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Abstract

Figure out a situation where, at the beginning of every week, one has to
rank every pair of stochastic processes starting from that week up to the hori-
zon. Suppose that two processes are equal at the beginning of the week. The
ranking procedure is time consistent if the ranking does not change between
this week and the next one. In this paper, we propose a minimalist definition
of Time Consistency (TC) between two (assessment) mappings. With very
few assumptions, we are able to prove an equivalence between Time Consis-
tency and a Nested Formula (NF) between the two mappings. Thus, in a
sense, two assessments are consistent if and only if one is factored into the
other. We review the literature and observe that the various definitions of TC
(or of NF) are special cases of ours, as they always include additional assump-
tions. By stripping off these additional assumptions, we present an overview
of the literature where the specific contributions of authors are enlightened.
Moreover, we present two classes of mappings, translation invariant mappings
and Fenchel-Moreau conjugates, that display time consistency under suitable
assumptions.
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1 Introduction

Behind the words “Time Consistency” and “Nested Formula”, one can find a vast
literature resorting to economics, dynamical risk measures and stochastic optimiza-
tion.

Let us start with economics. In a dynamic bargaining problem, a group of
agents has to agree on a common path of actions. As time goes on and information is
progressively revealed, they can all reconsider the past agreement, and possibly make
new assessments leading to new actions. Stability is the property that the agents will
stick to their previous commitment. Time consistency is a form of stability when an
individual makes a deal between his different selves (agents) along time. The notion
of “consistent course of action” (see , ) is well-known in the
field of economics, with the seminal work of ( ): an individual having
planned his consumption trajectory is consistent if, reevaluating his plans later on, he
does not deviate from the originally chosen plan. This idea of consistency as “sticking
to one’s plan” may be extended to the uncertain case where plans are replaced by
decision rules (“Do thus-and-thus if you find yourself in this portion of state space

with this amount of time left”, Richard Bellman cited in ( ));
( ) addresses “consistency” and “coherent dynamic choice”,
( ) refers to “temporal consistency”. Another classical reference in economics is

(2003)
Dynamic or Time Consistency has been introduced in the context of dynami-
cal risk measures (see , : , : ,
: , , for definitions and properties of coherent and consistent
dynamic risk measures).
In the field of stochastic optimization, Time Consistency has then been studied
for Markov Decision Processes by ( ).

These different origins of Time Consistency contribute to a disparate literature.
First, as Nested Formulas lead naturally to Time Consistency, some authors study
the conditions to obtain Nested Formulas, whereas others focus on the axiomatics of
Time Consistency and obtain Nested Formulas. Second, many definitions cohabit.
For instance, ( ) add translation invariant property with additive
criterion, ( ); ( ) add as-
sumptions of coherent risk measures, and many authors focus on a particular struc-
ture of information (filtration). In this disconnected landscape,

( ) tries to make the connection between “dynamic consistency” for optimal
control problems (economics, stochastic optimization) and “time consistency” for
dynamic risk measures. In this paper, we will focus on Time Consistency, motivated
by dynamic risk measures — where the future assessment of a tail of a process is
consistent with the initial assessment of the whole process, head and tail — but not
limited to them. Below, we sketch our definitions of TC and NF. Our main con-
tribution will be proving their equivalence. Let H and T be two sets, respectively
called head set and tail set. Let A, IF be two sets and let A and F' be two mappings
as follows:

A:HxT—A, F:T—F. (1)



The mapping A is called an aggregator, as it aggregates head-tail in H x T into an
element of A. The mapping F'is called a factor because of the Nested Formula (NF).

Axiomatic for Time Consistency. We start presenting axiomatic of Time Con-
sistency in a nutshell. Depending on the authors, the objects that are manipulated
are either processes ( , ; , ;

: , ) or lotteries ( ,

; , ). These objects are divided into two parts: a
head h and a tail £. On the one hand, we have a way to assess any tail ¢ by means
of a mapping F' (factor), yielding F'(t). On the other hand, we have a way to assess
any couple head-tail (h,t) by means of a mapping A (aggregator), yielding A(h,t).

We look for a consistency property between these two ranking mappings F' and A:

if a tail ¢ is equivalent to a tail ¢, then the two elements (h,t) and (h,t') — that
share the same head — must be such that (h,t) is equivalent to (h,t'). This can be
written mathematically as

F(t)=F{)= A(h,t) = A(h,t"), Y(h,t,t') € H x T?. (TC)

Axiomatic for Nested Formulas. Some authors focus on sufficient conditions
to obtain a Nested Formula ( , : , ). In
a Nested Formula, the assessment F'(t) of any tail ¢ is factored inside the assess-
ment A(h,t) of any head-tail (h,t) by means of a surrogate mapping S as follows:

A(h,t) = S (h, F(1)) . (NF)

Of course, (NF) implies (TC). We will prove the reverse: (TC) implies that there
exists a mapping S such that (NF) holds true.

In Sect. 2, we go through the literature, with the goal of extracting the following
components: what kind of objects are treated, what are the heads and the tails, how
these objects are ranked. In Sect. 3, we formally state our definitions of Time Con-
sistency (TC) and Nested Formula (NF), and we prove their equivalence. We also
provide conditions to obtain analytical properties of the mapping S4* appearing in
the Nested Formula, such as monotonicity, continuity, convexity, positive homogene-
ity and translation invariance. In Sect. 4, we show that our framework covers the
different frameworks reviewed in Sect. 2. Finally, in Sect. 5, we present two classes
of mappings, translation invariant mappings and Fenchel-Moreau conjugates, that
display time consistency under suitable assumptions.

2 Review of the literature

We have screened a selection of papers, in mathematics and economics, touching
Time Consistency and Nested Formula in various settings. Depending on the setting,
we identify the following components, as introduced in Sect. 1: what kind of objects
are treated, what are the heads and the tails, how are these objects ranked. Table 1
sums up our survey.



‘ Article ‘ Objects

Head ‘ Tail ‘ Assessment

& ( Lottery Lottery Lottery from Expected utility
g ( ) fromltos | s+1toT
7 Fottery Lottery Lottery from | Not necessarily
§< ( ) fromltos | s+1toT expected utility
@) p Process Process from | Dynamic
= ( ) rocess f 1t 1toT isk
= rom 1 to s g+ Ot risk measure
=\ Broess Process TIZE(Z)CGTSS rom Coherent
( ) from 1 to 7 | _ stop;;ing time | Tisk measure
Process Process Process from | Coherent
”8%3 ( ) from1ltos | s+1toT risk measure
£ 8 P Process Process from | Coherent
g g rOCess ’
ZL ( ) fromltos | s+1toT risk measure
P ess Process Process from | Dynamic
rom1tos | s 0 risk measure
(2016) from 1 t +1to T isk

Table 1: Sketch of papers selected on Time Consistency and Nested Formulas

2.1 Axiomatic for Time Consistency (TC)

The first group of authors is subdivided between economists, who deal with lotteries
and preferences, and probabilists who deal with stochastic processes and dynamical
risk measures.

2.1.1 Lotteries and preferences

In ( ), ( ) and
( ), the authors deal with lotteries and preferences. A preference is a total, tran-
sitive and reflexive relation. Proper assumptions make it possible that the preference
relation can be represented by a numerical evaluation. Assumptions of monotonicity
and convexity are also made.

In ( ), the authors propose axioms that make that the
preference is represented by an expected utility formula.

By contrast, more general numerical representations are studied in
( ), even if the authors add an hypothesis of additive criterion. A summary of
the assumptions can be found in Table 2.

2.1.2 Dynamic risk measures and processes

In ( ) and ( ), the au-
thors deal with stochastic processes assessed by dynamical risk measures.
In ( ), the author studies a family of conditional risk measures

which are monotonic, invariant by translation and homogeneous. The criterion is
additive.

In ( ), the authors focus on the value
of the stochastic process at the final time step. They use as assessment a particular
class of risk measures, the so-called coherent risk measures.



2.2 Axiomatic for Nested Formulas (NF)
In (2016), (2000) and (2016),

the focus is on exhibiting sufficient conditions to obtain Nested Formulas. All au-
thors study stochastic processes, with an assumption of monotonicity for the assess-
ment, but there are some differences.

In ( ), the authors study coherent risk measures in
their dual form (hence with properties of convexity, invariance by translation and
additive criterion).

In ( ), the author focuses on assessing the value of the process at the
final step with coherent risk measures.

In ( ), the author study how commutation properties
between time aggregators and uncertainty aggregators make it possible to obtain

Nested Formulas.

Article Monotonicity ?Franélatlon Convexity
invariance

Yes No Yes

Zf Yes No Yes
g% ) Yes No Yes
H % Yes Yes No
© Yes Yes Yes

L[ (2007)

o= ( Yes Yes Yes
z é{ ( ) Yes Yes Yes
e ( ) Yes No No

Table 2: Most common assumptions in the selection of papers on Time Consistency
and Nested Formula

3 Main result: equivalence between time consis-
tency and nested formula

In Sect. 1, we have sketched the notions of Time Consistency and Nested For-
mula. Now, in §3.1, we properly define Weak Time Consistency — with minimal
assumptions — and we prove that it is equivalent to a Nested Formula. In §3.2, we
extend definitions and results to Usual and Strong Time Consistency: by adding
order structures, we obtain additional properties. In §3.3, we provide conditions
to obtain analytical properties of the mapping appearing in the Nested Formula,
such as monotonicity, continuity, convexity, positive homogeneity and translation
invariance. Let us introduce basic notations.

Let H and T be two sets, respectively called head set and tail set. Let A, F be
two sets and let A and F' be two mappings as follows:

A HxT—-A, F: T—F. (2)



The mapping A is called an aggregator, as it aggregates head-tail in H x T into an
element of A. The mapping F' is called a factor because of the Nested Formula (NF)
in Sect. 1.

Definition 3.1. With the couple aggregator-factor (A, F) in (2) we associate the
set-valued mapping

SAF . H x Im(F) = A ;
(h.f) s SAF(h f) = {A(ht) | t € FA(f)} 3)

where Im(F) = F(T). We call S4F the subaggregator of the couple (A, F).

3.1 Weak Time Consistency

Definition 3.2 (Weak Time Consistency). The couple aggregator-factor (A, F')
in (2) is said to satisfy Weak Time Consistency (WTC) if we have

Ft)=F{')= A(h,t) = A(h,t"), YVh e H, V(t,t') € T?. (4)

Here is our main result where we characterize the WTC property in terms of the
subaggregator in (3).

Theorem 3.3 (Nested decomposition of WTC mappings). The couple aggregator-
factor (A, F) in (2) is WTC if and only if the subaggregator set valued mapping S
in (3) is a mapping. In that case, the following Nested Formula between mappings
holds true:

A(h,t) = S (h,F(t)), VheH, VteT. (5)

Proof. Note that we always have by Equation (3) that
A(h,t) € SM (h, F(1)) . (6)

1. We suppose that the couple (A, F') is Weak Time Consistent. Consider (h, f)
fixed in H x Im(F'). We are going to show that the set valued mapping S4* is
in fact a mapping, by proving that the set S4(h, f), defined in (3), is reduced
to a singleton. We consider two elements a = A(h,t) and @’ = A(h,t') in the
set SAF(h, f). By definition (3), we have F(t) = F(#') = f. Then, using
the Weak Time Consistency property (4), we deduce A(h,t) = A(h,t’). Thus,
SAE(h, f) is reduced to one value for f € Im(F). The set valued mapping S
is thus a mapping and, using Equation (6), we obtain A(h,t) = S4F (h, F(t))

2. We suppose now that the set valued mapping S4¥, defined in (3), is a map-
ping. Since S4F is a mapping, we deduce by Equation (6) that A(h,t) =
SA4F(h, F(t)) for all ¢ € T. Therefore, we have the implications: F(t) =
F(t') = SM (b, F(t)) = SM (h, F(t')) = A(h,t) = A(h,t'). We conclude
that the weak time consistency property (4) is satisfied.

In both cases, we have shown that Equation (5) holds true. O



Example 3.4 (The couple (AVQRg[- + -], AV@Rg[- | F]) is not Weak Time Con-
sistent). We now give an example inspired from ( , , Sect. 5.3.2,
p. 188) and involving the well known Average Value at Risk. It helps to illustrate
our main result and the notions we have introduced so far.

Let 2 = (w1, we, w3, wy), that we equip with the uniform probability distribution
P = 20w, + 0w + 10w + 100y

We introduce the sets H = T = RI®l = R*. On this finite space €2, the Average
Value at Risk of level § (0 < 8 < 1) of a random variable X : Q@ — R is defined by

(2000)

AV@Rg(X) = min {Oz +

a€cR

1
e[l _am} | )
Let F = {@, {wy, ws}, {w3,w4},Q} be a o-field on the space €2. The Conditional
Average Value at Risk of level 3, of a random variable X : 2 — R with respect to
the o-field F is defined by ( ( ), Example 3):

AV@R4(X | F) = inf {U+

U= EP“X -UJ" ‘ fﬂ} , (8)

1
1—-p
where the infimum is understood point-wise among all random variables U that are
F-measurable, and where the level 5 may be an F-measurable function with values

in an interval [Bumin, Bmax] C [0, 1).
We define two mappings

A:HxT—R F:T—R? (9a)
(h,t) — AV@Rg[h +1] , t— AV@Rg 5[t | F] . (9b)

Consider four elements: a head ho = (0,0,0,0) € H, a first tail ¢y = (3,3,2,1) € T,
a second tail ¢y = (1,3,2,2) € T and an element of the factor’s image fo = (3,2) € F.
On the one hand, the elements F(ty) and F(t[) are equal, because

AV@R5[to]F] = (3;2) = AV@R5[th|TF] . (10)
~——
fo
On the other hand, the elements A(hg, o) and A(hg,t) are not equal, because

The subaggregator S in (3) is not a mapping since
S (ho, fo) = {AV@Rgs[ho + t] | AV@R 5[t | F] = fo} D {2.5; 3}, (12)

and therefore the couple (A, F') in (9) is not Weak Time Consistent.

3.2 Extensions to Usual and Strong Time Consistency

With additional order structures on the image sets A and F of the aggregator A and
of the factor F', and possibly on the head set H — all presented in (2) — we define
two additional notions of Time Consistency, usual and strong.
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3.2.1 Usual Time Consistency (UTC)

Suppose that the image sets A and F are equipped with orders, denoted by <.

Definition 3.5 (Definition of Usual Time Consitency). The couple aggregator-
factor (A, F') in (2) is said to satisfy Usual Time Consistency (UTC) if we have

F(t) < F(t') = A(h,t) < A(h,t'), Yh € H, V(t,t') € T?. (13)
We extend the result of Theorem 3.3 as follows.

Proposition 3.6 (Nested decomposition of UTC mappings). The couple (A, F')
in (2) is UTC if and only if the set valued mapping S*F in (3) is a mapping and is
increasing! in its second argument. In that case, the Nested Formula (5) holds true.

The proof is left to the reader as it follows the proof of Theorem 3.3 with small
variations.

3.2.2 Strong Time Consistency (STC)

Suppose that the head set H and the image sets A and F are equipped with orders,
denoted by <.

Definition 3.7 (Definition of Strong Time Consistency). The couple (A, F) in
Equation (2) is said to satisfy Strong Time Consistency (STC) if we have
< /
Py 2 L) } S A t) < ALY V(K ) EEEXT? . (14)

We extend the results of Theorem 3.3 as follows.

Proposition 3.8 (Nested decomposition for STC mappings). The couple (A, F')
in (2) is STC if and only if the set valued mapping S*F is a mapping increasing in
its first and second arguments. In that case, the Nested Formula (5) holds true.

The proof is left to the reader as it follows the proof of Theorem 3.3 with small
variations.

3.2.3 Summing up results about WTC, UTC and STC

In §3.1 and §3.2, we have introduced three notions of Time Consistency, from the
weakest to the strongest. Of course, we have that a Strong Time Consistent couple
is also Usual Time Consistent, and that a Usual Time Consistent couple is also
Weak Time Consistent. We sum up the different definitions and results in Table 3.

Let X and Y be sets endowed with orders denoted by <. A mapping M : X — Y is said to be
increasing if x < ' = M(z) < M(x').



| Weak (4) = Usual (13) <= Strong (14) |

F(t)=F(t) F(t) < F(t) R,
iy R " F(t) < F(t)
Definition i3 (3 n
A(h,t) = A(h,t A(h,t) < A(h,t
(h,1) = A, ) (O SARY) |
Characterization S4F is a mapping S4F is a mapping
in terms of S4F is a mapping increasing increasing
subaggregator in its second argument in both arguments

Table 3: Characterization of Time Consistency in terms of subaggregator

3.3 Analytical properties of time consistent mappings

Here, we study properties inherited by the subaggregator S in (3) when it is
a mapping, that is, when the couple (A, F) is Weak Time Consistent (see Theo-
rem 3.3). We insist that, in this part, we study how properties of the subaggrega-
tor S4* can be deduced from properties of aggregator A and factor F. Thus, our ap-
proach differs from other approaches in the literature, like

( ), where properties of A are deduced from properties of S4¥ and F. We
focus on monotonicity, continuity, convexity, positive homogeneity and translation
invariance.

3.3.1 Monotonicity

We suppose that the head set H, the tail set T, and the image sets A and F —
all presented in (2) — are equipped with orders, denoted by <. The proof of
the following proposition is left to the reader as a direct application of the Nested
Formula (5).

Proposition 3.9 (Monotonicity). Let the couple (A, F') be Weak Time Consistent,
as in Definition 3.2. If the mapping A is increasing in its first argument, then the
subaggregator S in (3) is increasing in its first argument.

3.3.2 Continuity

We suppose that the head set H, the tail set T, and the image sets A and F are
metric spaces.

Proposition 3.10 (Continuity). Let the couple (A, F') be Weak Time Consistent, as
in Definition 3.2. Assume that the tail set T is compact. If the factor F' is continuous
and if the aggregator A is continuous with a compact image Im(A) = A(H X T), then
the subaggregator S in (3) is continuous on H x Im(F).

Proof. We prove the continuity of the subaggregator S4* on H x Im(F) by using

the sequential characterization of the continuity on metric spaces. For this purpose,
we consider, on the one hand, (h, f) element of H x Im(F) and, on the other hand,
(hy)nen a sequence of elements of H converging to h and (f,)nen a sequence of
elements of Im(F) converging to f. We will show that S4F(h,, f,) converges to



SAE(h, f). We introduce the notation £({w,}) to denote the set of limit points of
a sequence (Uy,)peN-

As f, € Im(F'), there exists an element ¢, € T such that F(t,) = f, for each n.
By the Nested Formula (5), we deduce that

A(hy,ty) = SY (hny F(tn)) = 8P (b, f0) - (15)

We will now show that the set L({A(hn,tn)}) of limit points is reduced to the
singleton {S4%(h, f)}. The proof is in several steps as follows:

1 L({A(h,t,)}) # 0,
2. L({A(hnsta)}) € A(R, L({20})),

)
)

3. A(B,L({tn})) is reduced to the singleton {S4(h, f)},
)

4. L({A(hn,t,)}) = {SF(h, )}
Here is the proof.

1. As the sequence (A hn,t ) takes value in the compact set Im(A), we have
that £({A(h,tn)}) #

2. We prove that £({A(hn,t,)}) C A(h,L({t.})). Let a be an element of the
set £({A(hn,t,)}). By definition of this latter set, there exists a subsequence
(A(hcp(n tcp(n))) converging to a. Now, we know that (he(,))nen converges
to h, but it is not necessarlly the case that (tq>( ))neN converges. However, by
compacity of the tail set T, there exist a subsequence (tqjoq)(n)>n€N converging to
a certain ¢ € £({t,}). As the sequence (A(ham), t¢(n))) is converging to a,
the subsequence (A(hq/ocp(n),tq;oq)(n)))neN is also Convergmg to a. Now that
both inner subsequences converge, we use the continuity of the mapping A,

and obtain that a = limy, oo A(hwes(n), twea(n)) = A(h,t) € A(ﬁ, L({tn}))

3. We prove the equality A(h, £({t,})) = {S*F(h, f)}. Since the set £({t,}) is
not empty by compactness of T, we consider (¢,t') € L({tn})2 any two limits
points of the sequence (t,)nen. As F(t,) = f, and lim,,_,, f,, = f, we deduce
that F(f) = f = F('), by continuity of the factor mapping F. The Nested
Formula (5) gives

A(h,t) = SM (b, F(1)) = SY (R, f) = SYF (b, F(T)) = A(h,T) .
This proves that A(h, £({t,})) = {SAF (h, f)}.
4. Gathering up the previous results, we obtain that
@ # L({Alhn,t)}) € A(h, £({ta})) = {S¥ (R, )} . (16)
We conclude that £({A(hn,t,)}) = {S4F (h, F)}.

From Equation (15), we have the equalities £({S* (hn, fn)}) = L({A(hn,tn)})
= {SAF(h, f)} . Therefore, the sequence S4F(h,,, f,) converges to S4F (h, f). This
ends the proof. O

10



3.3.3 Convexity

As we are dealing with convexity property, we assume that the sets H, T and F in (2)
are vector spaces. We also suppose that the aggregator A: H x T — A in (2) takes
extended real values, that is, A = RU {—o0, +00}.

Proposition 3.11. Let the couple (A, F') be Weak Time Consistent, as in Defini-
tion 3.2. If there exists a nonempty convex subset T C T such that F(T) = Im(F)
and that the restricted function Fir is affine, and if the aggregator A is jointly conver,
then the subaggregator S in (3) is jointly convex on H x Im(F).

Before entering the proof, let us stress the point that, even if the assumption
that the restricted function Fiz be affine may look strong, it is quite realistic and
widespread. Indeed, for example, if the factor mapping F' is the identity mapping
on I, then it satisfies the conditions of Proposition 3.11: Conditional expectation
or Conditional Average Value at Risk are hence encompassed in this framework.

Proof. We introduce the notation epi(M) to denote the epigraph 2 of a mapping M.
We prove that the subaggregator S4 is jointly convex by showing that its epigraph
is jointly convex.

Let ((hl, f1), al) and ((hg, fa2), a2) be two elements of the epigraph epi(S4F) of
the subaggregator. We consequently have a; > S (hy, f1) and ay > SAF (hy, f2)
which by addition to

)\CLl + (1 — )\)CLQ > )\SA’F(hl, fl) + (1 — )\)SA’FU?/Q, f2) s (17)

where A is an element of [0,1]. As, by assumption, F(T) = Im(F), there exist two
elements (1,t3) € T? such that

F(fl) = f1 and F(t_Q) = f2 . (18)
We have the succession of equalities and inequality

Aay + (1= Nag = ASM (b, f1) 4 (1= XS (ha, f2) (by Eq. (17),)
= ASME (hy, F(#1)) + (1 = NS (he, F(£2)),  (by Eq. (18),)
= M(hy, 1) + (1 = N A(ha, T3) | (by Eq. (5),)
> A(Ahy + (1= AN)ho, My + (1 = N)tz) ,  (by convexity of A,)
_ GAF ()\hl + (1= Ao, F(My + (1 - 2)> (by Eq. (5),)
= SAT (A + (1 = Nho, A\F(]) + (1 = N F(£2))
(by affinity of F on T,)
=S4T (Ahy + (1= Nho, M1+ (L= N fa) (by Eq. (18).)

We deduce that the element (()\hl + (1= XNho, A1 + (1 — )\)fg) Aai + (1 — Nas
is in the epigraph epi(S4¥) of the subaggregator. This ends the proof. 0

2Let X be a set. The epigraph of the mapping M : X — RU{—o0, +oo} is defined by epi(M) =
{(z,y) e XxR: M(z) <y} where y is a real number.
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Notice that, if the factor F' is only convex, we cannot conclude in general. For
example, let A(h,t) = h + t be an aggregator and let F'(t) = exp(t) be a factor.
Then the couple (A, F') is Weak Time Consistent with an associated subaggregator
SAE (b, f) = h+ In(f) which is not convex.

3.3.4 Homogeneity

As we are dealing with homogeneity property, we assume that the sets H, T, A and
F in (2) are endowed with an external multiplication with the scalar field R.

Proposition 3.12 (Positive homogeneity). Let the couple (A, F) be Weak Time
Consistent, as in Definition 3.2. If the mapping A is jointly positively homogeneous
and if the mapping F is positively homogeneous, then the subaggregator ST is
jointly positively homogeneous.

Proof. Let (h,t) be element of H x T. Let A € RT. We have the following equalities

SAE (AR, AE (1)) = SYE (AR, F(AY)) (by positive homogeneity of F')

= A(Ah, At) , (by the Nested Formula (5))

= MA(h,t) , (by positive homogeneity of A)

= ASHM(h F(1)) (by the Nested Formula (5).)

This ends the proof. O

3.3.5 Translation invariance

As we are dealing with translation invariance, we assume that the sets H, T, A and
F in (2) are endowed with an addition +. We also assume that there exists a set I
of invariants which is a common subspace of H, T, A and [F, as follows.

Definition 3.13. Let X and Y be sets equipped with an addition +. Let I C XNY
be a common subset of X and Y. A mapping M : X — Y is said to be I-translation
invariant if

M(zx+i)=M(x)+i, Vee X, Viel. (19)

Proposition 3.14. Let the couple (A, F) be Weak Time Consistent, as in Defini-
tion 3.2. If the mapping A is jointly translation invariant and if the mapping F is
translation invariant then the subaggregator S4F is jointly translation invariant.

Proof. Let (h,t) be an element of H x T. Let i € I. We have the following equalities:

SY (h+i,F(t)+i) = S* (h+i,F(t+14)), (by translation invariance of F)
=Ah+i,t+1), (by the Nested Formula (5))

= A(h,t)+1, (by translation invariance of A)

= AT (h, F(t)) +1, (by the Nested Formula (5).)

We conclude that the subaggregator S4F' is jointly translation invariant. O
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4 Revisiting the literature

In Sect. 2, we have gone through a selection of papers, touching Time Consistency
and Nested Formula in various settings. In Sect. 3, we have formally stated our
(abstract) definitions of Time Consistency (TC) and Nested Formula (NF), and we
have proven their equivalence. We have also provided conditions to obtain analytical
properties of the mapping S4'¥ appearing in the Nested Formula, such as monotonic-
ity, continuity, convexity, positive homogeneity and translation invariance.

Now, we return to the literature that we have briefly reviewed in Sect. 2, and we
show how our framework applies. For this purpose, we go through each article and
try to answer two questions.

First, what are the core assumptions that relate to our minimal notions of Time
Consistency or Nested Formula? In particular, what are the heads and the tails and
how are the Time Consistency axiom or the Nested Formula formulated? We will
recover that the various definitions in the selection appear as special cases of ours.

Second, what are the assumptions that are additional to the core TC or NF
formulations, and what do they imply for the subaggregator in the Nested For-
mula? We will extract the additional assumptions specific to each author and hence
highlight their additional contribution.

4.1 Axiomatic for Time Consistency (TC)

We start our survey with the group of authors stating Time Consistency axiomatic.
This group is subdivided between economists, who deal with lotteries and pref-
erences, and probabilists, who deal with stochastic processes and dynamical risk
measures.

4.1.1 Lotteries and preferences

Kreps and Porteus ( ( ), ( )) state a
temporal consistency axiom (Axiom 2.1) in the first paper. In the second paper, they
focus on the particular case of two stage problems. Their axiomatic is an instance of
our Definition 3.5 of Usual Time Consistency. With our Proposition 3.6, we directly
deduce the existence of a subaggregator increasing in its second argument and a
Nested Formula, whereas they obtain a stronger result under stronger assumptions.
Indeed, they add assumptions of continuity, substitution (related to convexity) and
focus on Usual Time Consistency with strict inequalities. This enables them to
obtain a subaggregator which is continuous and strictly increasing in its second
argument and is defined by ((Lemma 4, Theorem 2) and Proposition 1 respectively):
Uy, {(2,7) € Zy x R: y = Uy, .(z) for some z € Xy } = R.

t

Epstein and Schneider ( ) state an axiom of Dynamic
Consistency (Axiom 4: DC) which is a particular case of our Definition 3.5 of
Usual Time Consistency. With our Proposition 3.6, we directly deduce the exis-
tence of a subaggregator increasing in its second argument and a Nested Formula,
whereas they obtain a stronger result under stronger assumptions. Indeed, they
introduce four additional axioms — Conditional Preferences (CP), Multiple Priors
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(MP), Risk Preference (RP) and Full Support (FS) — that ensure a particular form
of the subaggregator. MP and CP ensure that the subaggregator can be repre-
sented as a minimum of expectation over a rectangular set of probabilities which is
closed and convex. MP and RP ensure that the criterion is additive over time. FS
ensures that the probability measures have full support. Epstein and Schneider ob-
tain the following Nested Formula® associated to Time Consistency (Theorem 3.2):

Vilh,w) = min,, 1) | [u (h(w)) + ﬁvtﬂ(h)} dm.

4.1.2 Dynamic risk measures and processes

Ruszezynsky studies ( ) dynamic risk measures {psr}7_,. Time
Consistency (his Definition 3), appears as a particular case of our Usual Time Con-
sistency Definition 3.5. With our Proposition 3.6, we directly deduce the existence
of a subaggregator increasing in its second argument and a Nested Formula, whereas
Ruszczynsky obtains a stronger result under stronger assumptions. Indeed, he adds
assumptions that induce a particular form for the subaggregator. From a conditional
risk measure ps 1, he defines mappings ps ¢ with s < s" <T. With our notations for
aggregator A and factor F', he then focuses on the case where the initial assessment
is A = p,r and the future assessment is F' = py . With two additional assumptions
of invariance by translation and normalization (ps7(0) = 0), Ruszczynsky is able to
state that the subaggregator has the specific form (Theorem 1): S = p, .

In ( ), Artzner, Delbean, Eber, Heath
and Ku present Time Consistency (their Definition 4.1) which appears as an instance
of our Definition 3.5 of Usual Time Consistency. With our Proposition 3.6, we di-
rectly deduce the existence of a subaggregator increasing in its second argument and
a Nested Formula, whereas they obtain a stronger result under stronger assumptions.
Indeed, they study particular mappings of the form ¥, = suppcp Ep[- | F;], where P
is a subset of probabilities and (F;)Z, is a filtration. They make an intermediary
step before presenting a Nested Formula. They use a tool that they name stability
by pasting (rectangularity) of the set P of probability distributions. With our no-
tations for aggregator A and factor F', this enables them to obtain, for s < ', that
if A=V, and F = Uy then the subaggregator has the specific form (Theorem 4.2):
SAE(h, ) =W (h+-).

4.2 Axiomatic for Nested formulas (NF)

Shapiro and Ruszczyniski ( ) study a family of condi-
tional risk mapping p; = px,jx, © - - - © pxjx,_, (Equation (5.8)). Each p; is increasing
and is associated with a o-algebra JF;, where (F;)L, is a filtration. As these map-
pings p; are instances of the mappings in our Nested Formula (5), they are Usual
Time Consistent, by using our Proposition 3.6. With our notations for aggregator A
and factor F', and with additional assumptions of monotonicity, translation invari-
ance, convexity and homogeneity, Shapiro and Ruszczynski obtain that, if the initial

3 The equation is the original transcription of the formula in ( ), to
which we refer the reader for a better understanding. By laying it out, we only want to stress the
Nested Formula between V; and V4.
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assessment is A = p; and the future assessment is F' = p;,1, then the subaggregator
is (Theorem 5.1) S*F = py, ..

Shapiro ( ( )) focuses on a future assessment and on a subaggregator
of the form (Definition 2.1) F = suppey Ep[- - -suppep Bp[- | Fr_1] | Fo] , S4F =
suppep Ep[-]. With our notations for aggregator A and factor F, this Nested Formula
is an instance of our Nested Formula (5). We can define a natural initial assessment
which is Usual Time Consistent with the future assessment, by using our Proposi-
tion 3.6. With additional assumptions of finiteness, Shapiro obtains that there exists
a bounded set P of probability distributions such that the initial assessment has the
specific form (Theorem 2.1) A = supy_3 Ep[]. Besides, with additional assumption
(Theorem 2.2) that P is convex, bounded and weakly closed, Shapiro establishes
that P = P.

De Lara and Leclere ( ) study composition of one time
step aggregators. They make a distinction between uncertainty aggregator and
time step aggregator, and they write a Nested Formula (Equation (11)) which is an
instance of our Formula (5). We can naturally define an initial assessment from this
composition operation which is time consistent with the one time step aggregator,
by using our Proposition 3.6. They add an additional hypothesis of monotonicity
and one of commutation between uncertainty aggregator and time aggregator. They
deduce that the initial assessment can be defined as the composition between a one
time step aggregator (subaggregator) and a future assessment (Theorem 9).

5 Two classes of time consistent mappings

In this section, we present two classes of mappings that display time consistency
under suitable assumptions. We study in Sect. 5.1 translation invariant mappings
motivated by the representation of risk measures in terms of acceptance set. Then,
in Sect. 5.2, we study mappings that are defined as Fenchel-Moreau conjugates
motivated by the dual reformulation of convex risk measures.

5.1 Time consistent translation invariant mappings

We study translation invariant mappings defined on ordered groups. We associate
to each such mapping an acceptance set which is the level set of level 0. We prove
that time consistency between two translation invariant mappings is equivalent to
an inclusion between acceptance sets.

5.1.1 Translation invariant mappings on a group

We provide here the definition of a translation invariant mapping and the one of an
acceptance set. With these notions, we will state our contribution. We first recall
the definition of an ordered group.

Definition 5.1. The triplet (F, ®, <) is said to be an ordered group if F is a set,
(F, @) is a group, (F, <) is an ordered set, and the order < is compatible with @,
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i.e.
i<z A< a®fs, Y(fi, fo f3) €F. (20)

We now provide the definition of translation invariant mappings on a group.

Definition 5.2. Let (T, ®) be a commutative group and (F, @) be a subgroup of
(T, ®), that we denote by

(F,®) c (T, @) . (21)
A (T, F)-translation invariant mapping is a mapping F': T — T that satisfies
Ftef)=Ft)ef, vteT, VfeF. (22)

In addition, if (F, @, <) is an ordered group, we introduce the notations Ap and
App to deal with particular level sets of the (T, F)-translation invariant mapping
F.T—F:

Ap={teT|F() <0}, (23a)
A, ={f €F|F(f) <0} =ApNF. (23b)

5.1.2 Characterization of UTC in terms of acceptance sets

Given two translation invariant mappings F' and p as in Definition 5.2, we will build
an aggregator A, such that the couple (A,, F') is time consistent as in Definition 3.5.

H X TF
Figure 1: Representation of links between mappings of Proposition 5.3

The next proposition is a generalization, with our notations, of Lemma 11.14
and Proposition 11.15 of ( ), since we do not refer to risk
measures on probability spaces but to more general sets.

Proposition 5.3. Let (T, ®) be a commutative group. Given two subgroups
(H,®) C (T, ®) and (A, @) C (T, ), (24)

and a (T, A)-translation invariant mapping p : T — A, we define the mapping
Ayt H T — A by

A, HxT— (A&, <), (25)
(h,t) = p(h &) . (26)
Let F: T — (F, &, <) be a (T, F)-translation invariant mapping. If we have that
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o (H,®) C (A o) C(Fe)cC(Te),
e the (T, A)-translation invariant mapping p : T — A is increasing,

o the (T,F)-translation invariant mapping F : T — F satisfies F'(0) =0 (where
0 is the neutral element of (T, ®)),

then the couple of mappings (A,, F') is Usual Time Consistent if and only if
Ar® Ay, = A, , (27)
where Ap, Ay and A, are defined in (23a) and (23b).

Proof. We refer the reader to Appendix A for the proof. OJ

Equation (27) establishes a nice relation between acceptance sets of the origi-
nal mapping p and the “conditional” mapping F. However, it remains difficult to
solve when the variables are the mappings p : T — A and F : T — F given in
Proposition 5.3 since it is an implicit equation in p.

5.2 Time consistent convex mappings

Here, we focus on time consistency for mappings that are defined as Fenchel-Moreau
conjugates. We are motivated by results on dual representation of convex risk map-
pings ( , ).

We first recall Fenchel-Moreau conjugacy with general couplings (not necessar-
ily the classic duality pairing). Then, we state our main theorem that provide a
nested formula and hence time consistency of mappings defined as Fenchel-Moreau
conjugates.

5.2.1 Basic tools to deal with Fenchel-Moreau conjugacies

The formal tools of couplings and Fenchel-Moreau conjugates were introduced in the
seminar paper of ( ). We recall that R = [—00, +00] = RU{—00, +00}.
When we manipulate functions with values in R, we adopt the Moreau lower
addition or upper addition defined in Equations (28a) and (28b), depending on
whether we deal with sup or inf operations. We only recall useful definitions to
make the article self-contained. In the sequel, u, v and w are any elements of R.

The Moreau lower addition and upper addition extend the usual addition with
(+00) + (—00) = (—00) + (+00) = —00 , (28a)

(+00) + (—00) = (—00) + (+00) = +00.. (28b)
and they display the following properties:

—(u+v)=(~u) + (-v), —(u+v)=(~u)+(~v). (29a)
sup f(a) + iggg<b> = sup (f(a) + g(0)) , (29b)
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Background on Fenchel-Moreau conjugacy with respect to a coupling.
Let be given two sets C and C*. Consider a coupling function ® : C x C! —

[—00, +00]. We also use the notation C & C fora coupling, so that
CEC < &:CxC = [—00,+00)] . (30)

Definition 5.4. The Fenchel-Moreau conjugate of a function f : C — [—o0, +0o0],
with respect to the coupling @ in (30), is the function f* : C* — [—o0, +oc] defined
by

FE() = sup <(I)(c, )+ (- f(c)))  Vdect. (31)

ceC

5.2.2 Main result: nested formula for Fenchel-Moreau conjugates

We provide a nested formula between mappings defined as Fenchel-Moreau conju-
gates. We introduce the notion of decomposable coupling.

Definition 5.5. Let X, Y, Z and Y’ be four sets and let fxyz, 07 and 0x be three
mappings with values in Y’

exxz X xZ—=Y , (32&)
07 7 — Y, (32b)
Ox : X =Y. (32¢)

Let ¢ : Y X Y — [—00, +00] be a coupling between Y’ and Y.
We say that the coupling ¢ is (0xxz, Ox, 0z)-decomposable if

o (bx(2),y) = sup {@(«%m(x, 2),y) + ( — o(02(2), y))} , (33)
ze
V(z,y) e XxY.
Here is our result that provides nested formula for Fenchel-Moreau conjugates.

Proposition 5.6. Let X, Y, Z and Y’ be four sets and g : Y — [—00, +00] be a
numerical function. Let ¢ : Y x Y — [—o00,+00] be (Oxxz, Ox, 07)-decomposable as
in Definition 5.5.

Let us define the coupling ® : X x (Y x Z) — [—o00, +00] by

(I)(SL’, (y,z)) = QO(GXXz(I, z),y) , V(z,y,2) e XX Y XZ, (34)
and the function G : Y X Z — [—o0, +00] by
G(y,2) = g(y) +¢(0z(2),y) , Y(y,2) €Y X Z. (35)

Then, we have the following Nested Formula between Fenchel-Moreau conjugates:
G® = ¢g¥ 0 bx . (36)

Proof. We refer the reader to Appendix A for the details of the proof. OJ
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Figure 2: Representation of the Nested Formula (36)

X

X=Y X Z
Ox ®» 07
NG
Figure 3: Representation of links between the mappings of Definition 5.5

6 Conclusion

Time Consistency is a notion discussed in economics (dynamic optimization, bar-
gaining) and mathematics (dynamical risk measures, multi-stage stochastic opti-
mization). We have gone through a selection of papers that are representative of
the different fields; we have tried to separate the common core elements related to
Time Consistency from the additional assumptions that make the specific contri-
bution of each author. We have presented a framework of Weak Time Consistency
which allows us to prove an equivalence with a Nested Formula, under minimal as-
sumptions. By formulating the core skeleton axioms, we hope to have shed light on
the notion of Time Consistency, often melted with other notions in the literature.
We believe that this makes the notion more transparent and we showed that it opens
the way for possible extensions. Indeed, we have established in Proposition 5.3 a nice
relation between acceptance sets of the original mapping p and the “conditional”
mapping F. In Proposition 5.6, we have put to light an intriguing relation that
certainly needs further investigation.

Acknowledgements. The authors want to thank Université Paris-Est and
Labex Bézout for the financial support. The first author particularly thanks them
for the funding of his PhD program.

A Appendix

We provide here the proofs of two Propositions of Sect. 5.

A.1 Proof of Proposition 5.3

Proof. The proof goes in three steps as follows:

1. first, we show that t € Ap & A, & F(t) € Ay, VELET,
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2. then we use the previous assertion to prove the two following statements:

A, CAp @A, & p(F(t) <p(t), VteT, (37a)
Ay DAr @A, & p(F(t) > p(t), VEeT, (37b)

3. finally, we bring all elements together to conclude.
We now detail each step.

1. We prove the implication ¢ € Ap & A,, = F() € A, and the reverse
statement F'(t) € A,, =t € Ap & A, successively.

o Let t € Ap ® Ay, be given. By definition, ¢ can be decomposed as

t=1tp®t, withtp € Ap and t, € AP\F' We successively obtain

F(t)=F(tp)®t,, (ast,€F and F is (T, F)-translation invariant)
<t,, (astpe Ap={teT| F(t) <0})

which leads to

p(F(t)) < p(t,) . (by monotonicity of p)
<0, (by definition of ¢, € A, ;)

and hence, F(t) € A .

e We now assume that F'(t) € A, and recall that for all ¢ € T, F(te
F(t)) = F(t)&F(t) = 0 by (T —F)-translation invariance of the mapping
F'. The converse implication follows immediately from the decomposition
t=tO F(t) ® F(t) since F(t) € A, by assumption and t © F'(t) € Ap.

2. We prove statements (37a) and (37b) successively.
e First, we focus on equation (37a):
A, CAp® Ay, < p(F(t) <p(t), VteT, (38)

We suppose that left hand side of this equation is satisfied, i.e. A, C
Ap®A,,, and we show that it implies the right hand side of the equation.
For that purpose, we fix t € T. We recall that p(¢) € A C F by definition
of the mapping p : T — A and assumption (A,®) C (F,®) We have
that F(t) © p(t) = F(t © p(t)) by (T,F)-translation invariance of the
mappingF’. Ast S p(t) € A, C A, & A,, we get by item 1 just above
that F(t © p(t)) € Ay and then F(t) © p(t) € A, ;. This implies that

p(F(t)) ©p(t) = p(F(t) © p(t)) <0. (39)

Assume now that p(F(t)) < p(t) for all ¢ € T and let ¢ € A,. Then by
definition (23a) of an acceptance set, we got that p(f) < 0. It follows
that p(F(f)) <0 and that F(f) € A,, and so, by item 1 just above, that
t cAr® Ap‘ﬂ:.
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e Second, we focus on Equation (37b)
Ay D Ar @Ay, < p(F(t) > p(t), VEeT, (40)

We assume A, D Ap @ Aj,. Let us fix t € T. Then, by adding and
removing the term F'(t) we get

top(Ft) =toFt)®F(t) o p(F(t))J €EAr DA, - (41)
cAp E,Z:‘F

It follows by left hand side of (37b) that ¢ © p(F(t)) belongs to A,.
That implies, taken together with the (T, A)-translation invariance of
the mapping p: T — A

p(t) ©p(F(t) = p(tSp(F(1)) <0. (42)

To prove the reverse implication of Equation (37b), take t € Ap @ Apps

and assume that p(F(a)) > p(a). Using step 1, we have that F(t) € Ape
and we obtain that

(1) < p(F(1) <0, (43)
which gives ¢t € A, by definition (23a) of an acceptance set.
3. We finally bring all elements together. We know from Theorem 3.6 that the

couple of mappings (A,, F') is usual time consistent if and only if the subag-
gregator S4»f" defined in (3) is a mapping increasing in its second argument

and we have the nested formula A4,(h,t) = S (h, F(t)).
In this case, by Definition 3, we have that

SAF (b, f) = {A(ht) | F(t) = f}, V(h, f) eHxF. (44)

As the set-valued mapping S4»¥ is a mapping, choosing one element ¢ € T
such that F(t) = f is sufficient to define the value of S4F(h, f). We notice
that, for each element f € I, the following statement holds true

F(t)=F(0) &t . (45
By (T, F)-translation invariance property (22), we have that F(f & F(0))

~—

F(0)® (f© F(0)) = f for all f € F. We deduce that

S (h, )= A, (h, f S F(0)), Y(h,f) eHxF. (46)

Hence, the nested formula A,(h,t) = S (h, F(t)) reads
Ayl t) = A, (h, F( > °r0). (by (46))
phdt)=p(hae F(t (0)) , (by (25) that defines A,)
hap(t) =ha p(F( (0)), (by (T, A)-translation invariance)
p(t) = p(F(t) & F(O)) : (by compatibility of @ with <)
o(t) = p(F(1)) (as F(0) = 0.)

The fact that p(t) = p(F(t)) taken together with both statements of Equa-
tions (37) gives the wanted result.

This ends the proof.
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A.2 Proof of Proposition 5.6

Proof. We have, for any x € X, the following equalities

G®(x) = sup {@(x, (y,z)) + (— G(y,z))} , (47)

(y,2)EYXZ

by Equation (31) that expresses the ®-conjugate of G,

= sup {w(exXz(x, 2,y) + (—9y) + (— w(%(@w))} , o (48)

(y,2)EYXZ

by Equations (34) and (35) that express particular forms of ® and G, and by the
joint property (29a) of Moreau’s additions,

= sup { —g(y) + sup {w(ﬁxXz(x, 2),y) + (- so(ez(Z),y))}} ;o (49)

yeY Z€EL

by property (29b) of Moreau’s additions,

=sup{ = g(y) + ¢ (0x(x).9) | . (50)

yeY

by Equation (33) that expresses the supremum,

= g“"(é’x(:p)) , (51)
by Definition 5.4 of a Fenchel-Moreau conjugate. This ends the proof. O
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