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ABSTRACT

Universalmultifractal (UM) analysis was used to investigate the scaling properties of snowfall at high temporal and

spatial resolutions. Snowfall datawere recordedusing a 2Dvideodisdrometer (2DVD) in the SwissAlps. Six 1-h-long

periods of snowfall, half in calm and half in light wind conditions, were selected for analysis. UM analysis was

performedon reconstructed 35-mvertical columnsof snowfall structure, snowfall time series at 100-ms resolution, and

two-dimensional snowflake accumulationmaps over a 5.123 5.12 cm2 area.Multifractal scaling was observed for the

vertical structure of snowparticle number concentration, for scales between about 35 and 4.4m, and sometimes down

to about 0.5m. At smaller scales, no scaling was observed. In high-resolution time series of snowfall, evidence of

scaling was found for scales between about 7min and;26 s in most of the analyzed hours. Snowflake accumulations

within a subset of the small sampling area of the 2DVD showed no scaling properties, suggesting homogeneous

structure in snowfall at the very small (;5 cm) scale,whichagreeswith the results for vertical structure and time series.

1. Introduction

Multifractal analysis is a useful way to study the

properties of precipitation fields. It can provide insights

into their intermittency and extremes and whether they

are invariant to scale or exhibit one or more scaling

regimes in time or space. The framework of universal

multifractals (UMs; Schertzer and Lovejoy 1987a, 1997)

has been used to analyze rainfall over a wide variety of

scales (see, e.g., reviews by Lovejoy and Schertzer 1995;

Schertzer et al. 2010). Few studies have examined the

multifractal properties of snowfall. In this paper we re-

port on multifractal analyses of snowfall recorded using a

2D video disdrometer (2DVD; Kruger and Krajewski

2002; Schönhuber et al. 2008) situated in the Swiss Alps.

Awide variety of data sources havebeenused to study the

multifractal properties of precipitation. At the large and

medium scales, coarser than a few kilometers in space or a

few minutes in time, satellite products (Tessier et al. 1993;

Lovejoy et al. 2008), climate simulations (Royer et al. 2008),

weather model outputs (Gires et al. 2011), weather radars

(Nykanen and Harris 2003; Verrier et al. 2010; Gires et al.

2011), and raingaugedata (e.g., FraedrichandLarnder 1993;

Olsson 1995; Tessier et al. 1996; De Lima and Grasman

1999; Molnar and Burlando 2008; De Lima and De Lima

2009) have been used. At smaller scales, studies have used

lidar (Mandapaka et al. 2009) and disdrometer measure-

ments (De Montera et al. 2009; Gires et al. 2014, 2016).

Previous multifractal work has mostly focused on

liquid precipitation. Molnar and Burlando (2008) stud-

ied gauged precipitation in Switzerland and found

stronger multifractality in summer precipitation than

winter precipitation, which was close to monofractal.

They posited that intraseason variability in scaling

parameters could be caused by mixed rain and snow at

some locations and recommended a study of snow-only

scaling parameters. Shook and Pomeroy (2010) studied

time series of daily snowfall on the Canadian Prairies

and found weak multifractality for scales shorter than

1 month. Spatial distributions of snow accumulations

have been shown to demonstrate fractal behavior
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(e.g., Shook and Gray 1996, 1997; Granger et al. 2002;

Iggy Litaor et al. 2002; Deems et al. 2006). Fabry (1996)

used spectral analysis to study high-resolution time se-

ries (down to 0.1 s) of precipitation, including snow,

captured using a sonic gauge. They performed spectral

analysis and observed scaling in the snowfall time series

with a break at about 20 s, after which little scaling was

observed. They attributed the difference in scaling re-

gimes to mixing-like processes caused by the differing

fall speeds of the hydrometeors.

In this study we used similar methodology to analyses

that were previouslymade on liquid precipitation byGires

et al. (2015), applied to measurements of solid pre-

cipitation. Gires et al. (2015) used data collected using a

2DVD to analyze raindrop distributions at high resolution

in space and time. During the heaviest portions of their

studied rainfall events, they found scaling behavior in

vertical rainfall structure at ranges from 0.5 to 36m, and

homogeneously distributed raindrops at smaller scales. In

this studyweused the same instrument and performed the

same analyses on data recorded in the Swiss Alps in

winter, to test whether multifractality is evident in snow-

fall at high spatial and temporal resolutions. This study is a

first application of multifractal analysis to snow data for

horizontal accumulations of individual snowflakes and

reconstructed vertical columns of snowflake concentra-

tion and mass, and to the best of our knowledge this is the

first time that full UM analysis has been used on snowfall-

only data at temporal resolutions finer than 1 day. The

existence of scaling behavior in snowfall at typical in-

strument sampling area scales could have implications for

the measurement of snowfall at point locations, which is

subject to large uncertainties (e.g., Yang 2014). In this

studywe test whether snowfall exhibits scaling behavior at

such small scales, using high-resolution data.

The rest of this paper is organized as follows. A brief

review of UM analysis is given in section 2. The data

used are presented in section 3. In section 4 the methods

used to treat the data are shown. Results are shown in

section 5, and conclusions are drawn in section 6.

2. UM analysis

In this section, we briefly explain multifractal analysis

with the aim of showing the meaning behind the variables

we analyze in the following sections. For more detail, the

reader is encouraged to refer to the reviewof Schertzer and

Lovejoy (2011) and references therein. Let «l be a field at

resolution l. This field has a spatial dimension d. An ex-

ample of a one-dimensional field is a time series of rain rate

measurements, and an example of a two-dimensional field

is the positions of snowflakes on a plane. The resolution of

the field is l5L/l, where L is the outer scale—the length

of the time series, or the side length of the plane—and l is

the observation scale. The field contains a process that is

assumed to have a mean of one over its outer scale. In this

work, data are normalized by dividing all measured values

by the overall ensemble mean.

Let A be the set of points where the process is active.

In a fractal process, the number of nonoverlapping

d-dimensional boxes with side length l required to cover

all the process points in the field Nl,A is related to the

resolution (e.g., Lovejoy et al. 1987) via the fractal di-

mension DF :

N
l,A

’ lDF . (1)

A sparse set will be covered by fewer boxes, so the

fractal dimension is a measure of sparseness of the

process within its outer scale. Given any single one of

these boxes, the probability that it intersects with the

process set A is

Pr(«
l
)5

N
l,A

N
l

’
lDF

ld
5 l2cF , (2)

where Nl is the number of boxes required to cover the

entire field, and cF 5 d2DF is called the fractal codi-

mension of the process.

The sparseness of the process and the fractal dimen-

sion will change if the process is thresholded by a value

(e.g., Lovejoy et al. 1987). To characterize not just the

process occurrence but also its values, then, a scale-

dependent threshold lg can be used. The probability

that a single box intercepts the thresholded field is then

Pr(«
l
$ lg)’ l2c(g) , (3)

where g is a called a singularity and c(g) is called

the fractal codimension function (Schertzer and

Lovejoy 1987a).

It can be shown (Schertzer and Lovejoy 1987a) that

Eq. (3) is equivalent to a relationship between the

statistical moments of the field and its resolution,

such that

h«qli’ lK(q) , (4)

where h«qli is the (ensemble) mean of «ql, q is a moment

order, and K(q) is called the moment scaling function.

Function K(q) is related to c(g) via the Legendre trans-

form (Parisi and Frish 1985), and for any moment q there

is an associated singularity g. Knowledge of K(q) thus

allows for the field to be characterized at any resolution.

In the UM framework, K(q) can be written as an ex-

pression depending on only three parameters (Schertzer

and Lovejoy 1987a, 1997):
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K(q)5
C

1

a2 1
(qa 2 q)2Hq . (5)

The parameters are as follows:

1) The degree of nonconservation H measures the

scale-dependence of the mean (of the field), such

that h«li’ l2H . Parameter H5 0 for a conservative

field in which h«li5 1 at all resolutions, andH is also

the order of fractional integration (if H is negative)

or derivation (if H is positive) required to transform

the observed field into a conservative field (Schertzer

and Lovejoy 1991; Tessier et al. 1993).

2) The mean intermittency C1 is the fractal codimension

of the mean field. The mean field is the field

thresholded by the singularity associated with

q5 1. This singularity is also equal to C1 if the field

is conservative (Schertzer and Lovejoy 2011). If

C1 5 0 then the mean field is homogeneous. A larger

C1 indicates a sparser mean field. For nonnull fields,

0#C1 # d.

3) The multifractality index a indicates how quickly the

intermittency of the field changes as the considered

singularitymoves away from that associatedwith q5 1,

the singularity of themean field. It thusmeasures where

the process sits on a scale between monofractality (for

which a5 0 and the intermittency is the same for all

thresholds) and log normality (a5 2).

Spectral analysis is used to find H and provides a first

estimate of the scaling behavior of the field. If the field is

multifractal then its power spectra E can be written

E(k)’ k2b , (6)

where k is the wavenumber and b is called the spec-

tral slope, and parameter H is then estimated as

(Tessier et al. 1993)

b5 11 2H2K(2) , (7)

withH taken as zero in Eq. (5) (i.e., considering only the

conservative part). For a given value of q, trace moment

(TM) analysis (e.g., Schertzer and Lovejoy 1987b) can

be used to find K(q): on a log–log plot of l on the x axis

versus h«qli on the y axis, the slope of the line of best fit is

K(q).

The values of C1 and a for a given field can be found

directly using double trace moment (DTM) analysis

(Lavallée et al. 1993), in which the h power of the field is

used. The h power is written «l
(h) and is calculated by

raising the field to the hth power at maximum resolu-

tion, then upscaling. The qth statistical moment of the

h-power field also scales with resolution as described

by a moment scaling function K(q, h), such that

h«(h)ql i’lK(q,h), (8)

and in the case of the UM framework,

K(q,h)5haK(q) . (9)

DTM analysis uses a log–log plot of h on the x axis

versus K(q, h) on the y axis; on the linear part of the

plot, the slope is equal to a and the intercept providesC1

(Lavallée et al. 1993).

TM and DTM analyses rely on the assumption that the

field is conservative. WhenH 6¼ 0, the field is considered

nonconservative and an additional fractional integration

is required before TM and DTM analyses are used to

estimate a and C1 (Schertzer and Lovejoy 1991; Tessier

et al. 1993;DeMontera et al. 2009). In this workweused a

fractional integration in which each one-dimensional re-

alization was transformed individually (see Schertzer and

Lovejoy 1991, appendix B2). When required, these

transformations were performed after the fields had been

divided by the ensemble mean. For a one-dimensional

field «, let I5 «2 h«i, and let F (I) be the Fourier trans-

form of I, i be the complex unit, and k be the wavenumber.

The fractionally integrated field «̂ was calculated as

F (~«)5 ikHF (I) , (10)

«̂5
~«2min(~«)

h~«2min(~«)i h«i . (11)

Note that an inverse Fourier transform is used to convert

F (~«) to ~«, and that as well as subtracting the mean of «,

the zeroth Fourier component was set to zero to force

the mean of each field to be zero (e.g., Tessier et al. 1993).

This fractional transformation corresponds to integra-

tion when H, 0 and derivation when H. 0.

Finite sample sizes mean that there is a maximum sin-

gularity gs for which reliable estimates of the codimension

and moment scaling functions are possible (e.g., Hubert

et al. 1993). Parameter gs has an associated maximum

moment-order qs. To calculate the field at a given reso-

lution, themeasured data (at high resolution) are upscaled

through an iterative process, in which at each step the

observation scale l is doubled to create a lower-resolution

field by averaging adjacent pixels. For this reason, the

outer scale of the field must be a power of two.

3. Data

The data used in this study were collected using a

2DVD (of low-profile type) located at Weissfluhjoch

Versuchsfeld (46.83018N, 9.80968E) near Davos,

Switzerland. The site is in an alpine environment 2540m

above mean sea level. The 2DVD was placed on a

SEPTEMBER 2017 RAUPACH ET AL . 2455



platform about 2m above the ground, between the two

fences of a double fence intercomparison reference

(DFIR; e.g., Goodison et al. 1998) structure. Data used

in this studywere collected during the northern winter of

2014/15. Figure 1 shows the installed instrument.

The 2DVD contains two perpendicularly facing line-

scan cameras, each with an opposing light source, which

detect the shadow, from two angles, of any particle that

falls through its collection area. The imaging resolution

is finer than 0.2mm, and the nominal collection area

is approximately 10 3 10 cm2 (Schönhuber et al. 2007).
The two camera planes are vertically offset so that

particle velocity is measured directly, through the dif-

ference in particle detection time in each camera. The

relative orientation of the two planes is measured using a

calibration procedure and set as a software parameter.

The shape of each particle can be reconstructed using the

two views (Schönhuber et al. 2008). The 2DVD cannot

be considered an absolute reference for snow measure-

ments (Battaglia et al. 2010), and for liquid precipitation

it has been shown to underestimate raindrops under

0.3mm in equivolume diameter (Tokay et al. 2013). This

being said, it is able to provide data on individual

snowflakes at high resolutions, so it remains useful for

this study.

There were collocated meteorological instruments at

the 2DVD location, and we used data from these

instruments to select three 1-h periods duringwhich there

was snowfall and calmwind conditions (mean wind speed

under 1.75ms21), and three 1-h periods in which there

was snowfall and light winds (mean wind speed greater

than 1.75ms21 and less than 5ms21). Wind speed was

measured outside the DFIR by two Young 05103 Wind

Monitors at two heights (3.5m at 1-min resolution and

5.5m at 30-min resolution), temperature was measured

outside the DFIR by a Thygan VTP 6 instrument, and

precipitation was measured inside the DFIR by a Thies

Laser Precipitation Monitor disdrometer [see Roulet

et al. (2014) for information on the meteorological in-

struments]. We found, using the meteorological data, 1-h

periods in which there was snowfall without rain or hail

(as identified by the Thies instrument SYNOP code 4677)

and a temperature of less than 238C. These times were

matched to hours during which the 2DVD recorded

snowflakes with no reported errors or missing time pe-

riods. For each day considered, the matching hour with

the most solid precipitation was selected. Of these se-

lected hours, the three with maximum solid precipitation

for calm winds and light winds, respectively, were ana-

lyzed. The resulting time periods (henceforth referred to

by event number) are summarized in Table 1.

Particles measured by the 2DVDwere processed using

the 2DVDmanufacturer’s software and then filtered and

‘‘rematched’’ based on work by Hanesch (1999) and

FIG. 1. (left) The DFIR structure and (right) the 2DVD instrument installed on a platform between the two fences

near Davos, Switzerland.

2456 JOURNAL OF HYDROMETEOROLOGY VOLUME 18



Huang et al. (2010). For consistency with the manufac-

turer’s filtering, the rematching was made with an output

velocity range from 0.5 to 6ms21, and particles wholly

within the first 512 pixels of both camera lines (before

rematching) were used. Particles that only covered one

linewere excluded. The results of this multifractal analysis

appear robust to varying rematching assumptions. The

2DVD data contained, for each particle, the time stamp

(to the millisecond), velocity (ms21), the particle width

and height recorded by each camera (mm), and the pixel

number of the center of the particle in lines from each

camera. We selected data from the six 1-h periods, plus

10min after each one. Particles that were recorded in the

10min after each event were used only for reconstruction

of the vertical column at the end of the events. During

these periods, 109961 valid particles were recorded. The

measurement area of the 2DVD is not a rectangle

(Schönhuber et al. 2008), and the width of each pixel in

millimeters depends on its distance from the camera. We

selected all particles wholly within a 883 88mm2 region

inside the measurement area and calculated the center

positions in millimeters of each particle from the bottom-

left point of this region. After this selection, 101013 par-

ticles remained (;8%were not in the selected region). To

ensure we sampled snowfall only, particles were only kept

if their velocities were less than 3ms21 [following the

classification shown in Löffler-Mang and Joss (2000)]; this

constraint removed 4.8% of the remaining particles.

4. Data treatment

In this section, the ways that the 2DVD snow par-

ticle data were treated before applying multifractal

analysis are presented. The mass of each solid pre-

cipitation particle was estimated (section 4a). These

masses were then formed into reconstructed ballistic

columns (section 4b) and time series (section 4c).

Two-dimensional particle accumulation maps (section 4d)

were also calculated.

a. Estimation of particle masses

The method of Huang et al. (2015) was used to esti-

mate the mass of each recorded particle from the

2DVD data. Their method is an inversion of the

equations of Böhm (1989), applied to 2DVD data.

Using this technique, the mass m (in grams) of a par-

ticle is calculated as

m5
103ph2

airX

8gr
a

�
A

e

A
c

�1/4

, (12)

where hair (kgm
21 s21) is the air viscosity, ra (kgm

23) is

the air density, and g (m s22) is acceleration due to

gravity. Parameter Ae (m2) is the projected ‘‘shadow’’

area of the particle, and Ac (m
2) is its smallest circum-

scribed area, both taken in a plane normal to the flow.

For application to 2DVD data,Ae is taken as the area of

pixels covered by the particle in one camera view, and

Ac as the area of the minimum ellipse or circle that

covers the particle in the same camera view. The as-

sumption that the ratio of areas is independent of

viewing angle was called ‘‘reasonable’’ by Szyrmer and

Zawadzki (2010).We have added themultiplier of 103 to

convert the mass to grams. Variable X (unitless) is the

Davies number, calculated as

X5

h�
Re
8:5

�(1/2)
1 1

i2
2 1

0:1519

8><
>:

9>=
>;

2

, (13)

and Re (unitless) is the Reynold’s number, which

depends on the particle velocity Vf (m s21):

Re5
2r

a
V

f

h
air

�
A

c

p

�1/2

. (14)

The viscosity and air density were calculated per event

for the 2DVD site. Since viscosity is mainly affected by

temperature, in this work we used the viscosity of dry air.

Air densitywas calculated assuming a relative humidity of

85%. The average viscosity was 1.6723 1025 kgm21 s21,

and the average air density was 0.974kgm23. Particle

areas were calculated using data from one of the 2DVD’s

two cameras (camera A). For a given particle, Ae was

calculated as the area of the ellipse with major and minor

axes equal to the major and minor axes of the bounding

rectangle of the particle. Following Huang et al. (2015), if

Ae/Ac was greater than one, Ac was replaced by the area

of the smallest circle containing the bounding rectangle.

Densities of estimated mass are shown by event in Fig. 2.

TABLE 1. Information on the studied hours of precipitation by

event number (E), showing the studied time, mean wind speed at

3.5m [W3.5 (m s21)], mean wind speed at 5.5m [W5.5 (m s21)],

mean solid precipitation intensity measured by Thies laser

disdrometer [Int (mmh21)], mean temperature [Temp (8C)], and
the number of particles measured by the 2DVD during the hour

(N). The first three selected hours are for calm winds, the second

three for light winds.

E End of hour W3.5 W5.5 Int Temp N

1 1800 UTC 17 Dec 2014 0.7 0.9 1.3 25.3 17 256

2 1100 UTC 26 Dec 2014 0.2 1.6 1.9 212.3 11 878

3 0700 UTC 11 Jan 2015 1.6 0.4 2.7 24.3 13 477

4 1300 UTC 28 Dec 2014 2.2 4.3 1.7 213.2 11 453

5 0700 UTC 27 Jan 2015 4.7 4.2 3.0 211.1 13 432

6 1400 UTC 8 Feb 2015 4.1 4.6 5.3 215.1 17 232
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b. Reconstruction of vertical columns

Just as in Gires et al. (2015), we reconstructed vertical

columns above the 2DVD.Each reconstructed column had

dimensions of 0.0883 0.0883 35m3, and we reconstructed

one column per second of the studied precipitation. For

each second, the height above the instrument for every

particle was calculated using the particle’s velocity (as

measured at the 2DVD), and its center point, and those

within 35m of the instrument were kept. Each column was

divided vertically into 512 boxes, so that each box had a

height of about 68mm. This reconstruction of vertical col-

umns relies on the assumptions that there was no wind,

that particles fell vertically at constant velocity, and that

there were no microphysical processes such as aggregation

or breakup of snowflakes. The grouping of particles into

vertical boxes goes some way toward reducing the effect of

ignoring horizontal movement of the snowflakes and tur-

bulence, but these remain very coarse assumptions. Our

aim in this study is to gain somepreliminary insights into the

vertical structure of falling snow, in the absence of mea-

surements of the true vertical snow column, so we continue

in spite of these obvious limitations.We note that the other

two spatiotemporal ‘‘cuts’’ we use—time series and particle

accumulations—do not rely on these assumptions. Exam-

ples of two reconstructed columns are shown in Fig. 3.

The quantity analyzed was calculated per time and

per box as

X
p
5 �

NP

n

mp
n , (15)

where the sum was taken over all NP particles in the

box. By varying p, different quantities are recovered;

X0 provides the number of particles per box, while X1

equals the total estimated snow mass per box. We

study fields for p equal to 0, 0.5, and 1, with 0.5 included to

show the trend between the two end points. Each

set of 512 values for 1 s of precipitation was assumed

to represent one realization of the solid precipitation

process in the vertical column, and multifractal analysis

was performed on these realizations. As a control dataset,

we also randomly redistributed the particle center points

uniformly in the vertical and performed the same multi-

fractal analysis on these homogeneously distributed fields.

Figure 4 shows the difference between the reconstructed

columns and the homogeneously distributed ones.

Before analyses were performed, all values were nor-

malized by the mean of all data across all realizations.

c. Time series

Because the 2DVD provides information about indi-

vidual particles, we could construct time series at a

chosen time resolution. We used the following formula

to estimate precipitation intensity:

~R
p
5 �

NP

n

�
103 m

n

S
n
Dt

�p

, (16)

where Sn (mm2) is the sampling area, Dt (h) is

the temporal resolution,NP is the total number of particles

over which the sum is taken (i.e., the number of particles

that fell through the collection area during Dt), and we

assume that 1g represents exactly 1000mm3 of water. The

sampling area Sn is calculated for each particle’s width from

cameraA [WA (mm)] andwidth fromcameraB [WB (mm)]

as Sn 5 (882WA/2)(882WB/2), because particles that

were not fully inside the selected sampling area were re-

moved, thus reducing the effective sampling area (e.g.,

Schönhuber et al. 2008; Battaglia et al. 2010). Parameter p is

again a power, such that when p5 0, the quantity produced

is the number of particles observed per time step, and when

p5 1 the intensity is given in millimeters per hour so that it

is equivalent to rain rate if the precipitation was liquid.

FIG. 2. Densities of estimated particle mass by event in

chronological order. The x axis has a log scale.

FIG. 3. Examples of two of the reconstructed columns. Col 1 and

Col 5 correspond to the first and fifth second, respectively, of the

studied hour of precipitation on 11 Jan 2015. A and B correspond to

the two 2DVD cameras. Points show particle locations in the column,

point size shows recorded particle (maximum) width, and color shows

velocity. Diameters calculated using method of Huang et al. (2010).
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For each event, we calculated a time series for a tem-

poral resolution of 0.1 s and cut the time series so that it

contained a power-of-two number of time steps. The

subset chosen contained the largest number of recorded

particles. Figure 5 shows examples of time series, with the

analyzed portions shown in red. Individual data points

were normalized by the overall ensemble mean before

analyses were made. For comparison with the recorded

time series, homogeneous time series were created by

randomly sampling without replacement from the mea-

sured time series values to randomize their order.

d. Particle accumulations

Particle accumulation maps were calculated using

particle positions and widths in millimeters from each

camera, projected onto a grid of pixels with a pixel side

length of 0.1mm. The sampling area was cropped so that

it had a power-of-two number of pixels per side; the

resulting maps are at a resolution of 512 3 512 pixels.

The area in the center of the sampled area was used to

reduce any potential edge effects. Accumulation maps

were calculated by number of accumulated particles per

map, for 10, 50, and 100 particles, up to a maximum of

200 maps, each separate in time. For each map, each

pixel contained the number of snowflakes that covered

that pixel when they were measured. Figure 6 shows

examples of particle maps. The rectangular shapes of

the particles are because the particle is assumed to

completely cover the area defined by the widths from

each camera. These maps were considered to contain

realizations of a two-dimensional field. The numbers of

maps of snowflake accumulations calculated for each

FIG. 4. Snowmass per box and per column, for events 3 and 5, showing the difference between reconstructed and

homogeneously distributed particles. In the reconstructed fields, the particles falling toward the 2DVD over time

are visible as oblique patterns. In the analyzed fields, zeros were filled in where no mass was recorded.

FIG. 5. Time series at 100-ms resolution, showing estimated solid precipitation liquid water intensity ~Rp [(mmh21)p] for events 3 and 5, by

power p. The analyzed sections are shown in red.
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event are shown in Table 2. Just as with the other ‘‘cuts’’

we used, these data were processed in sets (by number of

accumulated particles) and for each set the data were

normalized by the ensemble mean of the set data.

e. Multifractal analysis

For each type of data analyzed (vertical columns, time

series, and accumulation maps), we performed multi-

fractal analysis. For the vertical columns and time series,

analysis was performed for values of p of 0 (particle con-

centration), 0.5, and 1 (particle mass). For the accumula-

tion maps, analyses were performed for 10, 50, and 100

particles per map. First, spectral analysis and TM analysis

were used together to identify scaling regimes; the scaling

regimes were manually identified, with the criteria being

to 1) observe scaling in the spectral analysis (the mean of

the field, represented by resolution at k5 1, was ignored)

and 2) ensure that the TM correlation coefficient r2 was

maximized. DTM analysis was performed for q5 1:5.

Spectral analysis was used to determine whether any ad-

ditional fractional integration was required before TM

and DTM were used. As a first guess of H for the frac-

tional integration, we used ~H5 (b2 1)/2. If ~H was less

than zero, fractional integration of order ~H was used on

each realization before TM and DTM analyses were ap-

plied. Informed by the identified scaling regimes, DTM

analysis was used to estimate values ofa,C1, gs, qs, andH.

To calculate a and C1, the slope of the DTM line on a

neighborhood of seven points on the log10(h) axis was

used. This axis comprises a sequence of 34 evenly spaced

values of log10(h) between 22 and 1. Fractional in-

tegration smoothed the slopes. It can be difficult to de-

termine on which part of the line the slope should be

taken. In this work, we fitted lines using the neighborhood

around center points with log10(h) values between 0 and

0.6 in steps of 0.1, selected the fit with nonzero a and the

highest squared correlation coefficient, and confirmed the

results via visual inspection of the DTM curves.

5. Results

In this section we show results and interpretations of

UM analysis of the three spatiotemporal ‘‘cuts’’ in turn.

a. Vertical columns

Exactly the same analyses were performed on both

reconstructed vertical columns and on the columns in

which the particles were distributed randomly. This was to

ensure that potential scaling results found on the recon-

structed columns were not artifacts of the analysis

methods. The first step in all ourmultifractal analyses is to

FIG. 6. Examples of accumulationmaps from the 11 Jan 2015 event, showing the first maps containing 10, 50, and 100 particles respectively.

TABLE 2. The number of maps found per number of within-map

particles, per event. The snapshots weremade using particles recorded

in a 51.2 3 51.2mm2 subset of the 2DVD measurement area.

Event Particles No. maps

1 10 200

1 50 138

1 100 69

2 10 200

2 50 101

2 100 50

3 10 200

3 50 99

3 100 49

4 10 200

4 50 88

4 100 44

5 10 200

5 50 101

5 100 50

6 10 200

6 50 126

6 100 63
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look at spectral analyses of the fields to see whether

scaling exists, and if so, which ranges of scales display

multifractal properties. Example plots for a single hour of

precipitation (event 3) are shown in Fig. 7. Here we

compare the spectral analysis of reconstructed vertical

column data and of vertical columns in which the particles

were randomly distributed in a uniform way.

The spectral analysis of fields with homogeneous par-

ticle distributions shows, as expected, a slope of zero. On

the other hand, the reconstructed columns show a section

inwhich scaling is observed over scales down to about 4m

in all cases, and down to 1–2 m on the events with light

wind and p5 0. Just over half of these fields had negative

values of ~H, and thus on those fields, fractional

integration of order ~H was performed before conducting

the TM and DTM analyses. TM and DTM analyses were

carried out for resolutions of 1–8, corresponding to ob-

servational scales of 35–4.38m. The scaling regimes

shown in the TM analyses often extended more toward

the small scale, as can be seen in Fig. 8, in which the

scaling regime seems to extend to about l5 64 or about

0.5m. For consistency across the spectral analysis results,

however, we analyzed the same scales for all fields. Re-

sults for the analyses of vertical columns are shown in

Table 3. TM and DTM analysis plots for the vertical

columns in the example hour are shown in Fig. 8.

The spectral analyses for vertical columns show

scaling for particle concentrations (p5 0) for scales

FIG. 7. Spectral analyses for vertical columns, for the analyzed hour of precipitation on 11 Jan 2015. Shown are results for p5 0, p5 0:5,

and p5 1 for both (top) reconstructed particle positions (Recon) and (bottom) homogeneously assigned (Homog) particle positions.

FIG. 8. TM andDTManalyses for vertical columns in the analyzed hour of precipitation on 11 Jan 2015, for p5 0. In

this plot, TMl 5 h«qli for a given moment order q, and h is the power to which the field is raised then upscaled.
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down to about 4m. As the power p increases, however,

the quality of the scaling, as measured by b and its associ-

ated correlation coefficient, tends to reduce. This is visible in

Fig. 7 and is likely because increased power implies a larger

impact of heavier snowflakes. Heavier flakes are rarer and

therefore show less scaling over the 35-m column that we

studied. We hypothesize that larger (and thus heavier)

snowflakes decorrelate from atmospheric turbulence at

larger scales, but the studied scales were not large enough

to confirm this.We focuson the casewhere good scalingwas

observed, that is, p5 0 corresponding to columns contain-

ing the vertical distribution of particle concentrations.

TM and DTM analysis were also performed for

the homogeneously distributed particle fields, after

fractional integration using the values of b for the re-

constructed fields (when those fields had integration

performed). These results are shown in Table 4. They

show that with homogeneously distributed particle

TABLE 3.Multifractal analysis results for the reconstructed vertical columns, by event E, for scales from 35m to 4.38m (b calculated for

17.5m to 4.38m). r2 (spec) is squared correlation coefficient for the spectral slope, and r2 (TM) is the squared correlation coefficient for the

TM analysis over the selected scales. The correlation scores for the TM analyses are higher after the use of fractional integration, which

introduces correlation.

Event p b r2 (spec) r2 (TM) a C1 gs qs H

1 0.0 0.33 0.95 0.99 1.47 0.02 0.15 17.18 20.32

1 0.5 0.27 0.92 0.99 1.57 0.02 0.18 13.09 20.35

1 1.0 0.14 0.69 0.99 1.87 0.02 0.25 7.75 20.41

2 0.0 1.23 0.90 1.00 1.99 0.01 0.20 9.30 0.13

2 0.5 1.07 0.91 1.00 2.09 0.02 0.28 6.32 0.06

2 1.0 0.49 0.86 1.00 2.21 0.02 0.31 5.55 20.23

3 0.0 0.56 0.91 1.00 1.28 0.02 0.14 22.48 20.21

3 0.5 0.51 0.91 0.99 1.65 0.02 0.20 10.78 20.23

3 1.0 0.30 0.90 0.99 2.07 0.02 0.28 6.41 20.33

4 0.0 1.45 0.99 1.00 1.94 0.08 0.49 3.57 0.31

4 0.5 1.40 0.97 1.00 1.88 0.06 0.41 4.40 0.26

4 1.0 0.95 0.96 1.00 2.88 0.06 0.54 2.70 0.06

5 0.0 1.27 0.99 1.00 1.98 0.08 0.49 3.52 0.22

5 0.5 1.09 0.97 1.00 2.06 0.04 0.38 4.66 0.09

5 1.0 0.74 0.94 1.00 2.98 0.02 0.42 3.47 20.10

6 0.0 1.46 1.00 1.00 1.82 0.12 0.55 3.15 0.34

6 0.5 1.38 0.98 1.00 2.07 0.07 0.47 3.64 0.26

6 1.0 0.78 0.93 1.00 2.83 0.03 0.43 3.49 20.07

TABLE 4. Multifractal analysis results for vertical columns with homogeneous particle positions, fractionally integrated (when

appropriate) using values of b in Table 3. Results are shown by event E, for scales from 35m to 4.38 m (b calculated for 17.5 m to 4.38 m).

r2 (spec) and r2 (TM) defined as for Table 3.

Event p b r2 (spec) r2 (TM) a C1 gs qs H

1 0.0 0.01 0.14 0.98 1.48 0.01 0.12 21.32 20.33

1 0.5 0.02 0.43 0.98 1.60 0.01 0.15 15.36 20.35

1 1.0 0.03 0.56 0.99 1.90 0.02 0.23 8.42 20.41

2 0.0 0.03 0.32 0.92 2.60 0.00 0.15 10.41 0.12

2 0.5 0.00 0.01 0.92 2.79 0.01 0.25 6.05 0.04

2 1.0 20.02 0.23 0.97 3.10 0.01 0.31 4.76 20.24

3 0.0 20.02 0.34 0.96 1.28 0.01 0.10 33.97 20.21

3 0.5 20.01 0.13 0.96 1.75 0.01 0.17 12.73 20.23

3 1.0 0.00 0.01 0.98 2.14 0.01 0.25 7.20 20.33

4 0.0 0.03 0.70 0.92 2.34 0.00 0.13 13.77 0.23

4 0.5 20.01 0.12 0.93 2.58 0.01 0.25 6.53 0.21

4 1.0 20.05 0.50 0.94 3.59 0.02 0.45 3.06 0.01

5 0.0 20.01 0.06 0.93 2.47 0.00 0.14 12.26 0.14

5 0.5 20.01 0.01 0.93 2.53 0.01 0.26 6.23 0.06

5 1.0 20.00 0.00 0.96 3.47 0.01 0.34 4.05 20.12

6 0.0 20.01 0.25 0.92 2.36 0.00 0.10 16.57 0.23

6 0.5 0.01 0.17 0.92 2.64 0.01 0.23 6.84 0.20

6 1.0 0.02 0.20 0.94 3.53 0.01 0.35 3.93 20.09
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positions, b was close to zero. Where less or no scaling

is observed, for example, for event 1 with p5 1, the

results are similar between the two sets, indicating that

the reconstructed columns contained no clustering and

little scaling, and that in those cases the results of the

TM and DTM analyses are rather an artifact of the

fractional integration that was applied. When scaling is

evident, however, there are differences shown between

the homogeneous and reconstructed results, which

shows that the obtained values are representative of

the underlying physical process and not an artifact of

the analysis technique. For example, when p5 0, there

are, in most cases, differences in the results for the

homogeneous and reconstructed fields. The differences

are particularly clear for the maximum singularity

and moment order in these cases. We note again that

in the light wind cases the assumptions involved in

reconstructing the vertical column have a weaker basis.

In general, the differences in qs tend to decrease with

increasing value of the power p, which aligns with the

results of the spectral analyses. The TM and DTM

analyses show values of a that are outside normal limits

(i.e., greater than 2). We hypothesize that these high

values are due to estimation uncertainty in the DTM

analyses, as well as in the determination of the spectral

slope and thus the degree of fractional integration

applied. They demonstrate the difficulty of estimating

exact values for multifractal properties on this dataset.

Given these uncertainties, the strongest evidence for

scaling in the vertical columns comes from the spectral

analyses, in which there is a clear difference between

the measured and uniformly distributed fields.

In all cases, analyses were carried out on scales rang-

ing from 35 to 4.38m, meaning that the results are valid

only on this range. Further investigations would be

needed to extend these results to larger scales. For these

analyzed scales and p5 0, the DTM analysis shows a

fractal codimension C1 of up to ;0.12, indicating that

the mean field exhibits a low mean intermittency. In

other words, the fractal codimension of the portion of

the field that is greater than the mean singularity (for

q5 1) is small. The multifractality index a is high, which

means that this codimension changes rapidly as it

is thresholded at higher singularities. The differences

between reconstructed and homogeneously distributed

particle concentrations offers evidence that scaling is, at

times, present in vertical snowflake concentrations for

scales between 35 and about 4.4m, and sometimes down

to 0.5m. This evidence of scaling opens the possibility of

numerical simulations of vertical snowfall fields on

this range of scales, using UM. However, noise in the

data, the small dataset, and associated estimation errors

mean that complete simulations would require further

investigation to precisely determine UM parameters.

b. Time series

An example of spectral analysis results for the time

series is shown in Fig. 9. The spectral analyses results

were noisy and had low correlation coefficients for

spectral slope, indicating that the quality of the scaling

is limited. This is common behavior when only one field

realization is available, as was the case for each time

series. It was not possible to distinguish different scal-

ing regimes from these analyses alone, although they

suggested that scaling may be found in some events on

scales from about 1 h to about 1min. For scales under

1min, the spectral analysis results were inconclusive.

Spectral analysis was run for scales from ;27 min to

25.6 s. The values of b produced by spectral analysis of

the time series data showed a small spectral slope and

therefore some scaling for most events, which was

confirmed by comparisons with time series in which the

data order was randomized. In these randomized cases,

little or no scaling was observed. The events with light

FIG. 9. Spectral analyses for the analyzed time series of precipitation on 11 Jan 2015, for recorded and homogeneous

time series.
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wind showed considerably weaker scaling than the

events in calm conditions, with very little scaling shown

in the spectral analysis results for events 4 and 6. The

values of ~H returned by the spectral analyses were

usually negative, so in these cases a fractional in-

tegration of order ~H was performed on each time se-

ries. TM analyses on the resulting fields further confirm

that scaling exists in most of the analyzed events be-

tween scales of;7min and 25.6 s, often with the scaling

break at ;7 min. In some cases the TM plots suggest

that scaling exists down to scales of about half a second,

but the spectral analyses are very noisy for these events

and scales. Examples of TM and DTM plots for the

time series analysis are shown in Fig. 10. UM analysis

results for the time series are shown in Table 5.

Just as for the vertical columns, we compared the

results to those using exactly the same fractional

integration and processing on randomized fields. In the

case of the time series, the UM results were different for

every event and value of p, so we consider that the scaling

shown by these results is not introduced by the data

processing. While the low amount of data means that we

should not put too much emphasis on individual results,

and while some outlier values of a were estimated, we

conclude that scaling can exist in the time series of

snowfall over scales from;7 min down to 25.6 s.We note

that at the average particle fall velocity (1.1ms21), the

lower limit of the scaling regime observed in vertical

columns (4.4m) equates to a time series scale of about 4 s.

While the TM analyses showed scaling at higher resolu-

tions, given the available data and the poor quality of the

time series scaling results on this range of scales, we are

not able to state definitively whether scaling exists in the

time series for scaling regimes from ;25 to 4 s.

TABLE 5. UM analysis results for recorded snowfall time series, for scales from ;7 min to 25.6 s (b calculated for scales from 27 min to

25.6 s). Parameters r2 (spec) and r2 (TM) defined as for Table 3.

Event p b r2 (spec) r2 (TM) a C1 gs qs H

1 0.0 0.70 0.14 0.97 1.53 0.00 0.06 41.44 20.15

1 0.5 0.52 0.10 0.98 1.52 0.00 0.05 53.22 20.24

1 1.0 0.51 0.11 0.96 1.83 0.00 0.09 23.68 20.24

2 0.0 0.72 0.20 0.98 1.57 0.02 0.20 11.36 20.12

2 0.5 0.67 0.23 0.99 1.99 0.01 0.22 8.73 20.15

2 1.0 0.53 0.12 0.99 2.33 0.00 0.12 14.78 20.23

3 0.0 1.05 0.38 0.97 1.60 0.02 0.18 13.09 0.04

3 0.5 1.00 0.34 0.96 0.82 0.03 0.10 74.00 0.02

3 1.0 0.83 0.21 0.96 2.52 0.00 0.11 15.21 20.08

4 0.0 0.01 0.00 0.98 2.86 0.00 0.23 6.53 20.49

4 0.5 0.15 0.02 0.98 2.90 0.01 0.26 5.83 20.42

4 1.0 0.34 0.08 0.97 2.88 0.01 0.29 5.25 20.32

5 0.0 0.26 0.03 1.00 2.66 0.02 0.36 4.29 20.34

5 0.5 0.42 0.07 0.99 2.26 0.01 0.26 6.51 20.27

5 1.0 0.37 0.06 0.96 2.32 0.00 0.17 10.09 20.31

6 0.0 0.05 0.00 1.00 2.03 0.01 0.23 8.16 20.46

6 0.5 0.04 0.00 0.99 2.78 0.01 0.25 6.15 20.47

6 1.0 0.16 0.02 0.96 2.70 0.01 0.26 6.01 20.41

FIG. 10. TM and DTM analyses for the analyzed time series of precipitation on 11 Jan 2015.
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c. Particle accumulations

Results of spectral analysis for accumulation maps with

100 particles, for measured and randomly spatially dis-

tributed particle fields, are shownas an example inFig. 11.

The results of spectral analysis using uniformly randomly

distributed particles are similar to those for the measured

distributions in space, as is shown in Table 6. This is evi-

dence that no scaling is shown in the measured distribu-

tions. For all values of p, the values of b were significantly

lower than two, the dimension of the field. We conclude

that at the analyzed scale of 5.12 3 5.12 cm2, the snow

particles exhibit the same behavior as if they were dis-

tributed homogeneously—that is, as if their positions

were drawn from a uniform distribution. This conclusion

agrees with the analysis of the vertical columns, which

showed no scaling for particle concentrations at scales

below ;0.5–4.4m. These results also suggest that the

2DVD displays homogeneous sampling characteristics.

The exceedance probabilities of the time required to

observe 10, 50, 100, and 500 snowflakes were calculated

[as shown for liquid precipitation in Gires et al. (2015)].

These results are shown in Fig. 12. There is power-law

behavior (a straight line in the log–log plot) shown for

some temporal scales, for example, for accumulations of

50 snowflakes between time periods of about 10 and 30 s.

At themeanobserved snowflake velocity in our six events

(1.1ms21), this range of times corresponds to spatial

scales of 11–33m. The power-law behavior thus supports

the idea that there is some scaling behavior in snow

particle distributions over scales on the order ofmeters to

tens of meters in this context, as we showed in section 5a.

6. Conclusions

In this paperwe have shown the results ofUManalyses

of snowfall at high spatial and temporal resolutions.

Methodologies similar to Gires et al. (2015) were used to

analyze snowfall data. Six 1-h-long periods of snowfall,

with 3h in calm conditions and 3h in light wind condi-

tions, were studied. The data were collected by a 2DVD

in the Swiss Alps in the northern winter of 2014/15.

Multifractal analyses were performed on ballistically

reconstructed vertical columns and high-resolution time

series of quantities derived from particle concentration

and mass, and on two-dimensional snowfall accumula-

tion maps within the sampling window of the 2DVD.

There were some difficulties in estimation of the

multifractal parameters, due to the small range of scales

it was possible to investigate, and the scaling observed

was generally of poor quality. With the available data,

scaling was observed in the vertical columns of particle

concentrations between scales of about 35 and 4.4m

(and sometimes down to 0.5m). At smaller scales the

vertical fields behaved as if they were uniformly

TABLE 6. Results of spectral analysis on accumulated particle

maps, for the number of particles (Num P), for measured

(meas) and homogeneously (hom) distributed particle maps,

per event (E).

E Num P b (meas) r2 (meas) b (hom) r2 (hom)

1 10 1.62 0.93 1.60 0.94

1 50 1.71 0.96 1.71 0.96

1 100 1.72 0.97 1.75 0.97

2 10 1.69 0.95 1.69 0.95

2 50 1.64 0.96 1.65 0.95

2 100 1.56 0.93 1.57 0.94

3 10 1.71 0.96 1.76 0.96

3 50 1.74 0.97 1.74 0.97

3 100 1.74 0.96 1.76 0.97

4 10 1.38 0.88 1.42 0.88

4 50 1.49 0.90 1.53 0.92

4 100 1.53 0.92 1.55 0.93

5 10 1.75 0.96 1.74 0.96

5 50 1.36 0.88 1.36 0.88

5 100 1.62 0.96 1.63 0.97

6 10 1.54 0.92 1.49 0.91

6 50 1.56 0.94 1.58 0.95

6 100 1.56 0.95 1.58 0.95

FIG. 11. Spectral analyses for the analyzed snow accumulation maps on 11 Jan 2015.
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distributed. The results suggested that scaling was

present in some of the snowfall intensity time series, for

scales from ;7 min to ;26 s; this limit of about 26 s is

similar to the results of Fabry (1996). Analysis of two-

dimensional snowflake accumulationmaps over a subset

of the small sampling window of the 2DVD showed no

scaling, which agreed with the other results that showed

little or no scaling at such a small scale. These results are

similar to those previously shown for rainfall (Gires

et al. 2015), in that scaling is found down to some lower

limit in space and time. The lower limits found differ

(e.g., ;4m compared to 0.5m in vertical space). Our

results suggest that the scaling regime in vertical col-

umns of snow could extend to a similar scale as found for

rain, but more snowfall data are required to confirm that

these differences between snowfall and rain are signifi-

cant. Further investigations on larger datasets are

needed to extend the results to a wider range of scales

and to obtain more robust UM parameter estimates that

could be used to fully simulate snowfall fields.
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