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Abstract

We propose a new explicit energy-momentum conserving scheme for the time
integration of Hamiltonian systems. The scheme, which is formally second-order
accurate, is based on two key ideas: the integration during the time-steps of forces
between free-flight particles and the use of momentum jumps at the discrete time
nodes leading to a two-step formulation for the acceleration. Moreover, the scheme
can be used in the framework of slow-fast strategies. The scheme is validated against
classical benchmarks and on a nonlinear wave propagation problem.

1 Introduction

Energy and momentum conservation is an important property of numerical schemes for a
large number of physical problems. For instance, in statistical physics, accurately conserv-
ing first integrals constitutes a fundamental requirement to capture the correct behaviour
of the system. In mechanics, conservation of the mechanical energy (together with momen-
tum) is an important feature for systems such as the acoustics in a piano [3] or nonlinear
contact dynamics [13, 5]. In this work, we consider Hamiltonian systems consisting of
N particles in dimension d (typically, d = 1, 2 or 3) where ¢;, p; € R? are the position
and momentum of the particle i € {1,..., N}. We assume that the Hamiltonian has the
following split form:

H(q,p) = ;pTMlp +V(q), (1)

where ¢ = (q1,...,qn) € R¥ is the position vector of the particles, p = (p1,...,pn) €
R is the momentum vector of the particles, M is the symmetric positive definite mass
matrix and V is the potential energy. The system is thus driven by the equations

¢=M"p, p=-VV(qg. (2)



Several approaches have been proposed to tackle the issue of conservation when inte-
grating numerically (2). A first possibility consists in the use of symplectic schemes [11],
which integrate a modified (not explicitly exhibited, except in certain simple cases) Hamil-
tonian and thus preserve the first integrals of the dynamics over exponentially long times
(with respect to the time-step), up to fluctuations whose amplitudes grow with the time-
step. However, in the case of variable time-steps, symplectic schemes lose their conserva-
tion properties since the modified Hamiltonian changes with the time-step [1]. In the case
where the time-step size is driven by the shape of the Hamiltonian (e.g. in Kepler’s prob-
lem with high eccentricity), a workaround consists in adding a perturbation accounting
for the time-step variation in order for a rescaled dynamic to remain Hamiltonian [9]. In
practice, for mechanical problems, such a condition on the time-step can become imprac-
tical, since the time-step could be imposed due to coupling or stiffness phenomena not
accounted for in the Hamiltonian part. For an extended review of variational integrators
in mechanics, we refer the reader to [22]. Another approach consists in imposing the exact
conservation of energy and momentum at each step of the numerical scheme. Integrating
on the constant energy manifold can be carried out using projection [14] or Lie group
integration [15], but these methods are computationally expensive as soon as the mani-
fold of constant energy and momentum has a complex shape. Another class of methods,
energy-momentum conserving schemes, have been proposed in [25, 7, 13, 3] for nonlinear
mechanics, contact mechanics and nonlinear wave equations, among others. The general
principle is to integrate the nonlinear forces at a special time during the time-step, which
is determined through a nonlinear implicit procedure. A higher-order version of these im-
plicit schemes has been derived for linear wave propagation in [2]. Variational integrators
combining features of symplectic and energy-momentum schemes have been developed for
variable time-step strategies [16] and nonlinear mechanical problems in [§].

To the best of our knowledge, no explicit energy-momentum conserving scheme has
been proposed to date for nonlinear problems. With the motivation that explicit schemes
often result in greater computational efficiency, the goal of the present work is to develop
such an explicit scheme for nonlinear mechanics. The present scheme hinges on two
key ideas. The first one, already considered in [21], is to approximate the dynamics of
the particles by free-flight trajectories during each time-step. The second one is to use
momentum jumps at the discrete time nodes to approximate the acceleration. In doing so,
we circumvent the negative result on the existence of explicit schemes in [3, Lemma 3.3]
through the use of a two-step strategy. This idea has some links with the implicit energy-
conserving average vector field method [23] where the conservation of the Hamiltonian is
formulated using an implicit integral of the forces derived from the potential V' over the
time-step. A high-order generalization of the average vector field method using collocation
has been developed in [10]. The present numerical scheme shares with average vector
field methods the salient feature of average force integration on each time-step. However,
the two schemes differ on the discretisation of the acceleration, which is based here on
momentum jumps.

A further development of the present work is to show that our scheme lends itself to
slow-fast decompositions as presented in [11], with the goal to further reduce the compu-
tational cost of the simulation. In the case of mechanical systems with local stiffness, the
conditional stability of an explicit time-integration scheme typically involves small time-
steps for the whole system. A promising direction to mitigate this drawback consists
in using a local time-stepping strategy. In the linear case, explicit high-order energy-
momentum conserving methods with local time-stepping have been proposed in [4]. In
the nonlinear case, a modified Stormer—Verlet method for Hamiltonian systems contain-



ing slow and fast components is developed in [11]. It is proved that this time-integrator
remains symplectic, but the ratio of the fast and slow time-steps strongly influences the
error on the total energy and, in general, a good balance has to be found experimentally.
This phenomenon is called resonance since it is encountered for certain slow /fast ratios.
Similarly, asynchronous variational integrators generally exhibit resonances when the local
time-steps are close to certain rational ratios, so that ensuring stability requires adequate
fitting of the local time-steps [6]. In contrast, the present numerical scheme allows to
make rigorous slow-fast integration and local time-stepping while exactly conserving a
discrete energy.

This paper is organized as follows. In Section 2, we present the scheme for a Hamil-
tonian system of interacting particles with a synchronous time-integration and establish
the main properties of the scheme. In Section 3 we test the synchronous scheme on var-
ious benchmarks from the literature and on a nonlinear wave propagation problem. In
Section 4, we present the slow-fast and local time-stepping capabilities of the scheme,
together with numerical results on model particle systems connected by springs and on
an inhomogeneous wave equation. These results demonstrate the efficiency gains of the
asynchronous scheme with respect to the synchronous scheme.

2 Synchronous multi-particle scheme

In this section, we present our scheme in its synchronous version and establish its main
properties.

2.1 Definition of the scheme

We consider a sequence of discrete time nodes t"*, n = 0,1,..., with time-steps h,, =
t"*1 — " and time intervals I,, = [t",t""!]. The scheme is written at step n as follows:

knowing p"~'/2, ", and [p]”, one computes
pn+1/2 — pn71/2 + {p]n’ (3&)
q _ q + h M~ 1 n+1/2 (Sb)
1 n+1 ny __ AN
5 (1 + o) = = [ Vi@, (30)

with the free-flight trajectory over the time interval I,, defined by
q"(t) =q" + (t —t" )M 'p"™/? Vtel,. (4)

Here, [p]|"™ represents the jump of the momentum vector at time t", g" the position vector
at time ¢”, and p"*t'/? is the momentum vector between t" and t"*'. We observe that
g™t = @"(t"*1). We initialize the scheme as follows:

p 7 =pt", ¢"=q°, [p]°=0, (5)

where g(t°), p(t°) are the given position and momentum vectors at the initial time t°. The
scheme (3) can alternatively be written as the following 2-step scheme without jumps:

knowing p"~/2, ¢", and p"*t/?, one computes
qn+1 — qn + h M—lpn+1/2 (6&)
1
5 (pn+3/2 n— 1/2 _ / VV An (6b)



with the free-flight trajectory still defined by (4). The initialization of the scheme, equiv-
alent to (5), is as follows:

p ?=p"), q°=4q), p'?=p°). (7)

In the numerical implementation of the scheme, the integral in (3c) (or in (6b)) is
usually not computed exactly but with a quadrature of the form

n

QulFO: 1% 71) = b o St + (L= 2 = [ oyt (8)

where the real numbers w; are the weights and the real numbers \; € [0, 1] define the
quadrature points. Applying the quadrature componentwise for the calculation of the
forces and exploiting that the position of the particles varies linearly in time during the
free flight, we obtain

Qu (TV@ ) Y) = b YTV (Ng" + (1= g™ ) & [ IV(@(e)dr. (9)

and we replace (3¢) with

1

5 ([ [p") = —Qu (VY@ (1)t ) (10)

In what follows, we assume that the quadrature is symmetric:
Vi € {O,...,I}, W; = Wr—; and >\7, = 1_)\1—1'7 (11)

and at least of order two (i.e., that the quadrature integrates exactly affine polynomials).
We also assume that V is of class C?, i.e., V € C*(R*;R). This implies that

Qu (VV(@ @)itmstmt) = [ VVI(@ (t)dt + O(h}). (12)

2.2 Properties of the scheme

We now establish various properties of the scheme: discrete energy conservation (in the
absence of quadrature errors), symmetry (or time-reversibility), second-order accuracy,
and A-stability.

Theorem 1 (Discrete energy conservation). Assume that the quadrature is exact. Then,
the scheme (3) exactly conserves the following discrete modified energy:

1 T
H" — V(qn) + 5 (pn—l/Q) M—lpn—i-l/Q‘ (13)
Moreover, denoting H = H(q(t°), p(t°)) the value of the exact Hamiltonian at the initial
time time t°, we have H" = H° for all n > 0 if the scheme is initialized using (5).
Proof. Using (3.a), (4), and the chain rule, we obtain

d

S V(@ W) = YV (@ (1) - @)(0) = (M) Vv (@)



Integrating in time and using (3c) and the symmetry of M, we infer that

tn+1

V(g™ - V(g = () M V(@)
== () M (1 )
_ (pn+1/2)T M_I; (pn+3/2 . pn—1/2) _

This leads to

1 1
ntly | L[ nt1/2 32 — V(g + = (p V2 L/,
Viq )+2(p ) M~ V(q)+2(p ) M~
showing that H"t! = EI " thereby proving the first assertion. Finally, using the initial-
ization (5), we obtain H” = H°, and this concludes the proof. O

Proposition 2 (Symmetry). If the quadrature (9) is exact or symmetric, then the scheme
(6) is symmetric (or time-reversible).

Proof. Let Y™ = (q", W,p”“ﬂ — p" /)T, Since we are going to consider
positive and negative time-steps in this proof, we denote by sign(h,,) the sign of the time-
step. The numerical scheme can be written as Y™ = &, (Y™) where for a generic
column vector Y = (Y1, Y5, Y3)T, we have

Y, +h, M} <Yz + Slgn;h”)Yz>

2

where we have used the invariance by translation of the quadrature @),,. Therefore, we
have

Y, —h M1 (Y Slgn(h)y)
" 2
@, (V)= Y; - Q. (vv <Y1 LM <Y2 Slg“ )) )
~Y; + 2sign(h,)Qn (vv <Y1 + M- (Y S’lgnznlg>> 0; —h )

It remains to verify that ®,, o ®_,, (Y) = Y using that the quadrature is symmetric
or exact. To fix the ideas, we assume that h, > 0. Let us write Y’ = ®_, (Y') and
Y" =&, (Y'). Since Y/ =Y, — h, M (Yo — 1Y3) and Y + 3Y] = Y5> — 1Y5, we infer
that .

Y/ = Y] + h, M (Y2 4 2Y3’) _ v, (14)

For the second component, we obtain
" / 1 1
V=¥ -Qu (VW (Yt (- h)M 7 (Yo - 5 ¥5) )00
1
= }IQI - Qn (VV <1f1 ‘|‘ tM_l (}/2 - 2Y3>) ;_hn; 0>
1
=¥+ Qu (Y (Yt (Vo — 53 )10 -h) = Y

5



where we have used (14) in the first line and invariance by translation and symmetry of
the quadrature @),, in the second and third lines respectively. The proof that Y, = Y3
follows along similar lines. [

Theorem 3 (Consistency error). Assume that V € C*(R¥;R). If the quadrature (9) is
exact or of order at least two, the scheme (3) has second-order accuracy in time.

Proof. Let q(t),p(t) be the exact solution to (2). Let us consider the column vector
Y (t") = (q(t"), p(tnfl/z);p(tnﬂm),p(t”“/z) —p(t"~1/2))T. The consistency error is defined
as

Y (") — @, (Y ("))

hn ’
where ®;, is defined in the previous proof. Let us denote by n7™!, ni* ni*! the three
components of the consistency error. We have

hanp Tt = q(t"™) — q(t") — h, M 'p(t"T/?),

n+3/2) _ p(¢n—1/

n+1 —

n

hamy ™ =
hamy = 2hamy
where ¢ (t) = q(t") + M~ 'p(t"T1/2)(t — t"). Using a Taylor expansion and the equation
q(t) = M~ 'p(t), we infer that
ha? ™ = haG(t"%) — b, M p(t"H?) + O(h3) = O(K2).

Moreover, since the quadrature is of second-order (at least) so that it can be replaced
by the mid-point quadrature up to O(h3), and using the equations q(t) = M ~'p(t) and
p(t) = —VV(q)(t), we obtain
hamy = hnp(t”+1/2) haVV(G(t"72)) + O(h3)
WD) = h NV (q(t") + Shag(t" 1 2)) + O(h3)
= hnp(t"+1/2) — haVV(q(t"'2)) + O(h3) = O(hy).

We conclude that "™ = O(h?), i.e., the scheme is second-order accurate. [

Proposition 4 (A-stability). Assume that the potential V' is quadratic with a positive
definite Hessian H = D?V . Let \ be the largest eigenvalue of H. Let > 0 be the smallest
eigenvalue of M. Then the scheme (3) is conditionally A-stable under the following CFL

condition:
T < 2\/§ . (15)

Proof. Since the potential V' is quadratic, the dynamical system (2) is linear. Let Z™ be
T

the column vector such that Z" = (q”,p"‘l/z,p”“/z) . Since VV/(q) is by assumption

linear in g, we have VV(§"(t)) = VV(q") + (t — t")HM ~'p"*/2 5o that

1
’ VvV (§"(t))dt = h,VV(q") + §h?VHM*1p”H/2.
Therefore, the scheme (3) can be written as Z" = A, Z" with
In Oy h, M1
An = ON ON IN
—2h,H Iy —hIHM™'

6



The matrix M being symmetric definite positive, its square root M2 is well-defined.
We then observe that

i MY2 0y Oxn M2 oy Oy
A, = Oy M Y2 0y A, Oy MY?2 oy
Oy Oy M—1/2 Oy Oy M1/?

IN Oy hnIN
= On Oy Iy ;
90,8 Iy —hS

where we have introduced the symmetric positive definite matrix § = M~Y2HM /2.

Up to an adequate change of variable to each of the coordinates, it is possible to assume
that S is diagonal. Denoting (0;)1<i<ny the eigenvalues of S, the eigenvalues of A,, are

the eigenvalues of the following matrices, for all i € {1,..., N}:
1 0 hy,
_thgz 1 —h%az
The eigenvalues of a; have a modulus < 1 as long as h,, < \/% Since the eigenvalues o;
of S are positive and smaller than %, we obtain the CFL condition (15). n

Remark 5. The CFL condition (15) is the same as for the Stérmer—Verlet scheme.

Remark 6 (Estimate on the Hamiltonian). The conservation of the discrete modified

T
energy does not imply stability since (p”fl/Q) M~1p"*+1/2 does not have a sign a priori.
Howewver, denoting

o prl2 g prtl2

p = 9 )

and defining the discrete energy

1 (pn—1/2 +pn+1/2)T ML (pn—1/2 +pn+1/2) :

H" =V(q") + ¢

a straightforward calculation shows that
] 1 — n rrn 1 — n
H" = " ((p]") M o] = H o+ S| M) (16)

This implies that 0 < H™ — H™ < O(h2), where we used the identity (16) for the lower
bound and we invoked Theorem 3 for the upper bound. One can also use the identity
(16) during the computations for an on-the-fly monitoring of possible departures of the
conserved discrete modified energy H™ from the discrete energy H™ by checking the value

of §|M~2[p]"|?.
3 Numerical results

In this section, we present numerical results for the scheme (3). We consider classical
benchmarks from the literature and a nonlinear wave equation from [3].



3.1 Convergence study

We perform a convergence study with a single particle in dimension d = 1. The reference
solution is ¢(t) = sin(¢)* + 1, and the corresponding potential energy is

V(g(t)) =8 ((a(t) = D¥* — (a(t) = 1)?) .

We apply the scheme (3) to this Hamiltonian system over 10? seconds using the mid-point
and order 3 and 5 Gauss—Lobatto quadrature rules for the integration of the forces. We
report the {1-error with respect to the reference solution (the sum of the errors at the
discrete time nodes divided by the number of time-steps) in Figure 1 as a function of
the number of force evaluations. We observe that for the three quadrature rules, the
convergence is of second order as expected. The quadrature order does not impact the
convergence rate but has an influence on the computational efficiency. We note that in
this case, the mid-point quadrature rule is more efficient than the order 3 and 5 Gauss—
Lobatto quadrature rules.

106 T A T
Mid point quadrature

10° - Order 3 quadrature .
04 L © Order 5 quadrature  + |
103 | oxe i
102 | R i

10_ X * + B

[y error
X
*
+

1+ x ¥+ 7

10-1 | Lo |
10_2 [ / X * + N
1073 | R |
1074 | / :

1072 . Lol Lol Lol Lol “1 .
102 10® 10* 10° 10% 10" 108

Number of force evaluations

Figure 1: Convergence test: ¢;-convergence for a single particle

3.2 Fermi—Pasta—Ulam

This test case was proposed in [11, Chap. 1.4]. It consists in having stiff linear springs
linked to soft non-linear springs in an alternating way, in dimension d = 1. Figure 2
illustrates the setting.

The Hamiltonian is

1 m w2 m m
5 Z pm 1 +p21 + a4 Z((hi - Q2z'—1)2 + Z(QZZ'—H - q2i)47
i=1 i=1 i=0



q1 q2 cen q2m—1 q2m

stiff soft
harmonic nonlinear

Figure 2: Fermi-Pasta—Ulam test case

with typically w > 1. Introducing the variables

r; = (qoi + q2i*1>/\/§7 Yi = (p2i + p2i71)/\/§7
Tm+i = (QQi - C]2i—1)/\/§> Ym+i = (in - in—l)/\/§7

the Hamiltonian can be rewritten as

1 2m ) w2 m )
H(x,y) = 52% + ?meﬂ
=1 =1

m—1

(Tiv1 — Topirs — T — Tpnpi) + (T + I2m)4> . (17)
i1

1

+ 1 ((% — Tpy1)" +

As the system is Hamiltonian, the total energy of the system should be conserved by
the numerical scheme. The Fermi—Pasta-Ulam system has yet another quasi-invariant.
Letting I;(Zm+j, Ymti) = 3 (yfnﬂ +W21772n+j) be the energy of the jth stiff spring, the
total oscillatory energy I = I1 + Is+- - -+ I,,, is close to a constant value as proved in [11,
p.22[:

I((=(t), y(1))) = I(((0),y(0))) + O(w™).

In our numerical experiment, we set m = 3 and w = 50. Figure 3a (left panel) shows
the variation of the oscillating energies and of the modified energy H™ over time for a
constant time-step h = 1073. The energy exchange between the oscillatory modes is
remarkably similar to the reference solution given in [11, Chap. 1.4] and represented in
Figure 3b (right panel). The reference solution was computed with high accuracy using a
Runge-Kutta 4 integrator with a time-step of A = 10~%. In particular, the total oscillatory
energy I displays fast oscillations around a fixed constant. The conservation of energy is
verified up to machine precision, even with a mid-point quadrature rule.

3.3 Nonlinear wave equation

The setting comes from [3]. The interval 2 = [0, 1] represents a one-dimensional string.
Let £ : R — R be the potential energy, with dimension d = 2. It is assumed that &£
verifies the following conditions:

e Smoothness: &€ is of class C?;
e Convexity: & is strictly convex;

e Coercivity: K > 0 so that £(u) > K|u|? for all u € R?;



1.4 : : : : ~ 1.4
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— 7 ] ——
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Figure 3: Fermi-Pasta—Ulam test case: (a) Energy variation, present scheme, h = 1073 ;
(b) reference RK4 solution, h = 10~*

e Boundedness: IM > 0 so that |[VE(u)|? < M min(E(u), (1 + |ul?)) for all u € R2.
The problem of interest is to find u : Q x R* — R? such that:
Oiu — 0,(VE(D,u)) = 0,
uw(0,t) =0, wu(l,t)=0, (18)
u(z,0) = u’(z), Owu(z,0) = (),
with given initial conditions u® : Q — R? and v° : Q — R2. For a pair (uy, uz) € R?, the
functional £ takes the following value:

2 2
uy + uj
2

Euuz) = L o (VU w)P g — (L w)),

where the parameter a € [0, 1) is related to the tension of the string, such that the string
behavior is nonlinear when o > 0 and the strength of the nonlinearity increases with a.
The following variational formulation in V = H{(2; R?) is considered:

d2
S ([wv)+ [ VE@u) 0w =0, wev. w0

We use H!'-conforming IP; Lagrange finite elements for the space discretization. Let
N be the number of nodes discretizing the string and (¢),.,.,5 be the nodal basis func-
tions associated with the degrees of freedom of the string in the two directions. These
basis functions span the finite-dimensional subspace Vy C V. The space semi-discrete
function approximating the exact solution is ux(t) = 272, (q)i(t)pi(r) € Vy and solves
the following space semi-discrete problem:

d2

dt?
Introducing the vector ¢ = (q1, . .., qan) € R*Y, the following Hamiltonian system has to
be integrated in time:

(/Q uy - ’UN> + /Q VE(&C'U,N) . 8w’UN = 0, \V/’UN € VN, vt > 0.

H(q,p) = ;pTM‘1p+ Vig), €&(q)= /95 (i(@ﬁm) :

=1

10



In our numerical experiments, we consider the values = 0 (which corresponds to the
linear case), a = 0.8 (which corresponds to a mildly nonlinear behavior), and o = 0.99
(which corresponds to a strongly nonlinear behavior). Three numerical simulations are
performed in every case by having the amplitude of the initial condition u° at time t° be
0.01, 0.1 or 0.3. The initial velocity at time t° is always taken to be zero. The results
are reported in Figure 4 where in all cases, a mid-point quadrature is used. The role
played by the nonlinearity can be observed in the fact that the amplitude of u° influences
the vibration of the string. The tension which causes nonlinearity also changes the wave
celerity. We observe an excellent agreement between the present results and the results
obtained in [3]. However, the computational efficiency of the present method is improved
due to its explicit nature and the absence of Newton iterations.

alpha = 0., u0 = 0.01 alpha =0.,u0 =0.1 alpha =0.,u0 =0.3

alpha = 0.8, u0 = 0.3

0.10 \ N\ D
0.05 ./ : \
0.00 Y
0.0

—0.05 0.2

0.4

X o

0.8

-0.10
0

1. 6

. 06 0.8
. t
1.0 g9 02

alpha = 0.99,u0 = 0.3

N\
0.10 \ VAR
0.05 V"X \
0.00 Y X
0.0

~0.05 0.2

0.4

X o

0.8

—0.10
6

1.0 0.8

04 06

10 g 02 7 °

Figure 4: Nonlinear wave equation: Deformations of the string over time with nonlinearity
parameter a = 0 (top), @ = 0.8 (middle), and a = 0.99 (bottom); the amplitude of u" is
up = 0.01 (left), up = 0.1 (middle), and uy = 0.3 (right)

A comparison between the discrete modified energy H™ and the discrete energy H”
in the case a = 0.99 and an amplitude of 0.3 for u° is shown in Figure 5. The discrete
modified energy H"™ is conserved up to machine precision with a mid-point quadrature
rule. As expected, the discrete energy H" is not conserved exactly, even though we observe
that its variations are very moderate.

4 Asynchronous multi-particle scheme
Owing to the CFL condition (15), the time-step can be required to be small in regions

with stiff or nonsmooth dynamics. The overall efficiency of the computation would be
compromised by the large number of integral calculations in the whole domain, while most

11
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Figure 5: Nonlinear wave equation: Energy variation over a unit time interval for a = 0.99
and an amplitude of 0.3 for u°

12



of these would be redundant in smooth regions. We therefore propose an asynchronous
version of the scheme which preserves the general properties of the synchronous version.

4.1 Slow-fast splitting

In order to simplify the presentation of the asynchronous scheme, we limit ourselves here
to the integration of a slow-fast dynamics, i.e., we consider a system with essentially two
distinct time scales. The forces between the particles are supposed to be split into a
"fast" set with an associated time-step hp and a "slow" set with an associated time-step
hs > hr. For example, the splitting can result from the relative stiffness of the forces in
the system. More precisely, we assume that the potential V' can be decomposed into two
slow parts Vg and V), and a fast part Ve:

V(q) = Vr(ar,qm) + Va(am, gs) + Vs(as),

where qr, qs and q); denote respectively the position of the set of fast, slow and mixed
particles, in the sense that mixed particles are submitted to both slow and fast forces. For
instance, the purple particle in Figure 6 and Particle 3 in Figure 7 are mixed particles.
In what follows, we abuse the notation by denoting F', M and S the sets collecting the
indices in {1,..., N} of the fast, mixed and slow particles, respectively. For simplicity, we
assume that the mass matrix M is diagonal and denote M, M, and My the restriction
of M to the F', M and S particles respectively. Still for simplicity, we assume that both
time-steps hg and hp are kept constant.

slow slow mixed fast

< 000 = Q00 41000000

soft soft stiff

Figure 6: Example of system of particles with a slow-fast splitting

4.2 Presentation of the asynchronous scheme

Without much loss of generality, we can suppose that the slow and fast time-steps are
commensurate so that hg = Khyr with K € N*. We then define the coarse time nodes
t" = nhg and the fine time nodes t"™ = t" + mhp for all m € {0, ..., K}.

The asynchronous scheme consists in integrating K times the dynamics of the F' and M
particles with the "fast" forces computed at each time-step of length hAr and in updating
the S particles with the "slow” forces computed once at the end of each time-step of
length hg. The general procedure is depicted in Figure 7 for four particles in the same
configuration as in Figure 6. The efficiency of the asynchronous scheme hinges on the fact
that each particle has a free-flight movement during each time-step, with the neighbouring
particle forces acting only at the end of the time-step.

Let us now describe in more detail the asynchronous scheme over the coarse time inter-
val I,, = [t",¢"T!]. At the beginning, we have at our disposal the triple (p?71/2, n ?+1/2)
for the slow particles (i € S) and the triple (p"~ /% = pr VK712 g0 pm1/2) for the fast
and the mixed particles (i € F'U M). The asynchronous scheme then proceeds as follows
(we use here the two-step formulation which reduces to (6) in the synchronous case):
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Particle 1 Particle 2 Particle 3 Particle 4

tn' q.tn,O
hr an an,0 hr An,0  an,0
7 A VVu(ds, 4y ) —1— 0 VVe(@E", qyy) — hr
A 4 A 4 tn71
QhF AN AN 1 2hF AT, 1 AT, 1
— VVu(ds, Gy ) —— VVE(GE 4y ) —
hF hF
hs
hs | |, V(@) ! s
3he An  AN,2 3he AN,2  AML2
— VVu(ds, 4y;) —— VVE(GE", 4y) —
2hF 2hF
Y Y tn73
hp An  AN,3 Ahp An,3  an,3
* VVi(ds, Gh) —1— VVR(@r”, a4y ) —
3hF 3hF
tn+1 A M M \ tn’4

Figure 7: Asynchronous integration of four particles with a slow-fast synamics, hg = 4hp

e For the fast particles (i € F'), one computes for all m € {0,..., K — 1},

I wm
P = g R, (19a)
m;
tn,m+1 8‘/
n,m+3/2 n,m—1/2 F /anm ATL,TN
Pt [ S 0, R (), (191)

with the free-flight trajectories for the fast and the mixed particles defined as

]- n,m n,m n,m n,m N
") ="+ —p) R —gmy e [ Y Vi e FUM.  (20)
J
e For the mixed particles (i € M), one computes for all m € {0,..., K — 1}, the

position ¢/""*" as in (19a) whereas equation (19b) is replaced by

n,m n,m— g 8V AT, AT, av
P e | E(@r" (0. 417 (1) + 5@ (1), 450) | at
tn.m aqz 8(]1
(21)

where the free-flight trajectories of the slow particles are computed over the coarse
time interval as follows:

1, .
GO =g+ 51, Ve ] vies. (22)

)

e For the slow particles (1 € S), one computes

¢t =g+ hg—p 2, (23a)
m

)\
tm 3ql

. n gl av AT,
P2 U2 g Z/ Mgnm(t), gi(t))dt — 2 (g5(t))dt,

(23b)
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with the free-flight trajectories defined above.

Note that the slow forces between slow and mixed particles need to be evaluated at
every fine time-step. In the worst case scenario, every slow force links a slow particle with
a mixed particle, which results in the asynchronous scheme reverting to the synchronous
scheme. Such a case typically occurs when the particles all interact or when the system
alternates fast and slow forces. On the other hand, the efficiency of the asynchronous
scheme compared to the synchronous scheme is maximal in the case where the mixed
particles constitute a small fraction of the particles and their interaction is limited to a
small fraction of the slow particles. A typical case is a nearest-neighbours interaction with
slow and fast particles located in distinct regions, the mixed particles being confined in
a lower dimensional delimiting interface. In the limit of a large number of particles, the
computational cost per large time-step hg reduces to K integrals of the fast forces and
one integral of the slow forces.

Proposition 7 (Synchronization of particles). Assume that the numerical integration
is exact. Then the numerical scheme (19)-(23) exactly conserves the following discrete
modified energy at the coarse time nodes t™:

" = Vs(qg) + VM(Q?&O7 qs) + VF(Q?’O, q;\}o)

+Z ( n— 1/2) n+1/2+ Z —1/2) p@,1/2‘ (24>
7,€S lEFUM
Proof. Let us set
Hs —VS qs +Z T ( n— 1/2) p;z+1/2’
EI?‘JZ\; :VF(q?ma q}\ljm) + VM(q]T\L/[mv dg‘ tnm + Z ( . 1/2) pn7m+1/27

’LEFUM

for all m € {0,...,K}, so that H" = H2 + H}%,. Following the same calculations as in
the proof of Theorem 1 for equation (23), we infer that

£ ,m—+1 av Anm o 3 "
HE™ = Hg — Z/t —— (dyi (t)ﬂS(t))'(Ms 1ps+1/2> dt.

Similarly, for all m € {0,..., K — 1}, using (19) and (21), we have

n,m+1
t oV

Hn ;m+1 Hn m +
FM nm aqs

ATV, T AN n+1/2
(43" (1), 43(t) - (M 'pg™"?) at,
and summing over m, we obtain

n n, e av g% <P
Hiy " = Hyply = HE + Z/ Bao (@ (0).45(1) - (Mg'pg™”) dt,

which gives the result. O

Remark 8 (Asynchronous discrete energy conservation). The energy H" of Theorem 1 is
not conserved after every integration over a fast time-step hr in the asynchronous setting.
This results from the fact that during a "slow" time-step hg, the effect of forces has been
taken into account for the "fast” particles but not for the "slow" particles.
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4.3 Numerical results

In this section, we present numerical results on the asynchronous scheme. We first con-
sider a variant of the Fermi—Pasta—Ulam system with a slow-fast dynamics and then an
inhomogeneous wave propagation problem.

4.3.1 Fermi—Pasta—Ulam system with slow-fast dynamics

We propose a slight variation of the Fermi—Pasta—Ulam test case in order to assess the
efficiency of the asynchronous multi-particle scheme. Contrary to the usual setting where
stiff and soft springs alternate, we suppose here that the system is composed of one stiff
region and one soft region, delimited by an interface in the middle of the domain. Figure
8 illustrates the setting.

q1 q2 m - -- q2m—1 qom
stiff soft
harmonic nonlinear

Figure 8: Setting for the Fermi-Pasta—Ulam system with slow-fast dynamics

We consider a problem in dimension d = 1. The Hamiltonian is given by

2m

1 2m wQ m
H(p,q) = 5 ZP? + e Z(Qz —qi1)* + Z (giv1 — @)
i—1

i=1 i=m

In the present experiment, we take m = 3 and w = 50. Accordingly, the natural CFL
stability condition is satisfied by taking a large time-step hg < 107! and a small time-step
hr < 2-1073. The dynamics of the particles is presented in Figure 9 for hg = 0.01 and
hrp =2-107*, so that 50 iterations of the fine time-step are carried out for each iteration
of the coarse time-step. Observe that, as expected, the fast particles (1 < i < m) exhibit
oscillations with a typical frequency w, while the slow particles (m + 1 < i < 2m) have
tame nonlinear oscillations with a frequency smaller than 1. Figure 10 shows that the
energy conservation is as perfect for the asynchronous scheme as for the synchronous
scheme with an order 5 Gauss—Lobatto quadrature.

The computational cost of the scheme is proportional to the number AN of force eval-
uations. With an order 5 Gauss—Lobatto quadrature and a total integration time 7', the
numbers of force evaluations N, and N, for the synchronous and asynchronous schemes
respectively on the present slow-fast problem are given by:

N, = 5T2”;L+1, N, = 5T(

F

m+1 n m>
hp hs/) "

Recalling that K = Z—; > 1 is the number of fast steps per slow step, the cost reduction

n of the asynchronous scheme with respect to the synchronous scheme is given by

No 1+ Ginr

n=1F o
N 1+ 50
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Figure 9: Fermi—Pasta—Ulam system with slow-fast dynamics: Position dynamics for the
asynchronous scheme (hg = 0.01, hp = 2-107%)

1.5 x 1071

| Energy‘ variation

1x 107 |

5x 10715 |
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—2 % 10_14 | | | |
0 20 40 60 80 100
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Figure 10: Fermi—Pasta—Ulam system with slow-fast dynamics: Relative energy variation
for the asynchronous scheme (hg = 0.01, hp = 2-107%)

17



For hg = 0.01 and hp = 2-107%, N, = 1.015 - 108, to be compared with N, = 1.75 - 108.
As m increases,

mﬂmlz;
When the number of fast subiterations K increases, n tends to 0.5, which means that the
computational cost reduction of the asynchronous scheme compared to the synchronous
scheme approaches 50%. This is the best-case scenario, since the computational cost is
concentrated on the fast dynamics where frequent evaluations are required, whereas the
slow dynamics is almost costless.

In order to assess the accuracy of the asynchronous scheme, we consider the L* error
of the position of the asynchronous solution with respect to the synchronous solution
using the small time-step hp. Figure 11a (left panel) shows the evolution of the error
as the coarse time-step hg is refined, with fixed fine time-step hp = 10~%. We observe a
second-order convergence of the error. Figure 11b (right panel) displays the evolution of
the error as the fine time-step hy is further refined, with fixed coarse time-step hg = 1072.
We observe that the error decreases until it reaches a plateau, which is due to the error
on the slow particles. These observations confirm that reducing the fine time-step beyond
hr = hs/50 does not significantly improve the error since the error is dominated by the
error on the slow particles. Conversely, the error reduction due to the coarse time-step
reduction is not compromised by the asynchronous scheme.

10

; ; - .
Convergence in hg —+— Convergence in hp —+—

Order 2 ——

L error
—
o
L
. .
L error
fenl
o
NS

. 107° 1074 1072 2-1073
-3 —2 -1
10 1()hg 10 hp

(a) (b)

Figure 11: Fermi-Pasta—Ulam system with slow-fast dynamics: Convergence of the asyn-
chronous scheme (a) with respect to the coarse time-step hg, with fixed fine time-step
hr = 107%, and (b) with respect to the fine time-step hp, with fixed coarse time-step
hg = 1072

4.3.2 Inhomogeneous wave propagation

As a physically relevant variant of the slow-fast test case, we consider the propagation
of a wave in a linear elastic material in dimension d = 1, with an inhomogeneous speed
of sound. Denote the domain €, «° : @ — R and v : Q@ — R initial conditions for
displacement and velocity respectively, and u : (2, RT) — R the displacement, u follows
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the equations:
Opu = O, <c(:1:)28xu) in €,

upn =0,  Gujpn =0, (25)

u(z,0) = u’(z), Owu(x,0) ="(x).
We take © = (0, 1) and we set

10 if x < 0.5,
c(r) = .

1 if x > 0.5.
Setting N € N*, Ax = % and x; = iAx for all i € {0,..., N}, the partial differential
equation (25) can be semi-discretized in space with the following centered finite difference
scheme (which is equivalent to a discretization using H'-conforming P; Lagrange finite
elements after lumping the mass matrix and a mid-point quadrature for the stiffness
matrix):

dQUi 1 .
a2 = Ar? (0(351—1/2)2(%71 — ;) — C($i+1/2)2(ui - Ui+1)) forie{1,...,N -1},
dug duy
YomUNTS T T T T
du;
wi(0) = u(), —(0) = o ()
(26)

Setting ¢ = (u;)o<i<n, P = (dsl;")o<,<N and w;_1/9 = C(x%;”), the ordinary differential

equation in (26) is derived from the following Hamiltonian:

1 = 2 1 al 2 2
H(p7 Q) = 2 Z p; + 2 ZWZ'_NQ(%‘ - Qz‘—l) .
=1 i=1

The CFL condition (15) becomes

A
h<2 2 wie{l,..., N}

O Wi—1/2

For the indices 7 such that z; < 0.5, one must then take h < 0.2Ax, while for z; > 0.5, it
suffices that h < 2Az. In what follows, we therefore set the slow (resp. fast) particules as
the elements i such that x; > 0.5 (resp. x; < 0.5) and define hg = Ax and hp = 0.1Az.
The mixed particle is the particle at the interface between the fast and slow particles.

The numerical solution and the exact solution for the displacement and the velocity
computed with Az = 5x 107 are presented in Figures 12 and 13 respectively. The system
is initialized with the functions

uo(m) = 10_26_(20(36_0'2))2]1(0’0.5) (x), UO(ZL‘) =8(z — 0.2)6_(20(36_0'2))2]1(070.5) ().

The initial condition propagates to the right with the speed of sound ¢; = 10, until
it reaches x = 0.5. At the boundary between the slow and fast domain, it is partly
transmitted to the right with speed of sound ¢, = 1 and partly reflected with speed —c;.
The reflected wave reflects again on the left boundary z = 0 of the domain. Successive
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reflections and transmissions occur, which result in the final state in Figures 12f and 13f.
The numerical solution can be expressed as follows for all ¢ > 0:

C —C

Vz € (0,0.5), u(z,t)=> ( )k (uo(z + k — c1t) — up(k — x — 1)),

k>0 C1 + C2

9 _
Ve e (0.5,1), wu(z,t) = “a (C2 a

k
) Uo (Cl(x —05)+k+05— clt>.
1+ C k>0 C1+ Co Co

The numerical solution matches very well the exact solution. We can observe slight
overshoots near the extrema and at the tail of the peaks, especially in the slow domain.
This can be explained by the fact that the space-discretization (26) is slightly dispersive so
that steep variations tend to generate oscillations (similar to a Gibbs phenomenon). Figure
14 presents the behaviour of the error for the asynchronous and synchronous schemes with
respect to the number of force evaluations. The asynchronous scheme displays similar
errors to the synchronous scheme, with roughly half the number of evaluations involved
as noted in Section 4.3.1. This confirms the improved efficiency of the asynchronous
scheme.

5 Conclusion

In this paper, a new explicit energy-conserving time-integration scheme has been proposed.
It is capable of handling general nonlinear Hamiltonian systems and has been tested
on classical numerical benchmarks and on a nonlinear wave propagation problem. The
present scheme improves the treatment of slow-fast dynamics thanks to rigorous energy
conservation. It also enables the use of local time-stepping strategies to circumvent stiff
CFL condition on the time-step and to enhance computational efficiency.

Various perspectives of the present work can be considered. We believe that the time-
integration of dissipative systems should be a straightforward extension of the present
scheme. Variational integrators have been proposed for dissipative systems and have
proven to be able to accurately track the physical dissipation of energy [17]. Other possible
developments lie in the adaptation of the scheme to constrained Hamiltonian systems [20],
such as mechanical contact problems [18, 26] and rigid body rotations [19, 24, 21]. Another
perspective is the high-order extension of the present scheme.
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