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Sharp estimate of the mean exit time of a bounded domain in the zero white noise limit

We prove a sharp asymptotic formula for the mean exit time from an open bounded domain D ⊂ R d for the overdamped Langevin dynamics

.

Setting and main results

Let us consider (X t ) t≥0 the stochastic process solution to the overdamped Langevin dynamics in R d :

dX t = -∇f (X t )dt + √ 2ε dB t , (1) 
where f ∈ C ∞ (R d , R) is the potential function, ε > 0 is the temperature and (B t ) t≥0 is a standard d-dimensional Brownian motion. The overdamped Langevin dynamics can be used for instance to describe the motion of the atoms of a molecule or the diffusion of impurities in a crystal (see for instance [START_REF] Matkowsky | The exit problem: a new approach to diffusion across potential barriers[END_REF]Sections 2 and 3] or [START_REF] Chandrasekhar | Stochastic problems in physics and astronomy[END_REF]). One of the major issues when trying to have access to the macroscopic evolution of the system from simulations made at the microscopic level is that the process ( 1) is metastable: it is trapped during long periods of time in some regions of the configuration space. This implies that it typically reaches a local equilibrium of these regions long before escaping from them. These regions are called metastable regions (see [START_REF] Bovier | Metastability: a potential-theoretic approach[END_REF]Chapter 8]) and the move from one metastable region to another is typically associated with a macroscopic change of configuration of the system. The average time it takes for the process [START_REF] Berglund | Kramers' law: validity, derivations and generalisations[END_REF] to leave a metastable region is given by the Eyring-Kramers formula (see [START_REF] Hänggi | Reaction-rate theory: fifty years after kramers[END_REF]). In this work, we would like to prove, in a typical geometric setting (see [H-D] below), that the average time it takes for the process [START_REF] Berglund | Kramers' law: validity, derivations and generalisations[END_REF] to leave a metastable region satisfies in the small temperature regime (ε → 0) a kind of Eyring-Kramers formula even in the degenerate case when arg min ∂D f does not consists of a finite number of non degenerate critical points of f | ∂D .

To this end, let us consider a C ∞ bounded open set D ⊂ R d and introduce

τ D c = inf{t ≥ 0|X t ∈ D c } (2) 
where D c = R d \ D, the first exit time from D. The framework we consider in this work is the following:

Assumption [H-D]: D ⊂ R d is a C ∞ bounded open set and f ∈ C ∞ (R d , R).
The function f satisfies ∂ n f > 0 on ∂D (where n is the unit outward normal to ∂D). Moreover, f has a unique critical point x 0 in D which is non degenerate and which satisfies f (x 0 ) = min D f .

Under the assumption [H-D],

it is proved in [13, Theorem 4.1] that for any x ∈ D:

lim ε→0 ε log E x [τ D c ] = min ∂D f -f (x 0 ).
See also [START_REF] Mathieu | Spectra, exit times and long time asymptotics in the zero-whitenoise limit[END_REF] for the study of the asymptotic behaviour of the law of ε log τ D c in the limit ε → 0 and [START_REF] Matkowsky | The exit problem: a new approach to diffusion across potential barriers[END_REF] for formulas obtained with formal computations. Let us mention [START_REF] Berglund | Kramers' law: validity, derivations and generalisations[END_REF] for a review of the different techniques used to obtain asymptotic estimates on the mean exit time from a domain in the limit ε → 0 in various geometric settings and for an extension of the Eyring-Kramers formulas in some degenerate cases when D = R d . In this paper, we prove a sharp asymptotic formula on the mean exit time from D in the limit ε → 0. Our main result is the following.

Theorem 1. Let us assume that the assumption [H-D] holds. Then, for any compact set K ⊂ D, it holds in the limit ε → 0 and uniformly with respect to x ∈ K:

E x [τ D c ] = (2πε) d 2 det Hess f (x 0 ) ∂D ∂ n f (σ)e -1 ε f (σ) dσ e -1 ε f (x 0 ) 1 + O(ε) ,
where dσ is the Lebesgue measure on ∂D.

Remark 1. Under some assumption on f | ∂D , an asymptotic estimate of the term

∂D ∂ n f (σ)e -1 ε f (σ)
dσ in the limit ε → 0 can be obtained with Laplace's method.

As a consequence of Theorem 1, one obtains an estimate in the limit ε → 0 on the first eigenvalue of the infinitesimal generator of the diffusion ( 1)

L ε = -ε∆ + ∇f • ∇. (3) 
with homogeneous Dirichlet boundary conditions on ∂D. Let us recall that since

D ⊂ R d is a C ∞ bounded open set and f ∈ C ∞ (R d , R), the operator L ε with domain H 2 (D) ∩ H 1 0 (D) on L 2 (D, e -f (x)
ε dx) is self-adjoint, positive and has compact resolvent, where L 2 (D, e -f (x) ε dx) is the completion of the space C ∞ (D) for the norm

φ ∈ C ∞ (D) → D |φ| 2 e -1 ε f .
Its smallest eigenvalue is denoted by λ ε > 0. Theorem 1 together with [8, Corollary 1] (which is recalled in Section 2.2 below) imply the following estimates on λ ε .

Corollary 1. Let us assume that the assumption [H-D] holds. Then, in the limit ε → 0:

λ ε = det Hess f (x 0 ) ∂D ∂ n f (σ)e -1 ε f (σ) dσ (2πε) d 2 e 1 ε f (x 0 ) 1 + O(ε) .
Let us mention that sharp estimates of the smallest eigenvalues of L ε have been obtained in [START_REF] Di Gesù | The exit from a metastable state: concentration of the exit point on the low energy saddle points[END_REF][START_REF] Di Gesù | Sharp asymptotics of the first exit point density[END_REF][START_REF] Helffer | Quantitative analysis of metastability in reversible diffusion processes via a Witten complex approach: the case with boundary[END_REF][START_REF] Lelièvre | Low temperature asymptotics for quasistationary distributions in a bounded domain[END_REF] in the Dirichlet case and in [START_REF] Peutrec | Small eigenvalues of the Neumann realization of the semiclassical Witten Laplacian[END_REF] in the Neumann case when f | ∂D is a Morse function (i.e. when all the critical points of f | ∂D are non degenerate). When D = R d , we refer to [START_REF] Bouchet | Generalisation of the eyring-kramers transition rate formula to irreversible diffusion processes[END_REF][START_REF] Bovier | Metastability in reversible diffusion processes. I. Sharp asymptotics for capacities and exit times[END_REF][START_REF] Bovier | Metastability in reversible diffusion processes. II. Precise asymptotics for small eigenvalues[END_REF][START_REF] Helffer | Quantitative analysis of metastability in reversible diffusion processes via a Witten complex approach[END_REF][START_REF] Landim | A Dirichlet and a Thomson principle for nonselfadjoint elliptic operators, metastability in non-reversible diffusion processes[END_REF][START_REF] Michel | About small eigenvalues of Witten laplacian[END_REF]. Corollary 1 gives a general formula on the asymptotic estimate of λ ε which allows in particular, under the assumption [H-D], to deal with the case when f | ∂D is not a Morse function. For example, direct consequences of Theorem 1 are the following:

• Let us assume that f is constant on ∂D: f (z) ≡ f 1 for all z ∈ ∂D. Then, for any compact set K ⊂ D, it holds:

E x [τ D c ] = (2πε) d 2 det Hess f (x 0 ) ∂D ∂ n f (σ)dσ e 1 ε (f 1 -f (x 0 )) 1 + O(ε) ,
in the limit ε → 0 and uniformly with respect to x ∈ K. Moreover, one has in the limit ε → 0

λ ε = det Hess f (x 0 ) ∂D ∂ n f (σ)dσ (2πε) d 2 e -1 ε (f 1 -f (x 0 )) 1 + O(ε) .
• Let us assume that there exists k ∈ N * such that arg min ∂D f = {z 1 , ..., z k } and for all j ∈ {1, ..., k}, z j is a non degenerate critical point of f | ∂D . Then, for any compact set K ⊂ D, it holds:

E x [τ D c ] = √ πε k j=1 det Hess f | ∂D (z j ) ∂ n f (z j ) det Hess f (x 0 ) e 1 ε (f (z 1 )-f (x 0 )) 1 + O(ε)
in the limit ε → 0 and uniformly with respect to x ∈ K. Moreover, one has in the limit ε → 0

λ ε = 1 √ πε k j=1 ∂ n f (z j ) det Hess f (x 0 ) det Hess f | ∂D (z j ) e -1 ε (f (z 1 )-f (x 0 )) 1 + O(ε) .
In particular, if f | ∂D is a Morse function, one recovers the results of [START_REF] Di Gesù | The exit from a metastable state: concentration of the exit point on the low energy saddle points[END_REF][START_REF] Di Gesù | Sharp asymptotics of the first exit point density[END_REF][START_REF] Helffer | Quantitative analysis of metastability in reversible diffusion processes via a Witten complex approach: the case with boundary[END_REF] on the first eigenvalue λ ε .

2 Change of coordinates in a neighborhood of ∂D

In this section, one constructs coordinates which will be useful for the computations in Section 4. The construction of these coordinates heavily depends on the assumption

∂ n f > 0 on ∂D.
In all this section, we assume that the assumption [H-D] is satisfied.

Eikonal solution near ∂D

Let us start with the following lemma.

Lemma 1. Let us assume that the assumption [H-D] holds. Then, there exists a neighborhood of ∂D in D, denoted by V ∂D , such that there exists

Φ ∈ C ∞ (V ∂D , R) satisfying      |∇Φ| 2 = |∇f | 2 in D ∩ V ∂D Φ = f on ∂D ∂ n Φ = -∂ n f on ∂D. (4) 
Moreover, one has the following uniqueness results

: if Φ is a C ∞ real valued function defined on a neighborhood Ṽ of ∂D satisfying (4), then Φ = Φ on Ṽ ∩ V ∂D . Finally, V ∂D can be chosen such that Φ > f on V ∂D \ ∂D and ∇(Φ -f ) = 0 on V ∂D .
Proof. Let z ∈ ∂D. Using [11, Theorem 1.5] or [12, Section 3.2] and thanks to the fact that ∂ n f > 0 on ∂D, there exists a neighborhood of z in D, denoted by

V z , such that there exists Φ ∈ C ∞ (V z , R) satisfying      |∇Φ| 2 = |∇f | 2 in D ∩ V z Φ = f on ∂D ∩ V z ∂ n Φ = -∂ n f on ∂D ∩ V z .
Moreover, V z can be chosen such that the following uniqueness result holds: if a function Φ ∈ C ∞ (V z , R) satisfies the previous equalities, then Φ = Φ on V z . Now, one concludes using the fact that ∂D is compact and can thus it can be covered by a finite number of these neighborhoods (V z ) z∈∂D . Finally, since

∂ n (Φ -f ) = -2∂ n f < 0 on ∂D, V ∂D can be chosen such that Φ > f on V ∂D \ ∂D and ∇(Φ -f ) = 0 on V ∂D .

Definition of the coordinate x d

In this section, one defines coordinates near ∂D which will be convenient in the upcoming computations in Section 3. Let us now consider Φ the solution to (4) on the neighborhood V ∂D of ∂D as introduced in Lemma 1. Let us define on V ∂D :

f + = f + Φ 2 and f -= Φ -f 2 . (5) 
Using Lemma 1, it holds on V ∂D \ ∂D: f -> 0 and one has on V ∂D :

∇f -• ∇f + = 0. ( 6 
)
Let us now consider δ > 0 such that

V δ := {x ∈ D, 0 ≤ f -(x) ≤ δ} ⊂ V ∂D .
For any x ∈ V δ , the dynamics

   γ x (t) = - ∇f - |∇f -| 2 (γ x (t)) γ x (0) = x (7) 
is well defined (since from Lemma 1, one has on V ∂D , ∇f -= 0) and is such that γ x (t x ) ∈ ∂D, where t x = inf{t, γ x (t) ∈ ∂D}. This is indeed a consequence of the fact

that d dt f -(γ x (t)) = -1 < 0 on [0, t x ).
Proposition 1. The application

Θ : V δ → ∂D × [0, δ] x → (γ x (t x ), t x ) defines a C ∞ diffeomorphism. The inverse application of Θ is Ψ : (z, x d ) ∈ ∂D × [0, δ] → γ z (-x d ).
Remark 2. Let us mention that the application Ψ has been introduced locally in [START_REF] Helffer | Quantitative analysis of metastability in reversible diffusion processes via a Witten complex approach: the case with boundary[END_REF] and have also been used in [START_REF] Di Gesù | Sharp asymptotics of the first exit point density[END_REF].

Let us now give some properties of the function Ψ which are used in the sequel. Using the fact that Ψ(z, x d ) = γ z (-x d ), one obtains that for all z ∈ ∂D and x d ∈ [0, δ]:

∇ x d Ψ(z, x d ) = d dx d γ z (-x d ) = ∇f -(z, x d ) |∇f -(z, x d )| 2 . (8) 
Thus, one has for all z ∈ ∂D:

∇ x d Ψ(z, 0) = - 1 ∂ n f (z, 0) n, ( 9 
)
where n is the unit outward normal to ∂D. Moreover, using the fact that Ψ(z, 0) = (z, 0) for all z ∈ ∂D and n = -∇x d |∇x d | together with [START_REF] Di Gesù | The exit from a metastable state: concentration of the exit point on the low energy saddle points[END_REF], it holds for all u ∈ T z ∂D and for all v ∈ R:

dΨ (z,0) (u + vn) = u + v ∂ n f (z, 0) n, (10) 
and thus: jac

Ψ(z, 0) = 1 ∂ n f (z, 0) , (11) 
where jac Ψ is the determinant of the jacobian matrix of Ψ. Finally, by construction (since ρ k (y) = 1 [START_REF] Freidlin | Random Perturbations of Dynamical Systems[END_REF] such that for all k ∈ {1, ..., N }, there exist smooth coordinates x ∈ R d-1 defined by a

d dt f -(γ x (t)) = -1) x d (x) = f -(x) and one has {x d = 0} = ∂D, {x d > 0} = D∩V δ and V δ = x = Ψ(z, x d ) ∈ D, 0 ≤ x d ≤ δ . (12 
C ∞ mapping Γ k : supp ρ k → R d-1 z → x . ( 14 
)
The coordinates x ∈ Γ k (supp ρ k ) are then extended in a neighborhood of supp ρ k in D, as constant along the integral curves of

γ (t) = ∇f - |∇f -| 2 (γ(t)), for t ∈ [0, δ]. The function x → (x , x d ) (where, we recall, x d (x) = f -(x)) thus defines a smooth system of coordinates in a neighborhood V k of supp ρ k in D. Let us define for all (x , x d ) ∈ Γ k (supp ρ k ) × [0, δ], Υ k (x , x d ) := Ψ Γ -1 k (x ), x d ( 15 
)
where Ψ is introduced in Proposition 1. Notice that it holds for all (x

, x d ) ∈ Γ k (supp ρ k )× [0, δ], Jac Υ k (x , x d ) := Jac Ψ Γ -1 k (x ), x d Jac Γ -1 k (x ) 0 0 1 . ( 16 
)
where Jac Υ k is the jacobian matrix of Υ k . In this system of coordinates, the metric tensor

G k (x , x d ) = t Jac Υ k (x , x d ) Jac Υ k (x , x d ) writes: G k : (x , x d ) ∈ Γ k (supp ρ k ) × [0, δ] → Gk (x , x d ) 0 0 (G k ) dd (x , x d ) ( 17 
)
where Gk is a C ∞ square matrix of size d -1 and (G k ) dd is a C ∞ positive function.

Let us prove [START_REF] Karlin | A second course in stochastic processes[END_REF]. Let us denote by x = (x 1 , ..., x d-1 ). Since by construction, for all

(x , x d ) ∈ Γ k (supp ρ k ) × [0, δ], f -(Υ k (x , x d )) = x d , one has: ∀j ∈ {1, ..., d -1}, ∇ x j Υ k (x , x d ) • ∇f -(Υ k (x , x d )) = 0. ( 18 
)
Moreover, from ( 16) and ( 8), one has for all (x , x d )

∈ Γ k (supp ρ k ) × [0, δ], ∇ x d Υ k (x , x d ) = ∇f -(Υ k (x , x d )) |∇f -(Υ k (x , x d ))| 2 . (19) 
Then, from ( 18) and ( 19), it holds

∀j ∈ {1, ..., d -1}, (G k ) j,d = ∇ x j Υ k • ∇ x d Υ k = 0.
This proves [START_REF] Karlin | A second course in stochastic processes[END_REF]. Furthermore, from ( 10) and ( 16), one has:

for all x ∈ Γ k (supp ρ k ), (G k ) dd (x , 0) = 1 ∂ n f (x , 0) 2 . ( 20 
)
Finally, a consequence of ( 6) is that d dt f + (γ x (t)) = 0, where γ x satisfies (7) and thus, in the system of coordinates (x , x d ), the functions f + and f write:

f + (x , x d ) = f + (x , 0) and f (x , x d ) = f + (x , 0) -x d , (21) 
where with a slight abuse of notation, one denotes

f (Υ k (x , x d )) (resp. f + (Υ k (x , x d ))) by f (x , x d ) (resp. by f + (x , x d )).
3 Potential theory and mean exit time of D

Potential theory

Let us recall the main results from Potential theory which are used in this work. These results can be found for instance in [START_REF] Bovier | Metastability: a potential-theoretic approach[END_REF]. Let us denote by C = B(x 0 , r 0 ) ⊂ D a closed ball centred at x 0 and of radius r 0 > 0 chosen such that B(x 0 , r 0 ) ∩ V δ = ∅ where V δ is given by [START_REF] Evans | Partial differential equations[END_REF]. Let h C,D c be the unique weak solution in

H 1 (R d ) of the elliptic boundary value problem      L ε v = 0 on D \ C v = 0 on D c v = 1 on C,
The function h C,D c is called the equilibrium potential of the capacitor (C, D c ) (as denoted in [4, Section 2]). From elliptic regularity estimates (see for instance [12, Theorem 5, Section 6.3]), the function

h C,D c belongs to C ∞ (D \ C). Therefore, it holds h C,D c ∈ H 1 (D) ∩ C ∞ (D \ C).
Using the Dynkin's formula (see for instance [START_REF] Karlin | A second course in stochastic processes[END_REF]Theorem 11.2]), one has for all x ∈ D,

h C,D c (x) = P x [τ C < τ D c ], (22) 
where From [4, Section 2] (see equation (2.27) there), one has the following relation:

τ C = inf{t ≥ 0|X t ∈ C}
∂C E z [τ D c ] e -1 ε f (z) e C,D c (dz) = D e -1 ε f (x) h C,D c (x) dx. ( 23 
)
Let us now define, as in [4, Section 2] (see equation (2.13) there), the capacity associated with (C, D c ):

cap C (D c ) = ∂C e -1 ε f (z) e C,D c (dz). ( 24 
)
3.2 A first asymptotic estimate on the mean exit time of D

The following results from [8, Corollary 1] and [7, Theorem 2] will be useful in the sequel.

Proposition 2. Let us assume that the assumption [H-D] holds. Let K ⊂ D be a compact set. Then, there exists c > 0 such that it holds in the limit ε → 0 and uniformly with respect to x ∈ K:

λ ε E x [τ D c ] = 1 + O(e -c ε ), and h C,D c (x) ≥ 1 -e -c ε ,
where, we recall, for all

x ∈ D, h C,D c (x) = P x [τ C < τ D c ] (see (22)).
Remark 3. In [8, Corollary 1], the result on

λ ε E x [τ D c
] is not stated with an error term. However, in view of the proof of [8, Corollary 1], the error term is O(e -c ε ) and is uniform with respect to x in a compact subset of D.

Proposition 2 implies that in the limit ε → 0 and uniformly with respect to x ∈ K:

E x [τ D c ] = E x 0 [τ D c ](1 + O(e -c ε )). ( 25 
)
We are now in position to obtain a first estimate on the mean exit time of D. Using (25), ( 23) and ( 24), for any compact set K ⊂ D, there exists c > 0 such that in the limit ε → 0:

E x 0 [τ D c ] = D e -1 ε f (x) h C,D c (x)dx cap C (D c ) (1 + O(e -c ε )). Moreover, since h C,D c ≡ 1 on C, h C,D c ≤ 1 on D, f (x) ≥ max C f > f (x 0 ) for all
x ∈ D \ C and using Laplace's method (since x 0 is non degenerate), one obtains that there exits c > 0 such that in the limit ε → 0:

D e -1 ε f (x) h C,D c (x)dx = C e -1 ε f (x) dx + O(e -1 ε (f (x 0 )+c) ) = (2πε) d 2 det Hess f (x 0 ) e -1 ε f (x 0 ) 1 + O(ε) .
Thus, one has the following result.

Lemma 2. Let us assume that the assumption [H-D] is satisfied. Then, in the limit ε → 0:

E x 0 [τ D c ] = (2πε) d 2 det Hess f (x 0 ) cap C (D c ) 1 + O(ε) , (26) 
where τ D c is defined by (2) and cap C (D c ) by (24).

To prove Theorem 1, it remains to give an estimate on cap C (D c ) in the limit ε → 0. This is the purpose of the next section.

Proofs of Theorem 1 and Corollary 1

In this section, one obtains sharp lower and upper bounds on the capacity cap C (D c ). From [4, Section 2], one has the following variational principle:

cap C (D c ) = ε D\C ∇h C,D c (x) 2 e -1 ε f (x) dx (27) = inf h∈H C,D c ε D\C ∇h(x) 2 e -1 ε f (x) dx,
where

H C,D c = h ∈ H 1 (R d ), h(x) = 1 for x ∈ C, h(x) = 0 for x ∈ D c }.
Formula (27) holds since the function h C,D c is a minimizer of the functional

h ∈ H C,D c → ε D\C ∇h(x) 2 e -1 ε f (x) dx.
Using this variational principle, one can get a sharp upper bound on cap C (D c ) by choosing a suitable function h ∈ H C,D c .

Upper bound on cap

C (D c )
In this section, one gets a sharp upper bound on cap C (D c ). Let V δ be defined by [START_REF] Evans | Partial differential equations[END_REF] and let h ∈ H C,D c . From 27, one has

cap C (D c ) ≤ ε V δ ∇h(x) 2 e -1 ε f (x) dx + ε D\V δ ∇h(x) 2 e -1 ε f (x) dx. (28) 
From ( 13), ( 14), ( 15) and ( 17), one has:

ε V δ ∇h(x) 2 e -1 ε f (x) dx = ε N k=1 x ∈Γ k (supp ρ k ) ρ k (Γ -1 k (x )) × δ 0 t ∇h(x , x d )G k (x , x d ) -1 ∇h(x , x d ) e -1 ε f (x ,x d ) jac Υ k (x , x d ) dx d dx (29) 
where t ∇ = (∂ x , ∂ x d ), Υ k is defined by [START_REF] Helffer | Quantitative analysis of metastability in reversible diffusion processes via a Witten complex approach[END_REF], G k is the tensor metric associated with the change of variable x = Υ k (x , x d ) (see [START_REF] Karlin | A second course in stochastic processes[END_REF]) and jac Υ k = √ det G k is the jacobian of Υ k . Let us now consider the following function: 

x d ∈ [0, δ] → g(x d ) =
∂ x h(x , x d ) = 0 and ∂ x d h(x , x d ) = d dx d g(x d ).
From ( 17), ( 21), (28), and (29) together with the fact that ∇h = 0 on

D \ V δ , one cap C (D c ) ≤ ε N k=1 x ∈Γ k (supp ρ k ) ρ k (Γ -1 k (x )) e -1 ε f + (x ,0) ε 2 1 -e -δ ε 2 × δ 0 e -x d ε (G k ) dd (x , x d ) -1 jac Υ k (x , x d )dx d dx .

Now let us notice that for any function

ϕ ∈ C ∞ (Γ k (supp ρ k ) × [0, δ], R * + ), one has in the limit ε → 0: δ 0 ϕ(x , x d )e -x d ε dx d = ε ϕ(x , 0) 1 + O(ε) , (30) 
uniformly with respect to x ∈ Γ k (supp ρ k ). Thus, applying (30) with ϕ = (G k ) -1 dd jac Υ k , it holds in the limit ε → 0:

cap C (D c ) ≤ N k=1 x ∈Γ k (supp ρ k ) ρ k (Γ -1 k (x ))e -1 ε f + (x ,0) 1 -e -δ ε 2 × (G k ) dd (x , 0) -1 jac Υ k (x , 0)dx 1 + O(ε) .
Finally, using (10), ( 16) and ( 20), it holds in the limit ε → 0:

cap C (D c ) ≤ N k=1 x ∈Γ k (supp ρ k ) ρ k (Γ -1 k (x ))e -1 ε f (x ,0) ∂ n f (x , 0) jac Γ -1 k (x )dx 1 + O(ε) .
Therefore, since from (5) and Lemma 1, f (x , 0) = f (x) for all x = Υ k (x , 0) ∈ ∂D, one has following result.

Lemma 3. Let us assume that the assumption [H-D] is satisfied. Then, it holds in the limit ε → 0:

cap C (D c ) ≤ ∂D ∂ n f (σ) e -1 ε f (σ) dσ 1 + O(ε) , (31) 
where, we recall, cap C (D c ) is defined by (24).

Let us now give a sharp lower bound on cap C (D c ).

Lower bound on cap C (D c )

In this section, one gets a sharp lower bound on cap C (D c ). Let V δ be defined by [START_REF] Evans | Partial differential equations[END_REF]. Using ( 27), ( 13), ( 14), ( 15) and ( 17), one has:

cap C (D c ) ≥ ε V δ ∇h C,D c (x) 2 e -1 ε f (x) dx ≥ ε N k=1 x ∈Γ k (supp ρ k ) ρ k (Γ -1 k (x )) δ 0 L k (x , x d ) dx d dx (32) with L k (x , x d ) := ∂ x d h(x , x d ) 2 (G k ) dd (x , x d ) -1 e -1 ε f (x ,x d ) jac Υ k (x , x d ).
Let us define for k ∈ {1, ..., N } and (

x , x d ) ∈ Γ k (supp ρ k ) × [0, δ]: χ k (x , x d ) := (G k ) dd (x , x d ) -1 jac Υ k (x , x d ). ( 33 
)
The function χ k satisfies min

Γ k (supp ρ k )×[0,δ] χ k > 0. (34) 
Let us consider k ∈ {1, ..., N } and x ∈ Γ k (supp ρ k ). Then, it holds: Then, using (30), ( 33), ( 20), ( 10) and ( 16), one has in the limit ε → 0: 

δ 0 L k (x , x d ) dx d = δ 0 ∂ t h C,D c (x , t) 2 χ k (x , t) e t ε dt ≥ inf g∈H 1 (0,δ) g(0)=0 g(δ)=h C,D c (x ,δ) δ 0 d dt g ( 
where, we recall, cap C (D c ) is defined by (24).

Theorem 1 is then a consequence of (31) and (39) together with (26) and (25). Corollary 1 is a consequence of Theorem 1 and Proposition 2.

) 2 . 3

 23 Metric associated with the change of variable x = Ψ(z, x d ) Let us consider (ρ k ) k∈{1,...,N } ∈ C ∞ (∂D, [0, 1]) N a partition of unity of ∂D: for all y ∈ ∂D, N k=1

  and τ D c is defined by (2). Let us denote by G D be the Green function of L ε associated with homogeneous Dirichlet boundary conditions on ∂D. The equilibrium measure e C,D c associated with (C, D c ) (see [4, Section 2] and more precisely the equation (2.10) there) is defined as the unique measure on ∂C such that h C,D c (x) = ∂C G D (x, y)e C,D c (dy).

1 -e -x d ε 1 -

 11 e -δ ε , which satisfies g(0) = 0 and g(δ) = 1. Let h : V δ → R be such that h • Ψ(z, x d ) := g(x d ), for all (z, x d ) ∈ ∂D × [0, δ].The function h is then extended by 1 in D \ V δ and by 0 outside D. Thus, h belongs toH C,D c since C ⊂ D \ V δ . For all k ∈ {1, ..., N } and for all (x , x d ) ∈ Γ k (supp ρ k ) × [0, δ],denoting with a slight abuse of notation h • Υ k by h, one has h(x , x d ) = g(x d ) and then for any (x , x d ) ∈ Γ k (supp ρ k ) × [0, δ]:

t 0 χ 2 χ 0 ∂ 1 ε 0 χ 2 e - 1 ε 2 N

 02010212 k (x , s) -1 e -s ε ds δ 0 χ k (x , s) -1 e -s ε ds h C,D c (x , δ).The set K = {g ∈ H 1 (0, δ), g(0) = 0 and g(δ) = h C,D c (x , δ) is a closed convex subset of H 1 (0, δ) and the functionalF : θ ∈ H 1 (0, δ) → k (x , t) e t ε dt ε → 0: cap C (D c ) ≥ ε N k=1 x ∈Γ k (supp ρ k ) ρ k (Γ -1 k (x )) e -1 ε f + (x ,0) × δ x d g * x (x d ) 2 χ k (x , x d )e x d dx d dx = ε N k=1 x ∈Γ k (supp ρ k ) ρ k (Γ -1 k (x )) h 2 C,D c (x , δ) e -1 ε f + (x ,0) × δ k (x , x d ) -1 δ 0 χ k (x , s) -1 e -s ε ds x d dx d dx ≥ ε(1 -e -c ε k=1 x ∈Γ k (supp ρ k ) ρ k (Γ -1 k (x )) e -1 ε f + (x ,0) × δ 0 χ k (x , x d ) -1 δ 0 χ k (x , s) -1 e -s ε ds 2 e -1 ε x d dx d dx .

Lemma 4 .

 4 cap C (D c ) ≥ N k=1 x ∈Γ k (supp ρ k ) ρ k (Γ -1 k (x ))e -1 ε f (x ,0) ∂ n f (x , 0) jac Γ -1 k (x )dx 1 + O(ε) .Therefore, since from (5) and Lemma 1, f (x , 0) = f (x) for all x = Υ k (x , 0) ∈ ∂D, one has the following lower bound on cap C (D c ). Let us assume that the assumption [H-D] is satisfied. Then, it holds in the limit ε → 0:cap C (D c ) ≥ ∂D ∂ n f (σ) e -1 ε f (σ) dσ 1 + O(ε) .
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is continuous and from (34), it is strongly convex. Furthermore, since for all u ∈ K, u(0) = 0, there exists C > 0 such that for all g ∈ K,

Thus, using in addition (34), there exists c > 0 such that for all g ∈ K,

Let us consider a sequence (g n ) n≥0 ∈ K N such that lim n→∞ F (g n ) = inf K F . Then, from (37), (g n ) n≥0 is a bounded sequence in H 1 (0, δ) and thus converges for the weak topology of H 1 (0, δ) towards some g ∈ H 1 (0, δ). Since F is continuous and convex on K, it is a lower semi-continuous function for the weak topology in H 1 (0, δ). Therefore, inf K F ≤ F (g) and since g ∈ K, g is a minimizer of F on K. Finally, because F is strongly convex, g is the unique minimizer of F on K. Let α ∈ R and ϕ ∈ C ∞ c (0, δ). Then, it holds g + αϕ ∈ K and thus

Thus, g ∈ H 1 (0, δ) is a weak solution to the following one dimensional Dirichlet problem on (0, δ):

From (34), one can use the Lax-Milgram Theorem which implies that there exists a unique solution in H 1 (0, δ) of (38). Clearly, this solution is given by

and thus g = g * x . This concludes the proof of (36). Using (32), ( 35) and (36) together with the second statement in Proposition 2, there exists c > 0 such that in the limit