aggregate the solar panel
production Φpv

t+1 with the demands Del
t+1 in Equation (13), as

these two quantities appear only by their sum.
The need of a recourse variable is a consequence of

stochasticity in the supply-demand equation. The choice of the
recourse variable depends on the modeling. Here, we choose
the recourse F net+1 to be provided by the external network,
that is, the external network mitigates the uncertainties in the
system.
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D. States and dynamics
The state becomes also a random variable

Xt = (Bt,Ht,θ
w
t ,θ

i
t) . (14)

It gathers the stocks in the battery Bt and in the electrical
hot water tank Ht, plus the two temperatures of the thermal
envelope (θit,θ

w
t ). Thus, the state vector Xt takes values

in Xt = R4.
The discrete dynamics writes

xt+1 = ft(xt, ut, wt+1) , (15)

where ft corresponds to the discretization of the continuous
dynamics (10) using a forward Euler scheme, that is, xt+1 =
xt + ∆ × F (t, xt, ut, wt+1). By doing so, we suppose that
the control ut and the uncertainty wt+1 are constant over the
interval [t, t+ ∆[.

The dynamics (15) rewrites as an almost-sure constraint:

Xt+1 = ft
(
Xt,U t,W t+1

)
P− a.s. . (16)

We suppose that we start from a given position x0, thus adding
a new initial constraint: X0 = x0.

E. Non-anticipativity constraints
The future realizations of uncertainties are unpredictable.

Thus, decisions are functions of previous history only, that is,
the information collected between time 0 and time t. Such a
constraint is encoded as an algebraic constraint, using the tools
of Probability theory [19]. The so-called non-anticipativity
constraint writes

σ(U t) ⊂ Ft , (17)

where σ(U t) is the σ-algebra generated by U t and Ft =
σ(W 1, · · · ,W t) the σ-algebra associated to the previous
history (W 1, . . . ,W t). If Constraint (17) holds true, the Doob
lemma [19] ensures that there exists a function πt such that

U t = πt(X0,W 1, . . . ,W t) . (18)

This is how we turn an (abstract) algebraic constraint into
a more practical functional constraint. The function πt is an
example of policy.

F. Bounds constraints
By Equations (2) and (6), the stocks in the battery Bt and

in the tank Ht are bounded. At time t, the control F bt must
ensure that the next state Bt+1 is admissible, that is, b ≤
Bt+1 ≤ b by Equation (2), which rewrites,

b ≤ Bt + ∆
[
ρc(F

b
t )+ +

1

ρd
(F bt )−

]
≤ b . (19)

Thus, the constraints on F bt depends on the stock Bt. The
same reasoning applies for the tank power F ht . Furthermore,
we set bound constraints on controls, that is,

− f b ≤ F bt ≤ f
b
, 0 ≤ F ht ≤ f

h

t , 0 ≤ F tt ≤ f
t

t . (20)

Finally the load-balance equation (13) also acts as a constraint
on the controls. We gather all these constraints in an admissible
set on control U t depending on the current state Xt:

U t ∈ Uadt (Xt) P− a.s. . (21)

G. Objective

At time t, the operational cost Lt : Xt × Ut ×Wt+1 → R
aggregates two different costs:

Lt(xt, ut, wt+1) = pet × fnet+1 + pdt ×max(0, θit − θit) . (22)

First, we pay a price pet to import electricity from the network
between time t and t + 1. Hence, electricity cost is equal
to pet × F net+1. Second, if the indoor temperature is below
a given threshold, we penalize the induced discomfort with
a cost pdt × max(0, θit − θ

i
t), where pdt is a virtual price of

discomfort. The cost Lt is a convex piecewise linear function,
which will prove important for the SDDP algorithm.

We add a final cost K : XT → R to ensure that stocks are
non empty at final time T

K(xT ) = κ×max(0, x0 − xT ) , (23)

where κ is a positive penalization coefficient calibrated by
trials and errors.

As decisions U t and states Xt are random, the costs
Lt(Xt,U t,W t+1) become also random variables. We choose
to minimize the expected value of the daily operational cost,
yielding the criterion

E
[ T−1∑
t=0

Lt(Xt,U t,W t+1) +K(XT )
]
, (24)

yielding an expected value of a convex piecewise linear cost.

H. Stochastic optimal control formulation

Finally, the EMS problem translates to a generic Stochastic
Optimal Control (SOC) problem

min
X,U

E
[ T−1∑
t=0

Lt(Xt,U t,W t+1) +K(XT )
]
, (25a)

X0 = x0 , (25b)

Xt+1 = ft
(
Xt,U t,W t+1

)
P− a.s. , (25c)

U t ∈ Uadt (Xt) P− a.s. , (25d)
σ(U t) ⊂ Ft . (25e)

Problem (25) states that we want to minimize the expected
value of the costs while satisfying the dynamics, the control
bounds and the non-anticipativity constraints.

IV. RESOLUTION METHODS

The exact resolution of Problem (25) is out of reach in
general. We propose two different algorithms that provide
policies πt : X0 ×W1 × · · · ×Wt → Ut that map available
information x0, w1, . . . , wt at time t to a decision ut.

A. Model Predictive Control (MPC)

MPC is a classical algorithm commonly used to handle
uncertainties in energy systems. At time t, it considers a
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deterministic forecast (wt+1, . . . , wT ) of the future uncertain-
ties (W t+1, . . . ,W T ) and solves the deterministic problem

min
(ut,··· ,uT−1)

T−1∑
j=t

[
Lj(xj , uj , wj+1)

]
+K(xT ) , (26a)

xj+1 = fj
(
xj , uj , wj+1

)
, (26b)

uj ∈ Uadj (xj) . (26c)

At time t, we solve Problem (26), retrieve the optimal deci-
sions (u

]

t , . . . , u
]

T−1) and only keep the first decision u
]

t to
control the system between time t and t+ 1. Then, we restart
the procedure at time t+ 1.

As Problem (26) is linear and the number of time steps
remains not too large, we are able to solve it exactly for
every t.

B. Stochastic Dual Dynamic Programming (SDDP)

1) Dynamic Programming and Bellman principle: the Dy-
namic Programming method [20] looks for solutions of Prob-
lem (25) as state-feedbacks πt : Xt → Ut. Dynamic Program-
ming computes a serie of value functions backward in time by
setting VT (xT ) = K(xT ) and solving the recursive equations

Vt(xt) = min
u∈Uad

t (xt)

∫
Wt+1

[
Lt(xt, u, wt+1)+

Vt+1

(
ft(xt, u, wt+1)

)]
µoft+1(dwt+1) , (27)

where µoft+1 is a (offline) probability distribution on Wt+1.
Once these functions are computed, we compute a decision

at time t as a state-feedback:

πt(xt) ∈ arg min
u∈Uad

t (xt)

∫
Wt+1

[
Lt(xt, u, wt+1)+

Vt+1

(
ft(xt, u, wt+1)

)]
µont+1(dwt+1) , (28)

where µont+1 is an online probability distribution on Wt+1.
This method proves to be optimal when the uncertain-
ties W 1, . . . ,W T are stagewise independent and when µont =
µoft is the probability distribution of W t in (27).

2) Description of Stochastic Dual Dynamic Programming:
Dynamic Programming suffers from the well-known curse of
dimensionality [11]: its numerical resolution fails for state
dimension typically greater than 4 when value functions are
computed on a discretized grid. As the stateXt in §III-D has 4
dimensions, SDP would be too slow to solve numerically Prob-
lem (25). The Stochastic Dual Dynamic Programming (SDDP)
can bypass the curse of dimensionality by approximating value
functions by polyhedral functions. It is optimal for solving
Problem (25) when uncertainties are stagewise independent,
costs Lt and K are convex and dynamics ft are linear [14].

SDDP provides an outer approximation V kt of the value
function Vt in (27) with a set of supporting hyperplanes
{(λjt , β

j
t )}j=1,··· ,k by

V t(xt) = min
θt∈R

θt , (29a)〈
λjt , xt

〉
+ βjt ≤ θt , ∀j = 1, · · · , k . (29b)

Each iteration k of SDDP encompasses two passes.
• During the forward pass, we draw a scenario x0, . . . , w

k
T

of uncertainties, and compute a state trajec-
tory

{
xkt
}
t=0···T along this scenario. Starting from

position x0, we compute xkt+1 in an iterative fashion:
i) we compute the optimal control at time t using the
available V kt+1 function

ukt ∈ arg min
u∈Uad

t (xt)

∫
Wt+1

[
Lt(x

k
t , u, wt+1)+

V kt+1

(
ft(x

k
t , u, wt+1)

)]
µoft+1(dwt+1) , (30)

and ii), we set xkt+1 = ft(x
k
t , u

k
t , w

k
t+1) where ft is given

by (15).
• During the backward pass, we update the approximated

value functions
{
V kt
}
t=0,··· ,T backward in time along the

trajectory
{
xkt
}
t=0,··· ,T . At time t, we solve the problem

θk+1
t = min

u∈Uad
t (xt)

∫
Wt+1

[
Lt(x

k
t , u, wt+1)+

V k+1
t+1

(
ft(x

k
t , u, wt+1)

)]
µoft+1(dwt+1) , (31)

and we obtain a new cut (λk+1
t , βk+1

t ) where λk+1
t is a

subgradient of optimal cost (31) evaluated at point xt =
xkt and βk+1

t = θk+1
t −

〈
λk+1
t , xkt

〉
. This new cut allows to

update the function V k+1
t : V k+1

t = max{V kt ,
〈
λk+1
t , .

〉
+

βk+1
t }.

Otherwise stated, SDDP only explores the state space around
“interesting” trajectories (those computed during the forward
passes) and refines the value functions only in the correspond-
ing space regions (backward passes).

3) Obtaining online controls with SDDP: in order to com-
pute implementable decisions, we use the following procedure.
• Approximated value functions

{
V t
}

are computed with
the SDDP algorithm (see §IV-B2). These computations
are done offline.

• The approximated value functions
{
V t
}

are then used to
compute online a decision at any time t for any state xt.

More precisely, we compute the SDDP policy πsddpt by

πsddpt (xt) ∈ arg min
u∈Uad

t (xt)

∫
Wt+1

[
Lt(xt, u, wt+1)+

V t+1

(
ft(xt, u, wt+1)

)]
µont+1(dwt+1) , (32)

which corresponds to replacing the value function Vt+1 in
Equation (28) with its approximation V t+1. The decision
πsddpt (xt) is used to control the system between time t
and t+ 1. Then, we resolve Problem (32) at time t+ 1.

To solve numerically problems (30)-(31)-(32) at time t, we
will consider distributions with finite support w1

t , . . . , w
S
t . The

offline distribution µoft+1 now writes: µoft+1 =
∑S
s=1 psδws

t+1

where δws
t+1

is the Dirac measure at wst+1 and (p1, . . . , pS) are
probability weights. The same reasoning applies to the online
distribution µont+1. For instance, Problem (32) reformulates as

πsddpt (xt) ∈ arg min
u∈Uad

t (xt)

S∑
s=1

ps
[
Lt(xt, u, w

s
t+1)+

V t+1

(
ft(xt, u, w

s
t+1)

)]
. (33)
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V. NUMERICAL RESULTS

A. Case study

1) Settings: we aim to solve the stochastic optimization
problem (25) over one day, with 96 time steps. The battery’s
size is 3 kWh, and the hot water tank has a capacity of 120 l.
We suppose that the house has a surface Ap = 20 m2 of solar
panel at disposal, oriented south, and with a yield of 15%. We
penalize the recourse variable Fnet+1 in (22) with on-peak and
off-peak tariff, corresponding to Électricité de France’s (EDF)
individual tariffs. The building’s thermal envelope corresponds
to the French RT2012 specifications [21]. Meteorological data
comes from Meteo France measurements corresponding to the
year 2015.

2) Demands scenarios: we have scenarios of electrical
and domestic hot water demands at 15 minutes time steps,
obtained with StRoBe [22]. Figure 2 displays 100 scenarios
of electrical and hot water demands. We observe that the
shape of these scenarios is consistent: demands are almost
null during night, and there are peaks around midday and
8 pm. Peaks in hot water demands corresponds to showers.
We aggregate the production of the solar panel Φpv and the
electrical demands Del in a single variable Del to consider
only two uncertainties (Del

t ,D
hw
t ).
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Figure 2. Electrical (left) and domestic hot water (right) demand scenarios.

3) Out of sample assessment of strategies: to obtain a
fair comparison between SDDP and MPC, we use an out-of-
sample validation. We generate 2,000 scenarios of electrical
and hot water demands, and we split these scenarios in two
distinct parts: the first Nopt scenarios are called optimization
scenarios, and the remaining Nsim scenarios are called assess-
ment scenarios. We made the choise Nopt = Nsim = 1, 000.

First, during the offline phase, we use the optimization
scenarios to build models for the uncertainties, under the
mathematical form required by each algorithm (see Sect. IV).
Second, during the online phase, we use the assessment sce-
narios to compare the strategies produced by these algorithms.
At time t during the assessment, the algorithms cannot use
the future values of the assessment scenarios, but can take
advantage of the observed values up to t to update their
statistical models of future uncertainties.

B. Numerical implementation

1) Implementing the algorithms: we implement MPC
and SDDP in Julia 0.6, using JuMP [23] as a modeler,
StochDynamicProgramming.jl as a SDDP solver, and
Gurobi 7.02 [24] as a LP solver. All computations run on a
Core i7 2.5 GHz processor, with 16Go RAM.

2) MPC procedure: Electrical and thermal demands are
naturally correlated in time [25]. To take into account such
a dependence across the different time-steps, we chose to
model the process W 1, . . . ,W T with an auto-regressive (AR)
process.

a) Building offline an AR model for MPC: we fit an
AR(1) model upon the optimization scenarios (we do not
consider higher order lag for the sake of simplicity). For
i ∈ {el, hw}, the AR model writes

dit+1 = αitd
i
t + βit + εit , (34a)

where the non-stationary coefficients (αit, β
i
t) are, for all

time t, solutions of the least-square problem

(αit, β
i
t) = arg min

a,b

Nopt∑
s=1

∥∥∥di,st+1 − ad
i,s
t − b

∥∥∥2

2
. (34b)

The points (di,1t , . . . d
i,Nopt

t ) correspond to the optimization
scenarios. The AR residuals (εelt , ε

hw
t ) are a white noise

process.
b) Updating the forecast online: once the AR model is

calibrated, we use it to update the forecast during assessment
(see §IV-A). The update procedure is threefold:

i) we observe the demands wt = (delt , d
hw
t ) between time

t− 1 and t,
ii) we update the forecast wt+1 at time t + 1 with the AR

model

wt+1 =
(
d
el

t+1, d
hw

t+1

)
=
(
αelt d

el
t +βelt , α

hw
t dhwt +βhwt

)
,

iii) we set the forecast between time t + 2 and T by using
the mean values of the optimization scenarios:

wτ =
1

Nopt

Nopt∑
i=1

wiτ ∀τ = t+ 2, · · · , T .

Once the forecast (wt+1, . . . , wT ) is available, it is fed into
the MPC algorithm that solves Problem (26).

3) SDDP procedure: even if electrical and thermal de-
mands are naturally correlated in time [25], the SDDP algo-
rithm only relies upon marginal distributions.

a) Building offline probability distributions for SDDP:
rather than fitting an AR model like done with MPC, we
use the optimization scenarios to build marginal probability
distributions µoft that will feed the SDDP procedure in (30)-
(31).

We cannot directly consider the discrete empirical marginal
probability derived from all Nopt scenarios, because the sup-
port size would be too large for SDDP. This is why we use
optimal quantization to map the Nopt optimization scenarios
to S representative points. We use a Loyd-Max quantization
scheme [26] to obtain a discrete probability distribution: at
each time t, we use the Nopt optimization scenarios to build
a partition Ξ = (Ξ1, · · · ,ΞS), where Ξ is the solution of the
optimal quantization problem

min
Ξ

S∑
s=1

( ∑
wi

t∈Ξs

∥∥wit − w̃st∥∥2

2

)
(35)
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where w̃st = 1
card(Ξs)

∑
wi

t∈Ξs
wit is the so-called centroid

of Ξs. Then, we set for all time t = 0, · · · , T the discrete
offline distributions µoft =

∑S
s=1 psδw̃s

t
, where δw̃s

t
is the

Dirac measure at point w̃st and ps = card(Ξs)/N
opt is the

associated probability weight. We have chosen S = 20 to
have enough precision.

b) Computing value functions offline: then, we use these
probability distributions as an input to compute a set of value
functions with the procedure described in §IV-B2.

c) Using the value functions online: once the value func-
tions have been computed by SDDP, we are able to compute
online decisions with Equation (33)1. SDDP, on the contrary
of MPC, does not update the online probability distribution
µont during assessment to consider the information brought by
the previous observations.

4) Heuristic procedure: we choose to compare the MPC
and SDDP algorithms with a basic decision rule. This heuristic
is as follows: the battery is charged whenever the solar
production Φpv is available, and discharged to fulfill the
demand if there remains enough energy in the battery; the tank
is charged (F ht > 0) if the tank energy Ht is lower than H0,
the heater F tt is switched on when the temperature is below
the setpoint θit and switched off whenever the temperature is
above the setpoint plus a given margin.

C. Results

1) Assessing on different meteorological conditions: we
assess the algorithms on three different days, with different
meteorological conditions (see Table I). Therefore, we use
three distinct sets of Nsim assessment scenarios of demands,
one for each typical day.

Date Temp. (◦C) PV Production (kWh)
Winter Day February, 19th 3.3 8.4
Spring Day April, 1st 10.1 14.8
Summer Day May, 31st 14.1 23.3

Table I
DIFFERENT METEOROLOGICAL CONDITIONS

These three different days corresponds to different heating
needs. During Winter day, the heating is maximal, whereas it
is medium during Spring day and null during Summer day.
The production of the solar panel varies accordingly.

2) Comparing the algorithms performances: during assess-
ment, we use MPC (see (26)) and SDDP (see (32)) strategies
to compute online decisions along Nsim assessment scenarios.
Then, we compare the average electricity bill obtained with
these two strategies and with the heuristic. The assessment re-
sults are given in Table II: means and standard deviation σ are
computed by Monte Carlo with the Nsim assessment scenar-
ios; the notation ± corresponds to the interval ±1.96

σ√
Nsim

,

which is a 95% confidence interval.
We observe that MPC and SDDP exhibit close performance,

and make better than the heuristic. If we consider mean
electricity bills, SDDP achieves better savings than MPC

1 In practice, the quantization size of µont is bigger than those of µoft , to
have a greater accuracy online

SDDP MPC Heuristic

Offline time 50 s 0 s 0 s
Online time 1.5 ms 0.5 ms 0.005 ms

Electricity bill (e)

Winter day 4.38 ± 0.02 4.59 ± 0.02 5.55 ± 0.02
Spring day 1.46 ± 0.01 1.45 ± 0.01 2.83 ± 0.01
Summer day 0.10 ± 0.01 0.18 ± 0.01 0.33 ± 0.02

Table II
COMPARISON OF MPC, SDDP AND HEURISTIC STRATEGIES

during Summer day and Winter day, but SDDP and MPC
display similar performances during Spring day.

In addition, SDDP achieves better savings than MPC for
the vast majority of scenarios. Indeed, if we compare the
difference between the electricity bills scenario by scenario,
we observe that SDDP is better than MPC for about 93%
of the scenarios. This can be seen on Figure 3 that displays
the histogram of the absolute gap savings between SDDP
and MPC during Summer day. The distribution of the gap
exhibits a heavy tail that favors SDDP on extreme scenarios.
Similar analyses hold for Winter and Spring day. Thus, we
claim that SDDP outperforms MPC for the electricity savings.
Concerning the performance on thermal comfort, tempera-
ture trajectories are above the temperature setpoints specified
in §III-G for both MPC and SDDP.

In term of numerical performance, it takes less than a minute
to compute a set of cuts as in §IV-B2 with SDDP on a
particular day. Then, the online computation of a single deci-
sion takes 1.5 ms on average, compared to 0.5 ms for MPC.
Indeed, MPC is favored by the linearity of the optimization
Problem (26), whereas, for SDDP, the higher the quantization
size S, the slowest is the resolution of Problem (32), but
the more information the online probability distribution µont
carries.
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Figure 3. Absolute gap savings between MPC and SDDP during Summer
day

3) Analyzing the trajectories: we analyze now the trajecto-
ries of stocks in assessment, during Summer day. The heating
is off, and the production of the solar panel is nominal at
midday.

Figure 4 displays the state of charge of the battery along
a subset of assessment scenarios, for SDDP and MPC. We
observe that SDDP charges earlier the battery at its maximum.
On the contrary MPC charges the battery later, and does
not use the full potential of the battery. The two algorithms
discharge the battery to fulfill the evening demands. We notice
that each trajectory exhibits a single cycle of charge/discharge,
thus decreasing battery’s aging.
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Figure 5 displays the charge of the domestic hot water tank
along the same subset of assessment scenarios. We observe
a similar behavior as for the battery trajectories: SDDP uses
more the electrical hot water tank to store the excess of PV
energy, and the level of the tank is greater at the end of the
day than in MPC.
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Figure 4. Battery charge trajectories for SDDP and MPC during Summer day
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Figure 5. Hot water tank trajectories for SDDP and MPC during Summer
day

This analysis suggests that SDDP makes a better use of
storage capacities than MPC.

VI. CONCLUSION

We have presented a domestic microgrid energy system,
and compared different optimization algorithms to control the
stocks with an Energy Management System.

The results show that optimization based strategies out-
perform the proposed heuristic procedure in term of money
savings. Furthermore, SDDP outperforms MPC during Winter
and Summer day — achieving up to 35% costs savings — and
displays similar performance as MPC during Spring day. Even
if SDDP and MPC exhibit close performance, a comparison
scenario by scenario shows that SDDP beats MPC most of
the time (more than 90% of scenarios during Summer day).
Thus, we claim that SDDP is better than MPC to manage
uncertainties in such a microgrid, although MPC gives also
good performance. SDDP also makes a better use of storage
capacities.

Our study can be extended in different directions. First,
we could mix SDDP and MPC to recover the benefits of
these two algorithms. Indeed, SDDP is designed to handles
the uncertainties’ variability but fails to capture the time
correlation, whereas MPC ignores the uncertainties’ variabil-
ity, but considers time correlation by means of a multistage
optimization problem. Second, we are currently investigating
the optimization of larger scale microgrids — with different
interconnected buildings — by decomposition methods.
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