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Abstract

You are a financial analyst. At the beginning of every week, you are able
to rank every pair of stochastic processes starting from that week up to the
horizon. Suppose that two processes are equal at the beginning of the week.
Your ranking procedure is time consistent if the ranking does not change
between this week and the next one. In this paper, we propose a minimalist
definition of Time Consistency (TC) between two (assessment) mappings.
With very few assumptions, we are able to prove an equivalence between Time
Consistency and a Nested Formula (NF) between the two mappings. Thus,
in a sense, two assessments are consistent if and only if one is factored into
the other. We review the literature and observe that the various definitions
of TC (or of NF) are special cases of ours, as they always include additional
assumptions. By stripping off these additional assumptions, we present an
overview of the literature where the contribution of each author is enlightened.
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1 Introduction

Behind the words “Time Consistency” and “Nested Formula”, one can finds a vast
literature resorting to economics, dynamical risk measures and stochastic optimiza-
tion.

Let us start with economics. In a dynamic bargaining problem, a group of
agents has to agree on a common path of actions. As time goes on and information is
progressively revealed, they can all reconsider the past agreement, and possibly make
new assessments leading to new actions. Stability is the property that the agents will
stick to their previous commitment. Time consistency is a form of stability when an
individual makes a deal between his different selves (agents) along time. The notion
of “consistent course of action” (see Peleg and Yaari, 1973) is well-known in the field
of economics, with the seminal work of (Strotz, 1955-1956): an individual having
planned his consumption trajectory is consistent if, reevaluating his plans later on,
he does not deviate from the originally chosen plan. This idea of consistency as
“sticking to one’s plan” may be extended to the uncertain case where plans are
replaced by decision rules (“Do thus-and-thus if you find yourself in this portion of
state space with this amount of time left”, Richard Bellman cited in (Dreyfus, 2002));
(Hammond, 1976) addresses “consistency” and “coherent dynamic choice”, (Kreps
and Porteus, 1978) refers to “temporal consistency”. Another classical reference in
economics is (Epstein and Schneider, 2003).

Dynamic or Time Consistency has been introduced in the context of dynamical
risk measures (see Riedel, 2004; Detlefsen and Scandolo, 2005; Cheridito et al.,
2006; Artzner et al., 2007, for definitions and properties of coherent and consistent
dynamic risk measures).

In the field of stochastic optimization, Time Consistency has then been studied in
the stochastic programming framework by (Shapiro, 2009) and for Markov Decision
Processes by (Ruszczyński, 2010).

These different origins of Time Consistency contribute to a disparate litterature.
First, as Nested Formulas lead naturally to Time Consistency, some authors study
the conditions to obtain Nested Formulas, whereas others focus on the axiomatics
of Time Consistency and obtain Nested Formulas. Second, many definitions co-
habit. For instance, (Ruszczyński, 2010) add translation invariant property with
additive criterion, (Shapiro, 2016; Artzner, Delbaen, Eber, Heath, and Ku, 2007)
add assumptions of coherent risk measures, and many authors focus on a particular
structure of information (filtration). In this disconnected landscape, (De Lara and
Leclère, 2016) tries to make the connection between “dynamic consistency” for op-
timal control problems (economics, stochastic optimization) and “time consistency”
for dynamic risk measures. In this paper, we will focus on Time Consistency, moti-
vated by dynamic risk measures — where the future assessment of a tail of a process
is consistent with the initial assessment of the whole process, head and tail — but
not limited to them. Below, we sketch our definitions of TC and NF. Our main
contribution will be proving their equivalence.
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Axiomatic for Time Consistency. We start presenting axiomatic of Time Con-
sistency in a nutshell. Depending on the authors, the objects that are manipulated
are either processes (Riedel, 2004; Detlefsen and Scandolo, 2005; Cheridito, Del-
baen, and Kupper, 2006; Artzner, Delbaen, Eber, Heath, and Ku, 2007) or lotteries
(Kreps and Porteus, 1978; Epstein and Schneider, 2003). These objects are divided
into two parts: a head h and a tail t. On the one hand, we have a way to assess any
tail t by means of a mapping F (factor), yielding F (t). On the other hand, we have
a way to assess any couple head-tail (h, t) by means of a mapping A (aggregator),
yielding A(h, t).

We look for a consistency property between these two ranking mapping F and A:
if a tail t is equivalent to a tail t′, then the two elements (h, t) and (h, t′) — that
share the same head — must be such that (h, t) is equivalent to (h, t′). This can be
written mathematically as

F (t) = F (t′)⇒ A(h, t) = A(h, t′) , ∀(h, t, t′) ∈ H× T2 . (TC)

Axiomatic for Nested Formulas. Some authors focus on sufficient conditions
to obtain a Nested Formula (Shapiro, 2016; Ruszczynski and Shapiro, 2006). In
a Nested Formula, the assessment F (t) of any tail t is factored inside the assess-
ment A(h, t) of any head-tail (h, t) by means of a surrogate mapping SA,F as follows:

A(h, t) = SA,F
(
h, F (t)

)
. (NF)

Of course, (NF) implies (TC). We will prove the reverse: (TC) implies that there
exists a mapping SA,F such that (NF) holds true.

In Sect. 2, we go through the literature, with the goal of extracting the following
components: what kind of objects are treated, what are the heads and the tails, how
are these objects ranked. In Sect. 3, we formally state our definitions of Time Con-
sistency (TC) and Nested Formula (NF), and we prove their equivalence. We also
provide conditions to obtain analytical properties of the mapping SA,F appearing
in the Nested Formula, such as monotony, continuity, convexity, positive homogene-
ity and translation invariance. In Sect. 4, we show that our framework covers the
different frameworks reviewed in Sect. 2.

2 Review of the literature

We have screened a selection of papers, in mathematics and economics, touching
Time Consistency and Nested Formula in various settings. Depending on the setting,
we identify the following components, as introduced in Sect. 1: what kind of objects
are treated, what are the heads and the tails, how are these objects ranked. Table 1
sums up our survey.

2.1 Axiomatic for Time Consistency (TC)

The first group of authors is subdivided between economists, who deal with lotteries
and preferences, and probabilists who deal with stochastic processes and dynamical
risk measures.
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Article Objects Head Tail Assessment
T

im
e

C
on

si
st

en
cy

︷
︸︸

︷ Kreps and
Porteus

Lottery
Lottery
from 1 to s

Lottery from
s+ 1 to T

Expected utility

Epstein and
Schneider

Lottery
Lottery
from 1 to s

Lottery from
s+ 1 to T

Not necessarily
expected utility

Ruszczyński Process
Process
from 1 to s

Process from
s+ 1 to T

Dynamic
risk measure

Artzner et al. Process
Process
from 1 to τ

Process from
τ to T ,
τ stopping time

Coherent
risk measure

N
es

te
d

F
or

m
u

la
︷

︸︸
︷ Shapiro Process

Process
from 1 to s

Process from
s+ 1 to T

Coherent
risk measure

Ruszczynski
and Shapiro

Process
Process
from 1 to s

Process from
s+ 1 to T

Coherent
risk measure

De Lara and
Leclère

Process
Process
from 1 to s

Process from
s+ 1 to T

Dynamic
risk measure

Table 1: Sketch of papers selected on Time Consistency and Nested Formulas

2.1.1 Lotteries and preferences

In (Kreps and Porteus, 1978), (Kreps and Porteus, 1979) and (Epstein and Schnei-
der, 2003), the authors deal with lotteries and preferences. A preference is a to-
tal, transitive and reflexive relation. Proper assumptions make it possible that the
preference relation can be represented by a numerical evaluation. Assumptions of
monotony and convexity are also made.

In (Kreps and Porteus, 1978), Kreps and Porteus propose axioms that make that
the preference is represented by an expected utility formula.

By contrast, more general numerical representations are studied in (Epstein and
Schneider, 2003), even if Epstein and Schneider add an hypothesis of additive crite-
rion. A summary of the assumptions can be found in Table 2.

2.1.2 Dynamic risk measures and processes

In (Ruszczyński, 2010) and (Artzner, Delbaen, Eber, Heath, and Ku, 2007), the
authors deal with stochastic processes assessed by dynamical risk measures.

In (Ruszczyński, 2010), Ruszczyński studies a family of conditional risk measures
which are monotonic, invariant by translation and homogeneous. The criterion is
additive.

In (Artzner, Delbaen, Eber, Heath, and Ku, 2007), Artzner, Delbaen, Eber,
Heath and Ku focus on the value of the stochastic process at the final time step.
They use as assessment a particular class of risk measures, the so-called coherent
risk measures.

2.2 Axiomatic for Nested Formulas (NF)

In (Shapiro, 2016), (Ruszczynski and Shapiro, 2006) and (De Lara and Leclère,
2016), the focus is on exhibiting sufficient conditions to obtain Nested Formulas.
All authors study stochastic processes, with an assumption of monotony for the
assessment, but there are some differences.
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In (Ruszczynski and Shapiro, 2006), Ruszczynski and Shapiro study coherent
risk measures in their dual form (hence with properties of convexity, invariance by
translation and additive criterion).

In (Shapiro, 2016), Shapiro focuses on assessing the value of the process at the
final step with coherent risk measures.

In (De Lara and Leclère, 2016), De Lara and Leclère study how commutation
properties between time aggregators and uncertainty aggregators make it possible
to obtain Nested Formulas.

Article Monotony
Translation
invariance

Convexity

T
im

e
C

on
si

st
en

cy
︷

︸︸
︷ (Kreps and Porteus, 1978) Yes No Yes

(Kreps and Porteus, 1979) Yes No Yes
(Epstein and Schneider, 2003) Yes No Yes

(Ruszczyński, 2010) Yes Yes No
(Artzner, Delbaen, Eber,
Heath, and Ku, 2007)

Yes Yes Yes

N
es

te
d

F
or

m
u

la
︷︸︸

︷ (Shapiro, 2016) Yes Yes Yes
(Ruszczynski and Shapiro, 2006) Yes Yes Yes

(De Lara and Leclère, 2016) Yes No No

Table 2: Most common assumptions in the selection of papers on Time Consistency
and Nested Formula

3 Main result: Equivalence between TC and NF

In Sect. 1, we have sketched the notions of Time Consistency and Nested Formula.
Now, in §3.1, we properly define Weak Time Consistency — with minimal assump-
tions — and we prove that it is equivalent to a Nested Formula. In §3.2, we extend
definitions and results to Usual and Strong Time Consistency: by adding order
structures, we obtain additional properties. In §3.3, we provide conditions to ob-
tain analytical properties of the mapping appearing in the Nested Formula, such as
monotony, continuity, convexity, positive homogeneity and translation invariance.
Let us introduce basic notations.

Let H and T be two sets, respectively called head set and tail set. Let A, F be
two sets and let A and F be two mappings as follows:

A : H× T→ A , F : T→ F . (1)

The mapping A is called an aggregator, as it aggregates head-tail in H× T into an
element of A. The mapping F is called a factor because of the Nested Formula (NF)
in Sect. 1.

Definition 3.1. With the couple aggregator-factor (A,F ) in (1) we associate the
set-valued mapping

SA,F : H× Im(F ) ⇒ A
(h, f) 7→7→ SA,F (h, f) =

{
A(h, t) | t ∈ F−1(f)

}
,

(2)
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where Im(F ) = F (T). We call SA,F the subaggregator of the couple (A,F ).

3.1 Weak Time Consistency

Definition 3.2 (Weak Time Consistency). The couple aggregator-factor (A,F )
in (1) is said to satisfy Weak Time Consistency (WTC) if we have

F (t) = F (t′)⇒ A(h, t) = A(h, t′) , ∀h ∈ H , ∀(t, t′) ∈ T2 . (3)

Here is our main result where we characterize the WTC property in terms of the
subaggregator in (2).

Theorem 3.3 (Nested decomposition of WTC mappings). The couple aggregator-
factor (A,F ) in (1) is WTC if and only if the subaggregator set valued mapping SA,F

in (2) is a mapping. In that case, the following Nested Formula between mappings
holds true:

A(h, t) = SA,F
(
h, F (t)

)
, ∀h ∈ H , ∀t ∈ T . (4)

Proof. Note that we always have by Equation (2) that

A(h, t) ∈ SA,F
(
h, F (t)

)
. (5)

1. We suppose that the couple (A,F ) is Weak Time Consistent. Consider (h, f)
fixed in H× Im(F ). We are going to show that the set valued mapping SA,F is
in fact a mapping, by proving that the set SA,F (h, f), defined in (2), is reduced
to a singleton.

We consider two elements a = A(h, t) and a′ = A(h, t′) in the set SA,F (h, f).
By definition (2), we have F (t) = F (t′) = f . Then, using the Weak Time
Consistency property (3), we deduce A(h, t) = A(h, t′). Thus, SA,F (h, f) is
reduced to one value for f ∈ Im(F ). The set valued mapping SA,F is thus a
mapping and, using Equation (5), we obtain A(h, t) = SA,F

(
h, F (t)

)
.

2. We suppose now that the set valued mapping SA,F , defined in (2), is a map-
ping. Since SA,F is a mapping, we deduce by Equation (5) that A(h, t) =
SA,F

(
h, F (t)

)
for all t ∈ T. Therefore, we have the implications: F (t) =

F (t′) ⇒ SA,F
(
h, F (t)

)
= SA,F

(
h, F (t′)

)
⇒ A(h, t) = A(h, t′). We conclude

that the weak time consistency property (3) is satisfied.

In both cases, we have shown that Equation (4) holds true.

Example 3.4 (The couple (AV@Rβ[·+ ·] , AV@Rβ[· | F]) is not Weak Time Con-
sistent). We now give an example inspired from (Pflug and Pichler, 2014, Sect. 5.3.2,
p. 188) and involving the well known Average Value at Risk. It helps to illustrate
our main result and the notions we have introduced so far.

Let Ω = (ω1, ω2, ω3, ω4), that we equip with the uniform probability distribution
P = 1

4
δω1 + 1

4
δω2 + 1

4
δω3 + 1

4
δω4 .

We introduce the sets H = T = R|Ω| = R4. On this finite space Ω, the Average
Value at Risk of level β (0 ≤ β ≤ 1) of a random variable X : Ω→ R is defined by
(Rockafellar and Uryasev, 2000)

AV@Rβ(X ) = min
α∈R

{
α +

1

1− β
EP

[
[X − α]+

]}
. (6)
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Let F =
{
∅, {ω1, ω2}, {ω3, ω4},Ω

}
be a σ-field on the space Ω. The Conditional

Average Value at Risk of level β, of a random variable X : Ω→ R with respect to
the σ-field F is defined by (Pflug and Pichler, 2014)

AV@Rβ(X | F) = inf
{
EP[XZ | F] : EP[Z | F] = 1 , 0 ≤ Z , βZ ≤ 1

}
(7)

We define two mappings

A : H× T→ R F : T→ R2 (8a)

(h, t) 7→ AV@R0.5[h+ t] , t 7→ AV@R0.5[t | F] . (8b)

Consider four elements: a head h0 = (0, 0, 0, 0) ∈ H, a first tail t0 = (3, 3, 2, 1) ∈ T,
a second tail t′0 = (1, 3, 2, 2) ∈ T and an element of the factor’s image f0 = (3, 2) ∈ F.
On the one hand, the elements F (t0) and F (t′0) are equal, because

AV@R0.5[t0|F] = (3; 2)︸ ︷︷ ︸
f0

= AV@R0.5[t′0|F] . (9)

On the other hand, the elements A(h0, t0) and A(h0, t
′
0) are not equal, because

3 = AV@R0.5[h0 + t0] 6= AV@R0.5[h0 + t′0] = 2.5 . (10)

The subaggregator SA,F in (2) is not a mapping since

SA,F (h0, f0) =
{

AV@R0.5[h0 + t] | AV@R0.5[t | F] = f0

}
⊃ {2.5; 3} , (11)

and therefore the couple (A,F ) in (8) is not Weak Time Consistent.

3.2 Extensions to Usual and Strong Time Consistency

With additional order structures on the image sets A and F of the aggregator A and
of the factor F , and possibly on the head set H — all presented in (1) — we define
two additional notions of Time Consistency, usual and strong.

3.2.1 Usual Time Consistency (UTC)

Suppose that the image sets A and F are equipped with orders, denoted by ≤.

Definition 3.5 (Definition of Usual Time Consitency). The couple aggregator-
factor (A,F ) in (1) is said to satisfy Usual Time Consistency (UTC) if we have

F (t) ≤ F (t′)⇒ A(h, t) ≤ A(h, t′) , ∀h ∈ H , ∀(t, t′) ∈ T2 . (12)

We extend the result of Theorem 3.3 as follows.

Proposition 3.6 (Nested decomposition of UTC mappings). The couple (A,F )
in (1) is UTC if and only if the set valued mapping SA,F in (2) is a mapping and is
increasing1 in its second argument. In that case, the Nested Formula (4) holds true.

1Let X and Y be sets endowed with orders denoted by ≤. A mapping M : X→ Y is said to be
increasing if x ≤ x′ ⇒M(x) ≤M(x′).
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Proof.

1. We suppose that the couple (A,F ) is Usual Time Consistent. In particular,
it is Weak Time Consistent and Theorem 3.3 gives us that the set-valued
mapping SA,F in (2) is a mapping and that A(h, t) = SA,F

(
h, F (t)

)
, for all

h ∈ H and t ∈ T.

There remains to show that the subaggregator SA,F in (2) is increasing in
its second argument. Let f = F (t) and f ′ = F (t′) be two fixed elements in
the set Im(F ), such that f ≤ f ′, hence F (t) ≤ F (t′). By the Usual Time
Consistency definition (12), we deduce that A(h, t) ≤ A(h, t′), for all h ∈
H. This leads to SA,F

(
h, F (t)

)
≤ SA,F

(
h, F (t′)

)
, by the nested formula (4).

By identification, we obtain that SA,F (h, f) ≤ SA,F (h, f ′), for all h ∈ H.
Therefore, we have proved that the subaggregator SA,F is increasing in its
second argument.

2. We suppose now that the set valued mapping SA,F is a mapping, increasing
in its second argument. Following the proof of Theorem 3.3, we know that, as
SA,F is a mapping, we have A(h, t) = SA,F

(
h, F (t)

)
, for all (h, t) ∈ H×T. We

consider f = F (t) and f ′ = F (t′) in Im(F ) such that f ≤ f ′. As the mapping
SA,F is increasing in its second argument, we obtain that SA,F

(
h, F (t)

)
≤

SA,F
(
h, F (t′)

)
. This leads to A(h, t) ≤ A(h, t′), for all h ∈ H, and we recover

the Usual Time Consistency property (12).

In both cases, we have shown that Equation (4) holds true.

3.2.2 Strong Time Consistency (STC)

Suppose that the head set H and the image sets A and F are equipped with orders,
denoted by ≤.

Definition 3.7 (Definition of Strong Time Consistency). The couple (A,F ) in (1)
is said to satisfy Strong Time Consistency (STC) if we have

F (t) ≤ F (t′)
h ≤ h′

}
⇒ A(h, t) ≤ A(h′, t′) , ∀(h, h′, t, t′) ∈ H2 × T2 . (13)

We extend the results of Theorem 3.3 as follows.

Proposition 3.8 (Nested decomposition for STC mappings). The couple (A,F )
in (1) is STC if and only if the set valued mapping SA,F is a mapping increasing in
its first and second arguments. In that case, the Nested Formula (4) holds true.

Proof.

1. We suppose that the couple (A,F ) is Strong Time Consistent. In particu-
lar, it is Usual Time Consistent and Proposition 3.6 gives us that the set-
valued mapping SA,F is a mapping, increasing in its second argument, and
that A(h, t) = SA,F

(
h, F (t)

)
, for all h ∈ H and for all t ∈ T.

There remains to show that the subaggregator SA,F is increasing in its first
argument. We consider f = F (t) in the set Im(F ) and two elements h and
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h′ of H, such that h ≤ h′. By the Strong Time Consistency property (13),
we have that A(h, t) ≤ A(h′, t). This leads to SA,F

(
h, F (t)

)
≤ SA,F

(
h′, F (t)

)
by (4). As f = F (t), we obtain that SA,F

(
h, f

)
≤ SA,F

(
h′, f

)
. We conclude

that the subaggregator SA,F is increasing in its first argument.

2. We suppose now that set-valued mapping SA,F in (2) is a mapping which
is increasing in its first and in its second argument. Following the proof of
Proposition 3.6, we know that (4) holds true for all (h, t) ∈ H × T. We also
have that the couple (A,F ) is Usual Time Consistent. We consider f = F (t)
and f ′ = F (t′) in Im(F ) such that f ≤ f ′. We also consider (h, h′) ∈ H2 such
that h ≤ h′. We have

F (t) ≤ F (t′)⇒ A(h, t) ≤ A(h, t′) , (14a)

by Usual Time Consistency property (12), (14b)

⇒ A(h, t) ≤ SA,F
(
h, F (t′)

)
, (14c)

by the Nested Formula (4), (14d)

⇒ A(h, t) ≤ SA,F
(
h′, F (t′)

)
, (14e)

by monotony in the first argument of SA,F , (14f)

⇒ A(h, t) ≤ A(h′, t′) , (14g)

by the Nested Formula (4). (14h)

The reasoning is true for any couple (h, h′) ∈ H2 such that h ≤ h′. We conclude
that the couple (A,F ) satisfies Strong Time Consistency.

In both cases, we have shown that Equation (4) holds true.

3.2.3 Summing up results about WTC, UTC and STC

In §3.1 and §3.2, we have introduced three notions of Time Consistency, from the
weakest to the strongest. Of course, we have that a Strong Time Consistent couple
is also Usual Time Consistent, and that a Usual Time Consistent couple is also
Weak Time Consistent. We sum up the different definitions and results in Table 3.

Weak (3) ⇐ Usual (12) ⇐ Strong (13)

Definition

F (t) = F (t′)

⇓
A(h, t) = A(h, t′)

F (t) ≤ F (t′)

⇓
A(h, t) ≤ A(h, t′)

h ≤ h′ ,
F (t) ≤ F (t′)

⇓
A(h, t) ≤ A(h′, t′)

Characterization
in terms of

subaggregator
SA,F is a mapping

SA,F is a mapping
increasing

in its second argument

SA,F is a mapping
increasing

in both arguments

Table 3: Characterization of Time Consistency in terms of subaggregator
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3.3 Analytical properties of time consistent mappings

Here, we study properties inherited by the subaggregator SA,F in (2) when it is
a mapping, that is, when the couple (A,F ) is Weak Time Consistent (see Theo-
rem 3.3).

We focus on monotony, continuity, convexity, positive homogeneity and transla-
tion invariance.

3.3.1 Monotony

We suppose that the head set H, the tail set T, and the image sets A and F —
all presented in (1) — are equipped with orders, denoted by ≤. The proof of
the following proposition is left to the reader as a direct application of the Nested
Formula (4).

Proposition 3.9 (Monotony). Let the couple (A,F ) be Weak Time Consistent, as
in Definition 3.2. If the mapping A is increasing in its first argument, then the
subaggregator SA,F in (2) is increasing in its first argument.

3.3.2 Continuity

We suppose that the head set H, the tail set T, and the image sets A and F are
metric spaces.

Proposition 3.10 (Continuity). Let the couple (A,F ) be Weak Time Consistent, as
in Definition 3.2. Assume that the tail set T is compact. If the factor F is continuous
and if the aggregator A is continuous with a compact image Im(A) = A(H×T), then
the subaggregator SA,F in (2) is continuous on H× Im(F ).

Proof. We prove the continuity of the subaggregator SA,F on H × Im(F ) by using
the sequential characterization of the continuity on metric spaces. For this purpose,
we consider, on the one hand, (h̄, f̄) element of H× Im(F ) and, on the other hand,
(hn)n∈N a sequence of elements of H converging to h̄ and (fn)n∈N a sequence of
elements of Im(F ) converging to f̄ . We will show that SA,F (hn, fn) converges to
SA,F (h̄, f̄). We introduce the notation L

(
{un}

)
to denote the set of limit points of

a sequence (un)n∈N.
As fn ∈ Im(F ), there exists an element tn ∈ T such that F (tn) = fn for each n.

By the Nested Formula (4), we deduce that

A(hn, tn) = SA,F
(
hn, F (tn)

)
= SA,F

(
hn, fn

)
. (15)

We will now show that the set L
({
A(hn, tn)

})
of limit points is reduced to the

singleton {SA,F (h̄, f̄)}. The proof is in several steps as follows:

1. L
({
A(hn, tn)

})
6= ∅,

2. L
({
A(hn, tn)

})
⊂ A

(
h̄,L({tn})

)
,

3. A
(
h̄,L({tn})

)
is reduced to the singleton {SA,F (h̄, f̄)},

4. L
({
A(hn, tn)

})
= {SA,F (h̄, f̄)}.

10



Here is the proof.

1. As the sequence
(
A(hn, tn)

)
n∈N takes value in the compact set Im(A), we have

that L
({
A(hn, tn)

})
6= ∅.

2. We prove that L
({
A(hn, tn)

})
⊂ A

(
h̄,L({tn})

)
. Let a be an element of the

set L
(
{A(hn, tn)}

)
. By definition of this latter set, there exists a subsequence(

A(hΦ(n), tΦ(n))
)
n∈N converging to a. Now, we know that (hΦ(n))n∈N converges

to h̄, but it is not necessarily the case that (tΦ(n))n∈N converges. However, by
compacity of the tail set T, there exist a subsequence (tΨ◦Φ(n))n∈N converging to
a certain t̄ ∈ L

(
{tn}

)
. As the sequence

(
A(hΦ(n), tΦ(n))

)
n∈N is converging to a,

the subsequence
(
A(hΨ◦Φ(n), tΨ◦Φ(n))

)
n∈N is also converging to a. Now that

both inner subsequences converge, we use the continuity of the mapping A,
and obtain that a = limn→∞A(hΨ◦Φ(n), tΨ◦Φ(n)) = A(h̄, t̄) ∈ A

(
h̄,L({tn})

)
.

3. We prove the equality A
(
h̄,L({tn})

)
= {SA,F (h̄, f̄)}. Since the set L

(
{tn}

)
is

not empty by compactness of T, we consider (t̄, t̄′) ∈ L
(
{tn}

)2
any two limits

points of the sequence (tn)n∈N. As F (tn) = fn and limn→∞ fn = f̄ , we deduce
that F (t̄) = f̄ = F (t̄′), by continuity of the factor mapping F . The Nested
Formula (4) gives

A(h̄, t̄) = SA,F
(
h̄, F (t̄)

)
= SA,F (h̄, f̄) = SA,F

(
h̄, F (t̄′)

)
= A(h̄, t̄′) .

This proves that A
(
h̄,L({tn})

)
= {SA,F (h̄, f̄)}.

4. Gathering up the previous results, we obtain that

∅ 6= L
({
A(hn, tn)

})
⊂ A

(
h̄,L({tn})

)
= {SA,F (h̄, f̄)} . (16)

We conclude that L
({
A(hn, tn)

})
= {SA,F (h̄, f̄)}.

From Equation (15), we have the equalities L
({
SA,F

(
hn, fn

)})
= L

({
A(hn, tn)

})
=

{SA,F (h̄, f̄)}. Therefore, the sequence SA,F (hn, fn) converges to SA,F (h̄, f̄). This
ends the proof.

3.3.3 Convexity

As we are dealing with convexity property, we assume that the sets H,T and F in (1)
are vector spaces. We also suppose that the aggregator A : H× T→ A in (1) takes
extended real values, that is, A = R ∪ {−∞,+∞}.

Proposition 3.11. Let the couple (A,F ) be Weak Time Consistent, as in Defini-
tion 3.2. If there exists a nonempty convex subset T̄ ⊂ T such that F (T̄) = Im(F )
and that the restricted function F|T̄ is affine, and if the aggregator A is jointly convex,
then the subaggregator SA,F in (2) is jointly convex on H× Im(F ).

Proof. We introduce the notation epi(M) to denote the epigraph 2 of a mapping M.
We prove that the subaggregator SA,F is jointly convex by showing that its epigraph
is jointly convex.

2Let X be a set. The epigraph of the mapping M : X→ R∪{−∞,+∞} is defined by epi(M) ={
(x, y) ∈ X× R : M(x) ≤ y

}
where y is real valued.
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Let
(
(h1, f1), a1

)
and

(
(h2, f2), a2

)
be two elements of the epigraph epi(SA,F ) of

the subaggregator. We consequently have a1 ≥ SA,F (h1, f1) and a2 ≥ SA,F (h2, f2)
which by addition to

λa1 + (1− λ)a2 ≥ λSA,F (h1, f1) + (1− λ)SA,F (h2, f2) , (17)

where λ is an element of [0, 1]. As, by assumption, F (T̄) = Im(F ), there exist two
elements (t̄1, t̄2) ∈ T̄2 such that

F (t̄1) = f1 and F (t̄2) = f2 . (18)

We have the succession of equalities and inequality

λa1 + (1− λ)a2 ≥ λSA,F (h1, f1) + (1− λ)SA,F (h2, f2) ,

by Equation (17),

= λSA,F
(
h1, F (t̄1)

)
+ (1− λ)SA,F

(
h2, F (t̄2)

)
,

by Equation (18),

= λA(h1, t̄1) + (1− λ)A(h2, t̄2) ,

by the Nested Formula (4),

≥ A
(
λh1 + (1− λ)h2, λt̄1 + (1− λ)t̄2

)
,

by convexity of A,

= SA,F
(
λh1 + (1− λ)h2, F

(
λt̄1 + (1− λ)t̄2

))
,

by the Nested Formula (4),

= SA,F
(
λh1 + (1− λ)h2, λF (t̄1) + (1− λ)F (t̄2)

)
,

by affinity of F on T̄,

= SA,F
(
λh1 + (1− λ)h2, λf1 + (1− λ)f2

)
,

by Equation (18).

We deduce that the element
((
λh1 + (1−λ)h2, λf1 + (1−λ)f2

)
, λa1 + (1−λ)a2

)
is in the epigraph epi(SA,F ) of the subaggregator. This ends the proof.

For example, if F is a projection of T on F, that is, if F 2 = F , then F is the
identity mapping on F, so that F satisfies the conditions of Proposition 3.11.

Notice that, if the factor F is only convex, we cannot conclude in general. For
example, let A(h, t) = h + t be an aggregator and let F (t) = exp(t) be a factor.
Then the couple (A,F ) is Weak Time Consistent with an associated subaggregator
SA,F (h, f) = h+ ln(f) which is not convex.

12



3.3.4 Homogeneity

As we are dealing with homogeneity property, we assume that the sets H,T,A and
F in (1) are endowed with an external multiplication with the scalar field R.

Proposition 3.12 (Positive homogeneity). Let the couple (A,F ) be Weak Time
Consistent, as in Definition 3.2. If the mapping A is jointly positively homogeneous
and if the mapping F is positively homogeneous, then the subaggregator SA,F is
jointly positively homogeneous.

Proof. Let (h, t) be element of H×T. Let λ ∈ R+. We have the following equalities

SA,F
(
λh, λF (t)

)
= SA,F

(
λh, F (λt)

)
,

by positive homogeneity of F

= A(λh, λt) ,

by the Nested Formula (4)

= λA(h, t) ,

by positive homogeneity of A

= λSA,F
(
h, F (t)

)
,

by the Nested Formula (4).

This ends the proof.

3.3.5 Translation invariance

As we are dealing with translation invariance, we assume that the sets H,T,A and
F in (1) are endowed with an addition +. We also assume that there exists a set I
of invariants which is a common subspace of H,T,A and F, as follows.

Definition 3.13. Let X and Y be sets equipped with an addition +. Let I ⊂ X∩Y
be a common subset of X and Y. A mapping M : X→ Y is said to be I-translation
invariant if

M(x+ i) = M(x) + i3 , ∀x ∈ X , ∀i ∈ I . (19)

Proposition 3.14. Let the couple (A,F ) be Weak Time Consistent, as in Defini-
tion 3.2. If the mapping A is jointly translation invariant and if the mapping F is
translation invariant then the subaggregator SA,F is jointly translation invariant.

3 To recover general formulation of the form M
(
(i1, 0, · · · , 0)

)
= i1, we can extend Defini-

tion 3.13 by saying that the mapping M is translation invariant if M(x+ i) = M(x) + γ(i) where
γ : I→ J is an injection from a set I ⊂ X to a set J ⊂ Y. We prefer to stick to the Definition 3.13
to enhance the clarity of the paper.

13



Proof. Let (h, t) be an element of H×T. Let i ∈ I. We have the following equalities:

SA,F
(
h+ i, F (t) + i

)
= SA,F

(
h+ i, F (t+ i)

)
,

by translation invariance of F

= A(h+ i, t+ i) ,

by the Nested Formula (4)

= A(h, t) + i ,

by translation invariance of A

= SA,F
(
h, F (t)

)
+ i ,

by the Nested Formula (4). We conclude that the subaggregator SA,F is jointly
translation invariant.

4 Revisiting the literature

In Sect. 2, we have gone through a selection of papers, touching Time Consistency
and Nested Formula in various settings. In Sect. 3, we have formally stated our
(abstract) definitions of Time Consistency (TC) and Nested Formula (NF), and we
have proven their equivalence. We have also provided conditions to obtain analytical
properties of the mapping SA,F appearing in the Nested Formula, such as monotony,
continuity, convexity, positive homogeneity and translation invariance.

Now, we return to the literature that we have briefly reviewed in Sect. 2, and we
show how our framework applies. For this purpose, we go through each article and
try to answer two questions.

First, what are the core assumptions that relate to our minimal notions of Time
Consistency or Nested Formula? In particular, what are the heads and the tails and
how are the Time Consistency axiom or the Nested Formula formulated? We will
recover that the various definitions in the selection appear as special cases of ours.

Second, what are the assumptions that are additional to the core TC or NF
formulations, and what do they imply for the subaggregator in the Nested For-
mula? We will extract the additional assumptions specific to each author and hence
highlight their additional contribution.

4.1 Axiomatic for Time Consistency (TC)

We start our survey with the group of authors stating Time Consistency axiomatic.
This group is subdivided between economists, who deal with lotteries and pref-
erences, and probabilists, who deal with stochastic processes and dynamical risk
measures.
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4.1.1 Lotteries and preferences

Kreps and Porteus ((Kreps and Porteus, 1978), (Kreps and Porteus, 1979)) state a
temporal consistency axiom (Axiom 2.1) in the first paper. In the second paper, they
focus on the particular case of two stage problems. Their axiomatic is an instance of
our Definition 3.5 of Usual Time Consistency. With our Proposition 3.6, we directly
deduce the existence of a subaggregator increasing in its second argument and a
Nested Formula, whereas they obtain a stronger result under stronger assumptions.
Indeed, they add assumptions of continuity, substitution (related to convexity) and
focus on Usual Time Consistency with strict inequalities. This enables them to
obtain a subaggregator which is continuous and strictly increasing in its second
argument and is defined by ((Lemma 4, Theorem 2) and Proposition 1 respectively)

uyt :
{

(z, γ) ∈ Zt × R : γ = Uyt,z(x) for some x ∈ Xt+1

}
→ R . (20)

Epstein and Schneider (Epstein and Schneider, 2003) state an axiom of Dynamic
Consistency (Axiom 4: DC) which is a particular case of our Definition 3.5 of Usual
Time Consistency. With our Proposition 3.6, we directly deduce the existence of
a subaggregator increasing in its second argument and a Nested Formula, whereas
they obtain a stronger result under stronger assumptions. Indeed, they introduce
four additional axioms — Conditional Preferences (CP), Multiple Priors (MP), Risk
Preference (RP) and Full Support (FS) — that ensure a particular form of the
subaggregator. MP and CP ensure that the subaggregator can be represented as a
minimum of expectation over a rectangular set of probabilities which is closed and
convex. MP and RP ensure that the criterion is additive over time. FS ensures
that the probability measures have full support. Epstein and Schneider obtain the
following Nested Formula4 associated to Time Consistency (Theorem 3.2):

Vt(h, ω) = min
m∈P+1

t (ω)

∫ [
u
(
ht(ω)

)
+ βVt+1(h)

]
dm . (21)

4.1.2 Dynamic risk measures and processes

Ruszczyńsky studies (Ruszczyński, 2010) dynamic risk measures {ρs,T}Ts=1. Time
Consistency (his Definition 3), appears as a particular case of our Usual Time Con-
sistency Definition 3.5. With our Proposition 3.6, we directly deduce the existence
of a subaggregator increasing in its second argument and a Nested Formula, whereas
Ruszczyńsky obtains a stronger result under stronger assumptions. Indeed, he adds
assumptions that induce a particular form for the subaggregator. From a conditional
risk measure ρs,T , he defines mappings ρs,s′ with s ≤ s′ ≤ T . With our notations for
aggregator A and factor F , he then focuses on the case where the initial assessment
is A = ρs,T and the future assessment is F = ρs′,T . With two additional assumptions

4 Equation (21) is the original transcription of the formula in (Epstein and Schneider, 2003),
to which we refer the reader for a better understanding. By laying it out, we only want to stress
the Nested Formula between Vt and Vt+1.
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of invariance by translation and normalization (ρs,T (0) = 0), Ruszczyńsky is able to
state that the subaggregator has the specific form (Theorem 1)

SA,F = ρs,s′ . (22)

In (Artzner, Delbaen, Eber, Heath, and Ku, 2007), Artzner, Delbean, Eber,
Heath and Ku present Time Consistency (their Definition 4.1) which appears as an
instance of our Definition 3.5 of Usual Time Consistency. With our Proposition 3.6,
we directly deduce the existence of a subaggregator increasing in its second argument
and a Nested Formula, whereas they obtain a stronger result under stronger assump-
tions. Indeed, they study particular mappings of the form Ψt = supP∈P EP[· | Ft],
where P is a subset of probabilities and (Ft)

T
t=0 is a filtration. They make an inter-

mediary step before presenting a Nested Formula. They use a tool that they name
stability by pasting (rectangularity) of the set P of probability distributions. With
our notations for aggregator A and factor F , this enables them to obtain, for s ≤ s′,
that if A = Ψs and F = Ψs′ then the subaggregator has the specific form (Theorem
4.2):

SA,F (h, ·) = Ψs(h+ ·) . (23)

4.2 Axiomatic for Nested formulas (NF)

Shapiro and Ruszczyński (Ruszczynski and Shapiro, 2006) study a family of condi-
tional risk mapping ρt = ρX2|X1 ◦ · · · ◦ ρXt|Xt−1 (Equation (5.8)). Each ρt is increasing
and is associated with a σ-algebra Ft, where (Ft)

T
t=2 is a filtration. As these map-

pings ρt are instances of the mappings in our Nested Formula (4), they are Usual
Time Consistent, by using our Proposition 3.6. With our notations for aggregator A
and factor F , and with additional assumptions of monotony, translation invariance,
convexity and homogeneity, Shapiro and Ruszczyński obtain that, if the initial as-
sessment is A = ρt and the future assessment is F = ρt+1, then the subaggregator
is (Theorem 5.1)

SA,F = ρXt+1|Xt . (24)

Shapiro ((Shapiro, 2016)) focuses on a future assessment and on a subaggregator
of the form (Definition 2.1)

F = sup
P∈P

EP

[
· · · sup

P∈P
EP[· | FT−1]

∣∣ F0

]
, SA,F = sup

P∈P
EP[·] .

With our notations for aggregator A and factor F , this Nested Formula is an instance
of our Nested Formula (4). We can define a natural initial assessment which is Usual
Time Consistent with the future assessment, by using our Proposition 3.6. With
additional assumptions of finiteness, Shapiro obtains that there exists a bounded
set P̂ of probability distributions such that the initial assessment has the specific
form (Theorem 2.1)

A = sup
P∈P̂

EP[·] . (25)
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Besides, with additional assumption (Theorem 2.2) that P is convex, bounded and

weakly closed, Shapiro establishes that P = P̂.

De Lara and Leclère (De Lara and Leclère, 2016) study composition of one time
step aggregators. They make a distinction between uncertainty aggregator and
time step aggregator, and they write a Nested Formula (Equation (11)) which is an
instance of our Formula (4). We can naturally define an initial assessment from this
composition operation which is time consistent with the one time step aggregator,
by using our Proposition 3.6. They add an additional hypothesis of monotony and
one of commutation between uncertainty aggregator and time aggregator. They
deduce that the initial assessment can be defined as the composition between a one
time step aggregator (subaggregator) and a future assessment (Theorem 9).

5 Conclusion

Time Consistency is a notion widely discussed in various fields, ranging from eco-
nomics (dynamic optimization, bargaining) to mathematics (dynamical risk mea-
sures, multi-stage stochastic optimization). We have gone through a selection of
papers that are representative of the different fields; we have tried to separate the
common core elements related to Time Consistency from the additional assumptions
that make the specific contribution of each author. We have presented a framework
of Weak Time Consistency which allows us to prove an equivalence with a Nested
Formula, under minimal assumptions. By formulating the core skeleton axioms, we
hope to have shed light on the notion Time Consistency, often melted with other
notions in the literature. We believe that this makes the notion easy to handle and
that it opens the way for possible extensions.

First, in our setting for Weak Time Consistency, we introduced heads and tails
with asymmetric roles. More generally, we can consider a symmetric axiomatic of
the form

FH(h) = FH(h′)
FT(t) = FT(t′)

}
⇒ A(h, t) = A(h′, t′) , ∀(h, h′, t, t′) ∈ H2 × T2 , (26)

and a Nested Formula

A(h, t) = SFH,FT,A
(
FH(h), FT(t)

)
. (27)

Second, we used mappings to assess and compare objects. More generally, this
can be done using general binary relations. Time Consistency now reads

H × T ⊂ A , (28)

where the relation H compares head elements, the relation T compares tail elements,
and the relation A compares an overall head-tail object.

These possible extensions are part of future work where the aim is to account for
decentralized information between agents, with no explicit time order as with heads
and tails.
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