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Sharp estimate of the mean exit time of a bounded

domain in the zero white noise limit

Boris Nectoux ∗

Abstract

We prove a sharp asymptotic formula for the mean exit time from an open

bounded domain D ⊂ Rd for the overdamped Langevin dynamics

dXt = −∇f(Xt)dt +
√

2ε dBt

in the limit ε → 0 and in the case when D contains a unique non degenerate

minimum of f and ∂nf > 0 on ∂D. As a direct consequence, one obtains in

the limit ε → 0, a sharp asymptotic estimate of the smallest eigenvalue of the

operator

Lε = −ε∆ +∇f · ∇

associated with Dirichlet boundary conditions on ∂D. The approach does not

require f |∂D to be a Morse function. The proof is based on results from [7,8] and

a formula for the mean exit time from D introduced in the potential theoretic

approach to metastability [4, 5].
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1 Setting and main results

Let us consider (Xt)t≥0 the stochastic process solution to the overdamped Langevin

dynamics in Rd:

dXt = −∇f(Xt)dt+
√

2ε dBt, (1)

where f ∈ C∞(Rd,R) is the potential function, ε > 0 is the temperature and (Bt)t≥0 is

a standard d-dimensional Brownian motion. The overdamped Langevin dynamics can

be used for instance to describe the motion of the atoms of a molecule or the diffusion

of impurities in a crystal (see for instance [22, Sections 2 and 3] or [6]). One of the

major issues when trying to have access to the macroscopic evolution of the system

from simulations made at the microscopic level is that the process (1) is metastable:

it is trapped during long periods of time in some regions of the configuration space.

This implies that it typically reaches a local equilibrium of these regions long before

escaping from them. These regions are called metastable regions (see [3, Chapter

8]) and the move from one metastable region to another is typically associated with

a macroscopic change of configuration of the system. The average time it takes for

the process (1) to leave a metastable region is given by the Eyring-Kramers formula

(see [14]). In this work, we would like to prove, in a typical geometric setting (see

[H-D] below), that the average time it takes for the process (1) to leave a metastable

region satisfies in the small temperature regime (ε → 0) a kind of Eyring-Kramers

formula even in the degenerate case when arg min∂D f does not consists of a finite

number of non degenerate critical points of f |∂D.

To this end, let us consider a C∞ bounded open set D ⊂ Rd and introduce

τDc = inf{t ≥ 0|Xt ∈ Dc} (2)

where Dc = Rd \ D, the first exit time from D. The framework we consider in this

work is the following:

Assumption [H-D]: D ⊂ Rd is a C∞ bounded open set and f ∈ C∞(Rd,R).

The function f satisfies ∂nf > 0 on ∂D (where n is the unit outward normal to

∂D). Moreover, f has a unique critical point x0 in D which is non degenerate

and which satisfies f(x0) = minD f .

Under the assumption [H-D], it is proved in [13, Theorem 4.1] that for any x ∈ D:

lim
ε→0

ε logEx[τDc ] = min
∂D

f − f(x0).

See also [21] for the study of the asymptotic behaviour of the law of ε log τDc in the limit

ε→ 0 and [22] for formulas obtained with formal computations. Let us mention [1] for

a review of the different techniques used to obtain asymptotic estimates on the mean

exit time from a domain in the limit ε → 0 in various geometric settings and for an
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extension of the Eyring-Kramers formulas in some degenerate cases when D = Rd. In

this paper, we prove a sharp asymptotic formula on the mean exit time from D in the

limit ε→ 0. Our main result is the following.

Theorem 1. Let us assume that the assumption [H-D] holds. Then, for any compact

set K ⊂ D, it holds in the limit ε→ 0 and uniformly with respect to x ∈ K:

Ex[τDc ] =
(2πε)

d
2√

det Hess f(x0)

∫
∂D

∂nf(σ)e−
1
ε
f(σ)dσ

e−
1
ε
f(x0)

(
1 +O(ε)

)
,

where dσ is the Lebesgue measure on ∂D.

Remark 1. Under some assumption on f |∂D, an asymptotic estimate of the term∫
∂D

∂nf(σ)e−
1
ε
f(σ)dσ in the limit ε→ 0 can be obtained with Laplace’s method.

As a consequence of Theorem 1, one obtains an estimate in the limit ε → 0 on the

first eigenvalue of the infinitesimal generator of the diffusion (1)

Lε = −ε∆ +∇f · ∇. (3)

with homogeneous Dirichlet boundary conditions on ∂D. Let us recall that since

D ⊂ Rd is a C∞ bounded open set and f ∈ C∞(Rd,R), the operator Lε with domain

H2(D)∩H1
0 (D) on L2(D, e−

f(x)
ε dx) is self-adjoint, positive and has compact resolvent,

where L2(D, e−
f(x)
ε dx) is the completion of the space C∞(D) for the norm

φ ∈ C∞(D) 7→
∫
D

|φ|2e−
1
ε
f .

Its smallest eigenvalue is denoted by λε > 0. Theorem 1 together with [8, Corollary 1]

(which is recalled in Section 2.2 below) imply the following estimates on λε.

Corollary 1. Let us assume that the assumption [H-D] holds. Then, in the limit

ε→ 0:

λε =

√
det Hess f(x0)

∫
∂D

∂nf(σ)e−
1
ε
f(σ)dσ

(2πε)
d
2

e
1
ε
f(x0)

(
1 +O(ε)

)
.

Let us mention that sharp estimates of the smallest eigenvalues of Lε have been

obtained in [9, 10, 16, 20] in the Dirichlet case and in [19] in the Neumann case when

f |∂D is a Morse function (i.e. when all the critical points of f |∂D are non degenerate).

When D = Rd, we refer to [2, 4, 5, 15, 18, 23]. Corollary 1 gives a general formula

on the asymptotic estimate of λε which allows in particular, under the assumption

[H-D], to deal with the case when f |∂D is not a Morse function. For example, direct

consequences of Theorem 1 are the following:
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• Let us assume that f is constant on ∂D: f(z) ≡ f1 for all z ∈ ∂D. Then, for

any compact set K ⊂ D, it holds:

Ex[τDc ] =
(2πε)

d
2√

det Hess f(x0)

∫
∂D

∂nf(σ)dσ
e

1
ε

(f1−f(x0))
(
1 +O(ε)

)
,

in the limit ε → 0 and uniformly with respect to x ∈ K. Moreover, one has in

the limit ε→ 0

λε =

√
det Hess f(x0)

∫
∂D

∂nf(σ)dσ

(2πε)
d
2

e−
1
ε

(f1−f(x0))
(
1 +O(ε)

)
.

• Let us assume that there exists k ∈ N∗ such that arg min∂D f = {z1, ..., zk} and

for all j ∈ {1, ..., k}, zj is a non degenerate critical point of f |∂D. Then, for any

compact set K ⊂ D, it holds:

Ex[τDc ] =
√
πε

k∑
j=1

√
det Hess f |∂D(zj)

∂nf(zj)
√

det Hess f(x0)
e

1
ε

(f(z1)−f(x0))
(
1 +O(ε)

)
in the limit ε → 0 and uniformly with respect to x ∈ K. Moreover, one has in

the limit ε→ 0

λε =
1√
πε

k∑
j=1

∂nf(zj)
√

det Hess f(x0)√
det Hess f |∂D(zj)

e−
1
ε

(f(z1)−f(x0))
(
1 +O(ε)

)
.

In particular, if f |∂D is a Morse function, one recovers the results of [9,10,16] on

the first eigenvalue λε.

2 Change of coordinates in a neighborhood of ∂D

In this section, one constructs coordinates which will be useful for the computations in

Section 4. The construction of these coordinates heavily depends on the assumption

∂nf > 0 on ∂D.

In all this section, we assume that the assumption [H-D] is satisfied.

2.1 Eikonal solution near ∂D

Let us start with the following lemma.

Lemma 1. Let us assume that the assumption [H-D] holds. Then, there exists a

neighborhood of ∂D in D, denoted by V∂D, such that there exists Φ ∈ C∞(V∂D,R)
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satisfying 
|∇Φ|2 = |∇f |2 in D ∩ V∂D

Φ = f on ∂D

∂nΦ = −∂nf on ∂D.

(4)

Moreover, one has the following uniqueness results: if Φ̃ is a C∞ real valued function

defined on a neighborhood Ṽ of ∂D satisfying (4), then Φ̃ = Φ on Ṽ ∩ V∂D. Finally,

V∂D can be chosen such that Φ > f on V∂D \ ∂D and ∇(Φ− f) 6= 0 on V∂D.

Proof. Let z ∈ ∂D. Using [11, Theorem 1.5] or [12, Section 3.2] and thanks to the fact

that ∂nf > 0 on ∂D, there exists a neighborhood of z in D, denoted by Vz, such that

there exists Φ ∈ C∞(Vz,R) satisfying
|∇Φ|2 = |∇f |2 in D ∩ Vz

Φ = f on ∂D ∩ Vz
∂nΦ = −∂nf on ∂D ∩ Vz.

Moreover, Vz can be chosen such that the following uniqueness result holds: if a func-

tion Φ̃ ∈ C∞(Vz,R) satisfies the previous equalities, then Φ̃ = Φ on Vz. Now, one

concludes using the fact that ∂D is compact and can thus it can be covered by a finite

number of these neighborhoods (Vz)z∈∂D. Finally, since ∂n(Φ − f) = −2∂nf < 0 on

∂D, V∂D can be chosen such that Φ > f on V∂D \ ∂D and ∇(Φ− f) 6= 0 on V∂D.

2.2 Definition of the coordinate xd

In this section, one defines coordinates near ∂D which will be convenient in the up-

coming computations in Section 3. Let us now consider Φ the solution to (4) on the

neighborhood V∂D of ∂D as introduced in Lemma 1. Let us define on V∂D:

f+ =
f + Φ

2
and f− =

Φ− f
2

. (5)

Using Lemma 1, it holds on V∂D \ ∂D: f− > 0 and one has on V∂D:

∇f− · ∇f+ = 0. (6)

Let us now consider δ > 0 such that

Vδ := {x ∈ D, 0 ≤ f−(x) ≤ δ} ⊂ V∂D.

For any x ∈ Vδ, the dynamics γ′x(t) = − ∇f−
|∇f−|2

(γx(t))

γx(0) = x

(7)
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is well defined (since from Lemma 1, one has on V∂D, ∇f− 6= 0) and is such that

γx(tx) ∈ ∂D, where tx = inf{t, γx(t) ∈ ∂D}. This is indeed a consequence of the fact

that d
dt
f−(γx(t)) = −1 < 0 on [0, tx).

Proposition 1. The application

Θ :

{
Vδ → ∂D × [0, δ]

x 7→ (γx(tx), tx)

defines a C∞ diffeomorphism. The inverse application of Θ is

Ψ : (z, xd) ∈ ∂D × [0, δ] 7→ γz(−xd).

Remark 2. Let us mention that the application Ψ has been introduced locally in [16]

and have also been used in [10].

Let us now give some properties of the function Ψ which are used in the sequel.

Using the fact that Ψ(z, xd) = γz(−xd), one obtains that for all z ∈ ∂D and xd ∈ [0, δ]:

∇xdΨ(z, xd) =
d

dxd
γz(−xd) =

∇f−(z, xd)

|∇f−(z, xd)|2
. (8)

Thus, one has for all z ∈ ∂D:

∇xdΨ(z, 0) = − 1

∂nf(z, 0)
n, (9)

where n is the unit outward normal to ∂D. Moreover, using the fact that Ψ(z, 0) =

(z, 0) for all z ∈ ∂D and n = − ∇xd|∇xd|
together with (9), it holds for all u ∈ Tz∂D and

for all v ∈ R:

dΨ(z,0)(u+ vn) = u+
v

∂nf(z, 0)
n, (10)

and thus:

jac Ψ(z, 0) =
1

∂nf(z, 0)
, (11)

where jac Ψ is the determinant of the jacobian matrix of Ψ. Finally, by construction

(since d
dt
f−(γx(t)) = −1) xd(x) = f−(x) and one has {xd = 0} = ∂D, {xd > 0} = D∩Vδ

and

Vδ =
{
x = Ψ(z, xd) ∈ D, 0 ≤ xd ≤ δ

}
. (12)

2.3 Metric associated with the change of variable x = Ψ(z, xd)

Let us consider (ρk)k∈{1,...,N} ∈ C∞(∂D, [0, 1])N a partition of unity of ∂D:

for all y ∈ ∂D,
N∑
k=1

ρk(y) = 1 (13)
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such that for all k ∈ {1, ..., N}, there exist smooth coordinates x′ ∈ Rd−1 defined by a

C∞ mapping

Γk :

{
supp ρk → Rd−1

z 7→ x′
. (14)

The coordinates x′ ∈ Γk(supp ρk) are then extended in a neighborhood of supp ρk
in D, as constant along the integral curves of γ′(t) = ∇f−

|∇f−|2 (γ(t)), for t ∈ [0, δ]. The

function x 7→ (x′, xd) (where, we recall, xd(x) = f−(x)) thus defines a smooth system

of coordinates in a neighborhood Vk of supp ρk in D. Let us define

for all (x′, xd) ∈ Γk(supp ρk)× [0, δ], Υk(x
′, xd) := Ψ

(
Γ−1
k (x′), xd

)
(15)

where Ψ is introduced in Proposition 1. Notice that it holds for all (x′, xd) ∈ Γk(supp ρk)×
[0, δ],

Jac Υk(x
′, xd) := Jac Ψ

(
Γ−1
k (x′), xd

)(Jac Γ−1
k (x′) 0

0 1

)
. (16)

where Jac Υk is the jacobian matrix of Υk. In this system of coordinates, the metric

tensor Gk(x
′, xd) = tJac Υk(x

′, xd) Jac Υk(x
′, xd) writes:

Gk : (x′, xd) ∈ Γk(supp ρk)× [0, δ] 7→
(
G̃k(x

′, xd) 0

0 (Gk)dd(x
′, xd)

)
(17)

where G̃k is a C∞ square matrix of size d − 1 and (Gk)dd is a C∞ positive function.

Let us prove (17). Let us denote by x′ = (x′1, ..., x
′
d−1). Since by construction, for all

(x′, xd) ∈ Γk(supp ρk)× [0, δ], f−(Υk(x
′, xd)) = xd, one has:

∀j ∈ {1, ..., d− 1}, ∇x′j
Υk(x

′, xd) · ∇f−(Υk(x
′, xd)) = 0. (18)

Moreover, from (16) and (8), one has for all (x′, xd) ∈ Γk(supp ρk)× [0, δ],

∇xdΥk(x
′, xd) =

∇f−(Υk(x
′, xd))

|∇f−(Υk(x′, xd))|2
. (19)

Then, from (18) and (19), it holds

∀j ∈ {1, ..., d− 1}, (Gk)j,d = ∇x′j
Υk · ∇xdΥk = 0.

This proves (17). Furthermore, from (10) and (16), one has:

for all x′ ∈ Γk(supp ρk), (Gk)dd(x
′, 0) =

1

∂nf(x′, 0)2
. (20)

Finally, a consequence of (6) is that d
dt
f+(γx(t)) = 0, where γx satisfies (7) and thus,

in the system of coordinates (x′, xd), the functions f+ and f write:

f+(x′, xd) = f+(x′, 0) and f(x′, xd) = f+(x′, 0)− xd, (21)

where with a slight abuse of notation, one denotes f(Υk(x
′, xd)) (resp. f+(Υk(x

′, xd)))

by f(x′, xd) (resp. by f+(x′, xd)).
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3 Potential theory and mean exit time of D

3.1 Potential theory

Let us recall the main results from Potential theory which are used in this work. These

results can be found for instance in [3]. Let us denote by C = B(x0, r0) ⊂ D a closed

ball centred at x0 and of radius r0 > 0 chosen such that B(x0, r0) ∩ Vδ = ∅ where

Vδ is given by (12). Let hC,Dc be the unique weak solution in H1(Rd) of the elliptic

boundary value problem 
Lε v = 0 on D \ C
v = 0 on Dc

v = 1 on C,

The function hC,Dc is called the equilibrium potential of the capacitor (C,Dc) (as

denoted in [4, Section 2]). From elliptic regularity estimates (see for instance [12,

Theorem 5, Section 6.3]), the function hC,Dc belongs to C∞(D \ C). Therefore, it

holds

hC,Dc ∈ H1(D) ∩ C∞(D \ C).

Using the Dynkin’s formula (see for instance [17, Theorem 11.2]), one has for all x ∈ D,

hC,Dc(x) = Px[τC < τDc ], (22)

where τC = inf{t ≥ 0|Xt ∈ C} and τDc is defined by (2). Let us denote by GD be

the Green function of Lε associated with homogeneous Dirichlet boundary conditions

on ∂D. The equilibrium measure eC,Dc associated with (C,Dc) (see [4, Section 2] and

more precisely the equation (2.10) there) is defined as the unique measure on ∂C such

that

hC,Dc(x) =

∫
∂C

GD(x, y)eC,Dc(dy).

From [4, Section 2] (see equation (2.27) there), one has the following relation:∫
∂C

Ez[τDc ] e−
1
ε
f(z) eC,Dc(dz) =

∫
D

e−
1
ε
f(x) hC,Dc(x) dx. (23)

Let us now define, as in [4, Section 2] (see equation (2.13) there), the capacity associ-

ated with (C,Dc):

capC(Dc) =

∫
∂C

e−
1
ε
f(z)eC,Dc(dz). (24)

3.2 A first asymptotic estimate on the mean exit time of D

The following results from [8, Corollary 1] and [7, Theorem 2] will be useful in the

sequel.
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Proposition 2. Let us assume that the assumption [H-D] holds. Let K ⊂ D be

a compact set. Then, there exists c > 0 such that it holds in the limit ε → 0 and

uniformly with respect to x ∈ K:

λεEx[τDc ] = 1 +O(e−
c
ε ),

and

hC,Dc(x) ≥ 1− e−
c
ε ,

where, we recall, for all x ∈ D, hC,Dc(x) = Px[τC < τDc ] (see (22)).

Remark 3. In [8, Corollary 1], the result on λεEx[τDc ] is not stated with an error

term. However, in view of the proof of [8, Corollary 1], the error term is O(e−
c
ε ) and

is uniform with respect to x in a compact subset of D.

Proposition 2 implies that in the limit ε→ 0 and uniformly with respect to x ∈ K:

Ex[τDc ] = Ex0 [τDc ](1 +O(e−
c
ε )). (25)

We are now in position to obtain a first estimate on the mean exit time of D. Us-

ing (25), (23) and (24), for any compact set K ⊂ D, there exists c > 0 such that in

the limit ε→ 0:

Ex0 [τDc ] =

∫
D

e−
1
ε
f(x)hC,Dc(x)dx

capC(Dc)
(1 +O(e−

c
ε )).

Moreover, since hC,Dc ≡ 1 on C, hC,Dc ≤ 1 on D, f(x) ≥ maxC f > f(x0) for all

x ∈ D \ C and using Laplace’s method (since x0 is non degenerate), one obtains that

there exits c > 0 such that in the limit ε→ 0:∫
D

e−
1
ε
f(x)hC,Dc(x)dx =

∫
C

e−
1
ε
f(x) dx+O(e−

1
ε

(f(x0)+c))

=
(2πε)

d
2√

det Hess f(x0)
e−

1
ε
f(x0)

(
1 +O(ε)

)
.

Thus, one has the following result.

Lemma 2. Let us assume that the assumption [H-D] is satisfied. Then, in the limit

ε→ 0:

Ex0 [τDc ] =
(2πε)

d
2√

det Hess f(x0) capC(Dc)

(
1 +O(ε)

)
, (26)

where τDc is defined by (2) and capC(Dc) by (24).

To prove Theorem 1, it remains to give an estimate on capC(Dc) in the limit ε→ 0.

This is the purpose of the next section.
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4 Proofs of Theorem 1 and Corollary 1

In this section, one obtains sharp lower and upper bounds on the capacity capC(Dc).

From [4, Section 2], one has the following variational principle:

capC(Dc) = ε

∫
D\C

∣∣∇hC,Dc(x)
∣∣2e− 1

ε
f(x)dx (27)

= inf
h∈HC,Dc

ε

∫
D\C

∣∣∇h(x)
∣∣2e− 1

ε
f(x)dx,

where

HC,Dc =
{
h ∈ H1(Rd), h(x) = 1 for x ∈ C, h(x) = 0 for x ∈ Dc}.

Formula (27) holds since the function hC,Dc is a minimizer of the functional

h ∈ HC,Dc 7→ ε

∫
D\C

∣∣∇h(x)
∣∣2e− 1

ε
f(x)dx.

Using this variational principle, one can get a sharp upper bound on capC(Dc) by

choosing a suitable function h ∈ HC,Dc .

4.1 Upper bound on capC(Dc)

In this section, one gets a sharp upper bound on capC(Dc). Let Vδ be defined by (12)

and let h ∈ HC,Dc . From 27, one has

capC(Dc) ≤ ε

∫
Vδ

∣∣∇h(x)
∣∣2e− 1

ε
f(x)dx+ ε

∫
D\Vδ

∣∣∇h(x)
∣∣2e− 1

ε
f(x)dx. (28)

From (13), (14), (15) and (17), one has:

ε

∫
Vδ

∣∣∇h(x)
∣∣2e− 1

ε
f(x)dx

= ε

N∑
k=1

∫
x′∈Γk(supp ρk)

ρk(Γ
−1
k (x′))

×
∫ δ

0

t∇̃h(x′, xd)Gk(x
′, xd)

−1∇̃h(x′, xd) e
− 1
ε
f(x′,xd) jac Υk(x

′, xd) dxd dx
′ (29)

where t∇̃ = (∂x′ , ∂xd), Υk is defined by (15), Gk is the tensor metric associated with

the change of variable x = Υk(x
′, xd) (see (17)) and jac Υk =

√
detGk is the jacobian

of Υk.

Let us now consider the following function:

xd ∈ [0, δ] 7→ g(xd) =

∫ xd

0

e−
t
εdt∫ δ

0

e−
t
εdt

=
1− e−

xd
ε

1− e− δε
,
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which satisfies g(0) = 0 and g(δ) = 1. Let h : Vδ → R be such that

h ◦Ψ(z, xd) := g(xd), for all (z, xd) ∈ ∂D × [0, δ].

The function h is then extended by 1 in D \Vδ and by 0 outside D. Thus, h belongs to

HC,Dc since C ⊂ D\Vδ. For all k ∈ {1, ..., N} and for all (x′, xd) ∈ Γk(supp ρk)× [0, δ],

denoting with a slight abuse of notation h ◦ Υk by h, one has h(x′, xd) = g(xd) and

then for any (x′, xd) ∈ Γk(supp ρk)× [0, δ]:

∂x′h(x′, xd) = 0 and ∂xdh(x′, xd) =
d

dxd
g(xd).

From (17), (21), (28), and (29) together with the fact that ∇h = 0 on D \Vδ, one has:

capC(Dc) ≤ ε

N∑
k=1

∫
x′∈Γk(supp ρk)

ρk(Γ
−1
k (x′)) e−

1
ε
f+(x′,0)

ε2
(
1− e− δε

)2

×
∫ δ

0

e−
xd
ε (Gk)dd(x

′, xd)
−1 jac Υk(x

′, xd)dxd dx
′.

Now let us notice that for any function ϕ ∈ C∞(Γk(supp ρk) × [0, δ],R∗+), one has in

the limit ε→ 0: ∫ δ

0

ϕ(x′, xd)e
−xd

ε dxd = ε ϕ(x′, 0)
(
1 +O(ε)

)
, (30)

uniformly with respect to x′ ∈ Γk(supp ρk). Thus, applying (30) with ϕ = (Gk)
−1
dd jac Υk,

it holds in the limit ε→ 0:

capC(Dc) ≤
N∑
k=1

∫
x′∈Γk(supp ρk)

ρk(Γ
−1
k (x′))e−

1
ε
f+(x′,0)(

1− e− δε
)2

× (Gk)dd(x
′, 0)−1 jac Υk(x

′, 0)dx′
(
1 +O(ε)

)
.

Finally, using (10), (16) and (20), it holds in the limit ε→ 0:

capC(Dc) ≤
N∑
k=1

∫
x′∈Γk(supp ρk)

ρk(Γ
−1
k (x′))e−

1
ε
f(x′,0)∂nf(x′, 0) jac Γ−1

k (x′)dx′
(
1 +O(ε)

)
.

Therefore, since from (5) and Lemma 1, f(x′, 0) = f(x) for all x = Υk(x
′, 0) ∈ ∂D,

one has following result.

Lemma 3. Let us assume that the assumption [H-D] is satisfied. Then, it holds in

the limit ε→ 0:

capC(Dc) ≤
∫
∂D

∂nf(σ) e−
1
ε
f(σ)dσ

(
1 +O(ε)

)
, (31)

where, we recall, capC(Dc) is defined by (24).

Let us now give a sharp lower bound on capC(Dc).

11



4.2 Lower bound on capC(Dc)

In this section, one gets a sharp lower bound on capC(Dc). Let Vδ be defined by (12).

Using (27), (13), (14), (15) and (17), one has:

capC(Dc) ≥ ε

∫
Vδ

∣∣∇hC,Dc(x)
∣∣2e− 1

ε
f(x)dx

≥ ε
N∑
k=1

∫
x′∈Γk(supp ρk)

ρk(Γ
−1
k (x′))

∫ δ

0

Lk(x
′, xd) dxd dx

′ (32)

with

Lk(x
′, xd) :=

∣∣∂xdh(x′, xd)
∣∣2 (Gk)dd(x

′, xd)
−1e−

1
ε
f(x′,xd) jac Υk(x

′, xd).

Let us define for k ∈ {1, ..., N} and (x′, xd) ∈ Γk(supp ρk)× [0, δ]:

χk(x
′, xd) := (Gk)dd(x

′, xd)
−1 jac Υk(x

′, xd). (33)

The function χk satisfies

min
Γk(supp ρk)×[0,δ]

χk > 0. (34)

Let us consider k ∈ {1, ..., N} and x′ ∈ Γk(supp ρk). Then, it holds:∫ δ

0

Lk(x
′, xd) dxd =

∫ δ

0

∣∣∂thC,Dc(x′, t)∣∣2 χk(x′, t) e tε dt
≥ inf

g∈H1(0,δ)
g(0)=0

g(δ)=hC,Dc (x′,δ)

∫ δ

0

∣∣∣ d
dt
g(t)

∣∣∣2χk(x′, t) e tεdt. (35)

Let us now prove that

inf
g∈H1(0,δ)
g(0)=0

g(δ)=hC,Dc (x′,δ)

∫ δ

0

∣∣∣ d
dt
g(t)

∣∣∣2χk(x′, t) e tεdt =

∫ δ

0

∣∣∂tg∗x′(t)∣∣2χk(x′, t) e tεdt, (36)

where

g∗x′(t) =

∫ t

0

χk(x
′, s)−1e−

s
εds∫ δ

0

χk(x
′, s)−1e−

s
εds

hC,Dc(x
′, δ).

The set K = {g ∈ H1(0, δ), g(0) = 0 and g(δ) = hC,Dc(x
′, δ)
}

is a closed convex subset

of H1(0, δ) and the functional

F : θ ∈ H1(0, δ) 7→
∫ δ

0

∣∣∣ d
dt
θ(t)

∣∣∣2χk(x′, t) e tεdt
12



is continuous and from (34), it is strongly convex. Furthermore, since for all u ∈ K,

u(0) = 0, there exists C > 0 such that for all g ∈ K,∫ δ

0

g2 ≤ C

∫ δ

0

∣∣∣ d
dt
g(t)

∣∣∣2.
Thus, using in addition (34), there exists c > 0 such that for all g ∈ K,∫ δ

0

g2 +

∫ δ

0

∣∣∣ d
dt
g(t)

∣∣∣2 ≤ c F (g). (37)

Let us consider a sequence (gn)n≥0 ∈ KN such that limn→∞ F (gn) = infK F . Then,

from (37), (gn)n≥0 is a bounded sequence in H1(0, δ) and thus converges for the weak

topology of H1(0, δ) towards some g ∈ H1(0, δ). Since F is continuous and convex

on K, it is a lower semi-continuous function for the weak topology in H1(0, δ). There-

fore, infK F ≤ F (g) and since g ∈ K, g is a minimizer of F on K. Finally, because F

is strongly convex, g is the unique minimizer of F on K. Let α ∈ R and ϕ ∈ C∞c (0, δ).

Then, it holds g + αϕ ∈ K and thus

F (g) ≤ F (g + αϕ) = F (g) + 2α

∫ δ

0

d

dt
g(t)

d

dt
ϕ(t)χk(x

′, t) e
t
εdt+ α2 F (ϕ).

Thus, g ∈ H1(0, δ) is a weak solution to the following one dimensional Dirichlet

problem on (0, δ): 
d

dt

(
e
t
εχk(x

′, t)
d

dt
g(t)

)
= 0 on (0, δ),

g(0) = 0,

g(δ) = hC,Dc(x
′, δ).

(38)

From (34), one can use the Lax-Milgram Theorem which implies that there exists a

unique solution in H1(0, δ) of (38). Clearly, this solution is given by

g∗x′(t) =

∫ t

0

χk(x
′, s)−1e−

s
εds∫ δ

0

χk(x
′, s)−1e−

s
εds

hC,Dc(x
′, δ),

and thus g = g∗x′ . This concludes the proof of (36). Using (32), (35) and (36) together

with the second statement in Proposition 2, there exists c > 0 such that in the limit

13



ε→ 0:

capC(Dc) ≥ ε

N∑
k=1

∫
x′∈Γk(supp ρk)

ρk(Γ
−1
k (x′)) e−

1
ε
f+(x′,0)

×
∫ δ

0

∣∣∂xdg∗x′(xd)∣∣2 χk(x′, xd)e 1
ε
xddxd dx

′

= ε

N∑
k=1

∫
x′∈Γk(supp ρk)

ρk(Γ
−1
k (x′))h2

C,Dc(x
′, δ) e−

1
ε
f+(x′,0)

×
∫ δ

0

χk(x
′, xd)

−1(∫ δ

0

χk(x
′, s)−1e−

s
εds
)2
e−

1
ε
xd dxd dx

′

≥ ε(1− e−
c
ε

)2
N∑
k=1

∫
x′∈Γk(supp ρk)

ρk(Γ
−1
k (x′)) e−

1
ε
f+(x′,0)

×
∫ δ

0

χk(x
′, xd)

−1(∫ δ

0

χk(x
′, s)−1e−

s
εds
)2
e−

1
ε
xd dxd dx

′.

Then, using (30), (33), (20), (10) and (16), one has in the limit ε→ 0:

capC(Dc) ≥
N∑
k=1

∫
x′∈Γk(supp ρk)

ρk(Γ
−1
k (x′))e−

1
ε
f(x′,0)∂nf(x′, 0) jac Γ−1

k (x′)dx′
(
1 +O(ε)

)
.

Therefore, since from (5) and Lemma 1, f(x′, 0) = f(x) for all x = Υk(x
′, 0) ∈ ∂D,

one has the following lower bound on capC(Dc).

Lemma 4. Let us assume that the assumption [H-D] is satisfied. Then, it holds in

the limit ε→ 0:

capC(Dc) ≥
∫
∂D

∂nf(σ) e−
1
ε
f(σ)dσ

(
1 +O(ε)

)
. (39)

where, we recall, capC(Dc) is defined by (24).

Theorem 1 is then a consequence of (31) and (39) together with (26) and (25).

Corollary 1 is a consequence of Theorem 1 and Proposition 2.
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