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Abstract The aim of a Super Resolution (SR) tech-

nique is to construct a high-resolution image from a

sequence of observed low-resolution ones of the same

scene. One major roadblock of an SR reconstitution is

removing noise and blur without destroying edges. We

propose a novel multiframe image SR algorithm based

on a convex combination of Bilateral Total Variation

and a non-smooth second order variational regulariza-

tion, using a controlled weighting parameter. We prove

the existence of a minimizer of the proposed SR model

in the space of functions of bounded Hessian, and we

confirm the success of this approach in avoiding unde-

sirable artifacts. The simulation results show the effi-

cient performance of the proposed algorithm compared

to other methods in the literature using two criteria,

PSNR and SSIM.

Keywords Multiframe Super Resolution · Bilateral

TV filter · Bounded Hessian space · Second order

regularization · Relaxed function.

1 Introduction

Image super resolution (SR) reconstruction is a chal-

lenging problem and an active research area in image
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processing. The principle of this technique is to recon-

struct a high-resolution (HR) image by fusing degraded

low-resolution (LR) ones. The SR is used in many ap-

plications, such as medical diagnostics [1], video surveil-

lance [2], satellite imaging, etc.

After the first seminal work proposed by Tsai and

al. [3], several techniques of the muliframe SR [4–6] have

been proposed to enhance the quality of the obtained

HR image. Since the SR approach is an ill-posed prob-

lem, many SR methods are based on a regularization

framework [2,7,6,8]. Farsiu et al. proposed a fast and

robust SR [9]; this technique reduces the complexity of

the SR method by decomposing it into two steps: first,

finding a blurred HR image from the LR measurements,

then, deblurring and denoising it. Both steps are crit-

ical to the quality of the HR image. We concentrate
here on the second one; we impose some prior on the

HR image in a Bayesien framework. Some of the widely-

used prior functions are Tikhonov-type regularizers [6,

10] and Total Variation (TV)-type regularizers [11]. An-

other successful regularization is the bilateral total vari-

ation (BTV) with the L1 norm proposed by Farsiu et

al. [9] and an adaptive norm with BTV regularizer [12].

These approaches are successful in recovering images

with sharp edges but fail on images with smooth sur-

face, suffering from the staircasing effect. To overcome

this defect, a second order variational approach [13–15]

can be used. Despite its success in numerous denois-

ing problems, it suffers from blur and sometimes does

not preserve edges correctly. To perform the process

of simultaneous deblurring and denoising, a combined

first and second order regularization [16,17] has been

used and proved its robustness in image restoration,

but no such attempts have been proposed to increase

the performance of SR methods with the BTV regu-

larizer. An alternative to BTV is the total generalized
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variation (TGV) [18], TGV2
α, known for its effectiveness

in avoiding the staircasing effect near discontinuity re-

gions. However, Papafitsoros and Schönlieb [17] demon-

strate that the combined first and second order regular-

ization yields sometimes better results than TGV2
α at

a much lower computation cost. The best performing

regularization terms are learned from training data in

the work of Chen et al. [19,20]. Nevertheless, the math-

ematical well-posedness of the problems using these pri-

ors is not ascertained, and we did not investigate those.

Motivated by the success of the combination models in

restoration problem, we propose in this paper a new

combination of the BTV regularizer and a second or-

der differential regularization in the choice of the prior

function.

The main idea behind this combination is to use

a large weight for the BTV regularization to enhance

sharp edges and also to correct the misregistration er-

rors, and use the second order regularizer to eliminate

the staircasing caused by the BTV regularization with-

out blurring the image. In the following, we will prove

existence of the minimization deblurring and denoising

problem (second step of SR), which is a combination of

the BTV and second order variational regularization.

We use as functional space the bounded Hessian space

HB(Ω) [21] and we use the classical steps based on

relaxed functions [22,23].

In Section 2, we present the general SR problem

and describe the proposed SR algorithm steps. In Sec-

tion 3, we introduce the variational problem and the

space HB(Ω) and its essential properties. Hence, we

will prove the existence of a minimum of the relaxed

functional associated to the deblurring and denoising

problem, using standard techniques from calculus of

variations. In Section 4, we present some experimen-

tal results using both synthetic and real images, and

we compare our model with some existing algorithms

in the SR literature.

2 Problem formulation

The observed images of a real scene are usually in low

resolution due to some degradation operators. In prac-

tice, the acquired image is corrupted by noise, blur

and sampling [24,3,5]. We assume that the LR im-

ages are taken under the same environmental condi-

tions using the same sensor. The relationship between

an ideal HR image X of size M = rN1 × rN2 de-

noted by a column vector X = [x1, x2 . . . , xM ]>, where

r ≥ 1 is the downsampling factor and the LR images

Yk of size N1×N2, represented also by a column vector

Yk = [yk,1, yk,2 . . . , yk,N1N2
]>, where k = 1 . . . n and n

is the number of the LR images, is given by the relation

Yk = DFkHX + ek, ∀k = 1, 2, . . . , n, (1)

where H represents the linear blur operator of kernel

size M × M , D represents the sampling operator of

size N1N2 ×M , Fk is a geometric warp matrix of size

M ×M representing a non-parametric transformation

that differs in all frames, and ek a vector of size N1N2

represents the additive noise for each image, assumed

to follow a zero mean Gaussian distribution.

In the presence of different operators of degradation

(sampling, blur and noise), the problem becomes very

unstable. To deal with it, we use the same approach as

in [9] that suggests to separate it into three steps:

1. Computing the warp matrix Fk for each image.

2. Fusing the low-resolution images Yk into a blurred

HR version B = HX.

3. Finding the estimation of the HR image X from B.

To compute the warp matrix Fk, there are many ap-

proaches in the literature (for more details see [24]). In

this paper, we use a non parametric registration [25].

For the fusion step, we use the technique of [9], recalled

in the following section.

2.1 The fusion step

The first part of our algorithm is to compute the blurred

HR version B = HX. We assume that the additive

noise is Gaussian distributed and follows the same dis-

tribution for all low resolution images. The blurred im-

age B̂ can be found via the principle of maximum likeli-

hood estimator (ML) [24]. The ML suggests the choice

of B̂ that maximizes the likelihood function, which also

minimizes the negative log-likelihood function

B̂ = arg max
B
{p(Yk|B)}

= arg min
B
{− log(p(Yk|B))}

= arg min
B

n∑
k=1

‖Yk −DFkB‖2L2 . (2)

The steepest descent algorithm [26] can be used to re-

solve this minimization problem, or, even better, the

primal-dual algorithm [27].

2.2 Deconvolution and denoising step

In this step we try to find the HR imageX by deblurring

and denoising the image B̂. Unfortunately we are facing

an unstable inverse problem due to the presence of noise

and blur at the same time. To overcome this difficulty,



Deconvolution and denoising using a second order variational approach applied to image super resolution 3

we impose some prior knowledge about the image in a

Bayesian framework. Since B̂ has white Gaussian noise,

the measured vectors Yk also undergo a Gaussian blur.

Via the Bayes rule, finding the HR image X leads us

to look for the solution of the following minimization

problem (3) using the maximum a posteriori (MAP)

estimator:

X̂MAP = arg max
X
{p(X|B̂)}

= arg max
X

{
p(B̂|X)p(X)

p(B̂)

}
= arg min

X

{
− log(p(B̂|X))− log(p(X))

}
, (3)

where p(B̂|X) represents the likelihood term (data at-

tachment term) and p(X) denotes the prior knowledge

on the HR image. To formulate precisely this problem,

we need to assume a prior Gibbs function (PGF).

2.3 The prior Gibbs function

A well-known manner to represent the image prior PGF

function p is the Gibbs function represented by

p(x) = cG · exp {−G(x)} , (4)

where cG is a normalization constant and G(x) is a non

negative energy function. Since we know the robustness

of the BTV regularizer to remove noise and preserve

edges, and the success of the variational second order

regularization to remove the blocky effect, we propose

to use a combination of these two regularizers in the

choice of the Gibbs function, controlled by a weight

parameter that depends on the gradient of the image:

p(X) = exp

−δ
p∑

i=−p

p∑
j=−p

α|i|+|j|‖X − SixSjyX‖1


· exp

{
−(1− δ)‖f(∇2X)‖1

}
,

where the operators Six and Sjy shift X by i and j pixels

in horizontal and vertical directions respectively:

SixX(x, y) = X(x+ i, y) and SjyX(x, y) = X(x, y + j).

This formulation depends on the following parameters:

– α: a scalar weight, applied to give a spatially de-

caying effect to the summation of the regularization

terms, 0 < α < 1.

– p: the spatial window size, p ≥ 1.

– f : a function defined from R4 to R+ verifying some

assumptions that we define below.

– δ: the weight that controls the regularization com-

bination. We define in the following how it is calcu-

lated from the gradient of the image.

The first term is a measure of bilateral variation, con-

taining a spatial decaying influence and a color differ-

ence in the neighborhood.

Notice that in the discrete setting, the BTV regu-

larizer

p∑
i=−p

p∑
j=−p

α|i|+|j|‖X − SixSjyX‖1

can be translated into

p∑
i=−p

p∑
j=−p

ωi,j

M∑
k=1

|(Ai,jX)k| ,

with weights ωi,j = α|i|+|j|; the linear operators Ai,j =

I − SixSjy correspond to convolutions with a linear ker-

nel. Under this point of view, the BTV regularization

is a simple version of the learned regularizers of Chen

et al. [20], but with the `1 norm.

3 Resolution of the final SR problem

In this section, we rewrite the problem (3) with the

defined PGF function and the likelihood terms, which

will constitute the final problem. To do so, we use the

operators Fk defined for each image and the computed

blurred HR image B̂ obtained in (2).

X̂ = arg min
X

F (X), (5)

with

F (X) =‖HX − B̂‖1

+ δ

p∑
i=−p

p∑
j=−p

α|i|+|j|‖X − SixSjyX‖1

+ (1− δ)‖f(∇2X)‖1.

(6)

The norm of the Lebesgue space L1(Ω) in the expres-

sion ‖HX − B̂‖1, where Ω contains all the pixels on

the HR grid X, is used because it is robust against out-

liers [9]. The choice of L1 instead of the L2 norm is

essentially due to the better effectiveness of the former

in removing impulse noise. Also, it is contrast invariant

in a weak sense: if C ∈ R+, CX is a solution for CB̂

in (6). Before solving the minimization problem (5), we

have to check the existence of a solution. In the fol-

lowing, we construct the functional framework and we

ensure the existence of a solution.
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3.1 Functional framework

We consider a compact set Ω ⊂ R2 smooth enough. We

construct the functional framework where the function

F is well defined. In other words, we look for a Banach

space of functionsX defined fromΩ to R, which ensures

the existence of the different norms in (6). We suppose

that X ∈ L1(Ω); this ensures that ‖HX(x) − B̂(x)‖1
is well defined. Moreover, the operator (I − S.xS

.
y) is

defined such that I − S.xS.y : L1(Ω) −→ L1(Ω) which

implies the existence of ‖X − S.xS.yX‖1. Moreover, we

assume that f is convex and satisfies the following con-

dition:

∃k, k′ > 0, ∀x ∈ R4, k|x|2 − k′ ≤ f(x) ≤ k|x|2 + k′, (7)

where | . |2 is the Euclidean norm in R4. The condi-

tion (7) ensures that if∇2X ∈
[
L1(Ω)

]4
then ‖f(∇2X)‖1

is well defined. From the conditions X ∈ L1(Ω), (X −
S.xS

.
yX) ∈ L1(Ω) and ∇2X ∈

[
L1(Ω)

]4
, we recognize

as an adequate functional framework, for q = 1, the

Sobolev space [28]

W 2,q = {X ∈ Lq(Ω) |DαX ∈ Lq(Ω), [α] ≤ 2} , (8)

where

Dα =
∂α1∂α2

∂xα1∂yα2
and [α] = α1 + α2.

Unfortunately, this space is not reflexive [28] and we

cannot apply directly the following theorem of opti-

mization:

Theorem 1 We consider a reflexive space V , and a

function F : V 7→ R such that F is coercive, lower

semi-continuous (l.s.c) and convex. Then the minimum

of F exists. Moreover if F is strictly convex, then this

minimum is unique.

We cannot say anything about a bounded minimizing

sequence in W 2,1(Ω). To overcome the ill-posedness of

this problem, we use the procedure of relaxation [29]. A

typical choice of the space that guarantees the compact-

ness results is the space of Bounded Hessian HB(Ω)

noted also BV 2(Ω), introduced for the first time by

F. Demengel in 1985 [21]. We present next the space

HB(Ω) and its useful properties.

3.2 The space HB(Ω)

We define the space HB(Ω) of bounded Hessian func-

tions. First, we define the space of bounded variation

functions BV (Ω) as

BV (Ω) =
{
X ∈ L1(Ω) such that ∇X ∈Mb(Ω,R2)

}
,

(9)

where Mb(Ω,R2) is the space of bounded measures

from Ω to R2. We define the space HB(Ω) using the

space BV (Ω) by

HB(Ω) =
{
X ∈W 1,1(Ω),∇X ∈ (BV (Ω))

2
}

(10)

It is clear that W 2,1(Ω) ⊂ HB(Ω). We define now a

norm of the space HB(Ω).

Theorem 2 The space HB(Ω) is a Banach space, when

endowed with the norm ‖.‖HB defined as

‖X‖HB = ‖X‖W 1,1 + |DX|,

where

‖X‖W 1,1 = ‖X‖1 + ‖∇X‖1,

and

|DX| = sup{
∫
Ω

X div2(φ) :φ ∈ C10(Ω)2,

‖φ‖L∞(Ω) ≤ 1};

div2 is the second order divergence operator with the

adjointness property

div2X · Y = X · ∇2Y ∀Y ∈ RM , X ∈
(
RM

)4
,

and the dot ”·” denotes the Euclidean inner product.

C10(Ω) represents the space of continuously differentiable

functions with compact support in Ω.

We have also the embedding results proved by Demen-

gel [21] as well:

Theorem 3 Assuming that the dimension n > 1, we

have

HB(Ω) ↪→W 1,q(Ω), when q ≤ n

n− 1
,

with continuous embedding. Moreover the embedding is

compact if q <
n

n− 1
. In particular, we have

HB(Ω) ↪→ Lq(Ω), for q ≤ n

n− 2
, if n > 2,

HB(Ω) ↪→ Lq(Ω), for q ≥ 1, if n = 2.

Since in our problem we treat the case n = 2 and Ω is a

subset of R2, we have in fact HB(Ω) ↪→W 1,2(Ω) with

continuous embedding and HB(Ω) ↪→ W 1,1(Ω) with

compact embedding.
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Definition 1 (Weak * convergence in HB(Ω))

Let (Xk)k∈N and X ∈ HB(Ω). We say that (Xk) con-

verges to X weakly* if

Xk
L1(Ω)−→ X and ∇Xk ⇀

BV−ω∗
∇X,

where BV −ω∗ is the weak* topology in BV (Ω) defined

as:

Xk ⇀
BV−ω∗

X ⇐⇒

 Xk −→
L1

X

DXk
∗
⇀
M
DX,

and DXk
∗
⇀
M
DX means∫

Ω

ϕDXk −→
∫
Ω

ϕDX ∀ϕ ∈ C10(Ω).

We also need this compactness result in BV (Ω):

Theorem 4 (Compactness in BV (Ω))

Every uniformly bounded sequence (Xk)k∈N in BV (Ω)

is relatively compact in Lq(Ω), for 1 ≤ q < n
n−1 , n ≥ 1.

Moreover, there exist a subsequence (Xkj)j∈N and X ∈
BV (Ω) such as Xkj ⇀

BV−ω∗
X.

Another very useful theorem to demonstrate the l.s.c is

the Buttazo and Freddi theorem defined as

Theorem 5 Let Ω be an open subset of Rn, ν, (νk)k∈N
be Rm-valued finite Radon measures and µ, (µk)k∈N be

positive Radon measure in Ω. Let g : Rm → R be a

convex function and suppose that µk → µ and νk → ν

weakly∗ in Ω. Consider the Lebesgue decompositions:

ν =

(
ν

µ

)
µ+ νs , νk =

(
νk
µk

)
µk + νsk , k ∈ N.

If µ = µk = dxn, then

g(ν)(Ω) ≤ lim inf
k→∞

g(νk)(Ω).

3.3 The Variational Problem

In this subsection, we prove the existence of a solution

to the problem (5) by using the direct method in cal-

culus of variations.

Theorem 6 Under the hypothesis (7), and assuming

that the operators (I−S.xS.y) and H defined: L1(Ω) −→
L1(Ω) are continuous; assuming also that H does not

annihilate the constants (in particular H.1 6= 0); then,

the optimization problem

min
X

F ext(X), (11)

has a solution in HB(Ω), where F ext is the lower semi-

continuous envelope of F defined in the proof.

Proof First of all, we extend the function F in HB(Ω)

by :

Fext(X) =

{
F (X) if X ∈W 2,1(Ω)

+∞ if X ∈ HB(Ω) \W 2,1(Ω)
(12)

We can check easily that Fext is not lower semi continu-

ous for the weak* topology defined in HB(Ω) following

the same steps as in [17], so we should determine its

l.s.c envelope defined in the whole space HB(Ω) by

F ext(X) = ‖HX − B̂‖1

+ δ

p∑
i=−p

p∑
j=−p

α|i|+|j|‖X − SixSjyX‖1

+ (1− δ)‖f(D2X)‖1, (13)

where D2X = D∇X and D is the distributional gradi-

ent of X. With these notations F ext coincides with F

on W 2,1(Ω). Let us prove now the coercivity of F ext.

• Let (Xn)n∈N be a minimizing sequence of the func-

tion Fext such that

lim
n→+∞

F ext(Xn) = inf
X∈HB(Ω)

F ext(X).

Using the hypothesis (7) on Fext, we can deduce

that
|D2Xn|(Ω) ≤M1,

‖HXn − B̂‖1 ≤M2,∑p
i=−p

∑p
j=−p α

|i|+|j|‖Xn − SixSjyXn‖1 ≤M3.

(14)

We prove now that ‖Xn‖1 is also bounded. We use a

classical approach [30]. We construct two sequences

Yn = 1
|Ω|
∫
Ω
Xn dx and Zn = Xn − Yn; then∫

Ω

Zn dx = 0, and ∇Zn = ∇Xn. (15)

Using the generalized Poincaré-Wirtinger inequality

[28] for the norm ‖.‖2 of the Lebesgue space L2(Ω),

there is a universal constant C that we will use in

the following, such that

‖Zn‖2 ≤ C‖∇Zn‖2. (16)

Based on the approximation given to the TV prior

suggested in [31], we can deduce that

‖∇Xn‖1 ' ‖QxXn‖1 + ‖QyXn‖1,

This equivalence is obtained computationally, where

the operators Qx and Qy can be defined in the

regularization BTV such that i = 1, j = 0 and

i = 0, j = 1 respectively, which is equivalent to the

choice Qx = (I − S1
x) and Qy = (I − S1

y). Since we
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choose p ≥ 1 in the BTV regulizer, we can deduce

that

‖∇Xn‖1 ≤
p∑

i=−p

p∑
j=−p

α|i|+|j|‖Xn − SixSjyXn‖1. (17)

Using the third inequality in (14) and relations (15),

(16), we have

‖Zn‖2 ≤ C, (18)

then

‖Xn‖2 = ‖Xn − Yn + Yn‖2
= ‖Zn + Yn‖2
≤ ‖Zn‖2 + ‖Yn‖2
≤ C + ‖Yn‖2

(19)

with ‖Yn‖L2(Ω) = ‖
∫
Ω
Xn dx‖. We also have∥∥∥∥H ( 1

|Ω|

∫
Ω

Xn dx

)∥∥∥∥
1

≤ ‖HYn −HXn‖1

+ ‖HXn − B̂‖1 + ‖B̂‖1
≤ ‖H‖L∞(Ω)‖Zn‖1 + C + ‖B̂‖1
≤ ‖H‖L∞(Ω)‖Zn‖2 + C

≤ C,
(20)

and finally∥∥∥∥H ( 1

|Ω|

∫
Ω

Xn dx

)∥∥∥∥
1

=

∣∣∣∣ 1

|Ω|

∫
Ω

Xn dx

∣∣∣∣ ‖H.1‖1
≤ C. (21)

We can deduce that the sequence (Xn)n∈N is boun-
ded in L2(Ω), andΩ is bounded so it is also bounded

in L1(Ω). In addition we have that, ∀Xn ∈ HB(Ω):∫
Ω

|∇Xn| dx ≤ C1|D2Xn|(Ω) + C2‖Xn‖1. (22)

Since (Xn)n∈N is bounded in L1(Ω), (∇Xn)n∈N is

bounded in L1(Ω) and (D2Xn)n∈N is bounded in

L1(Ω), we deduce finally that (Xn) is bounded in

HB(Ω). Using the embedding results in Theorem 3,

the sequence (Xn)n∈N is also bounded in W 1,1(Ω)

and HB(Ω) ↪→ W 1,1(Ω) compactly. Thus, we can

extract a subsequence (Xnk
)k∈N such that

Xnk

W 1,1(Ω)−−−−−→ X.

In addition (∇Xn)n∈N is also bounded in [BV (Ω)]
2
,

so that, based on the result of compactness in the-

orem 4, we can extract a subsequence (∇Xnk
)k∈N

satisfying

∇Xnk

w∗
⇀ Y.

Using the weak∗ convergence in BV (Ω) we have∇Xnk
−→
L1

Y,

D∇Xnk

∗
⇀
M
DY,

where D∇Xnk

∗
⇀
M
DY is equivalent to∫

Ω

ϕD∇Xnk
−→

∫
Ω

ϕDY ∀ϕ ∈ C10(Ω).

Therefore ∇X = Y , and we finally get{
Xnk
−→X in W 1,1(Ω)

∇Xnk

w∗
⇀ ∇X in [BV (Ω)]

2

⇐⇒ Xnk

∗
⇀ X in HB(Ω).

To finish this proof it remains to show that Fext is

weak sequentially l.s.c in HB(Ω).

• To prove that F ext is weak sequentially l.s.c, it suf-

fices to establish the following inequality

lim inf
Xnk

⇀X
F ext(Xn) ≥ F ext(X).

Let X and (Xn)n∈N be functions taken from HB(Ω)

such that

Xn
∗
⇀

HB(Ω)
X.

This implies

‖Xn −X‖1 −→ 0.

Since H and (I − SixS
j
y) are continuous operators

from L1 to itself we can check that

‖HXn −B‖1 −→ ‖HX −B‖1,

and

p∑
i=−p

p∑
j=−p

α|i|+|j|‖Xn − SixSjyXn‖1 −→

p∑
i=−p

p∑
j=−p

α|i|+|j|‖X − SixSjyX‖1. (23)

Finally we use theorem 5 of Buttazo and Freddi

νn = dx2, µ = D2X and µn = D2Xn

to deduce that

lim inf
Xn⇀X

f(D2Xn)(Ω) ≥ f(D2X)(Ω),

which gives

lim inf
Xn⇀X

F ext(Xn) ≥ F ext(X),

i.e., X is the minimum of F ext in HB(Ω).
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We cannot say anything about the uniqueness of the

solution since ‖HXn − B‖1 is not strictly convex, but

if we replace this term by ‖HXn −B‖2, the solution is

unique since the blur operatorH is injective. In the next

section, we define the proposed iterative SR algorithm.

3.4 Proposed SR algorithm

Let us describe briefly the minimization algorithm used

in our SR approach. We can simply use the alternative

approach proposed in [32], based on the discretization

of the gradient descent PDE associated to the mini-

mizing function defined in (6). Unfortunately this ap-

proach is very slow and may sometimes generate some

errors, hence a faster and more consistent algorithm is

needed. We use an efficient primal-dual algorithm [27],

well adapted to our non-smooth convex optimization

problem. Let us detail the proposed algorithm.

First, we define the function f in (6) using the sec-

ond order differential operators noted ∇2 as

f(∇2X) = ∇xxX +∇xyX +∇xyX +∇yyX,

where

∇2X = ∇xxX +∇xyX +∇xyX +∇yyX.

We start with the following notation:

K1 = δ


α2p(I − S−px S−py )

α2p−1(I − S−px S−p+1
y )

...

α2p(I − SpxSpy)


 (2p+ 1)2, (24)

K2 = (1− δ)
∑

a,b∈{x,y}

∇ab, (25)

and

K =

(
K1

K2

)}
(2p+ 1)2 + 1, (26)

and we define also the function F1 as follows

F1(KX) = ‖K1X‖1 + ‖K2X‖1

= δ

p∑
i=−p

p∑
j=−p

α|i|+|j|‖(I − SixSjy)X‖1

+ (1− δ) ‖
∑

a,b∈{x,y}

∇abX‖1.

(27)

Also, the function F2 is defined as

F2(K̃X) = ‖HX − B̂‖1, (28)

where F2(X) = ‖X‖1. Using the notations above, the

minimization problem (5) becomes

X̂ = arg min
X
{ F1(KX) + F2(K̃X)}. (29)

Now, we can apply the primal-dual algorithm [27] to

minimize the general problem (29), where F1 and F2 are

convex functions. K̃ is a linear operator defined from

L1(Ω) → L1(Ω), and K is a linear operator defined

from L1(Ω)→ [L1(Ω)](2p+1)2+1. Thus, using the saddle

point problem [27], we get the equivalent primal-dual

problem

inf
X

sup
Y,Z
{< KX,Y > −F∗1(Y )+ < HX−B̂, Z > −F∗2(Z)},

(30)

where Y =


Y 1

Y 2

...

Y (2p+1)2+1

 ∈ [L∞(Ω)](2p+1)2+1 and

Z ∈ L∞(Ω) denoting the dual variables, F∗1 and F∗2 are

the dual functions of respectively F1 and F2 defined in

a similar way as

F∗i (Y ) = ιP (Y ) =

{
0 Y ∈ P
+∞ Y 6∈ P

(31)

where P = {Y : ‖Y ‖∞ ≤ 1}, and ‖ · ‖∞ denotes the

discrete maximum norm defined as

‖Y ‖∞ = max
i
|Yi|.

For the primal-dual algorithm, we have to define the

proximal operator functions (I + σ∂F∗1)−1 and (I +

σ∂F∗2)−1 using the projection on a convex set P (noted

ΠP ) as follows

Y = (I + σ∂F∗1)−1(Ŷ ) = ΠP (Ŷ ), (32)

and,

Z = (I + σ∂F∗2)−1(Ẑ) = ΠP (Ẑ), (33)

where

ΠP (Ŵi) =
Ŵi

max(‖Ŵi‖∞, 1)
.

T complete the primal-dual algorithm, we have to com-

pute the resolvent operator (I+τ∂G)−1 for the function

G(X) = 0 (in our case) as follows

X = (I + τ∂G)−1(X̂) = X̂. (34)
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Now, we can apply the iterations of the primal-dual

algorithm [33] to our saddle-point problem (30), we ob-

tain the following iterative algorithm:
Ŷ n+1 = (I + σ∂F∗1)−1(Ŷ n + σKXn),

Ẑn+1 = (I + σ∂F∗2)−1(Ẑn + σK̃Xn),

X̂n+1 = X̂n − τ(K∗Ŷ n+1 + K̃∗Ẑn+1),

X̂n+1 = 2X̂n+1 − X̂n.

(35)

Using the expressions of F∗1 and F∗2, the solution of the

iterative problem (35) is given as
Ŷ n+1 = ΠP (Ŷ n + σKXn),

Ẑn+1 = ΠP (Ẑn + σK̃Xn),

X̂n+1 = X̂n − τ(K∗Ŷ n+1 + K̃∗Ẑn+1),

X̂n+1 = 2X̂n+1 − X̂n.

(36)

where ΠP is the projection on the convex set P defined

above. We need also to define the operators K∗ and

K̃∗, which are respectively the adjoint of the operators

K and K̃.

K∗Y =

(2p+1)2∑
k=1

δ p∑
i=−p

p∑
j=−p

α|i|+|j|(I − S−jy S−ix )Yk


+ (1− δ)

∑
a,b∈{x,y}

∇abY(2p+1)2+1, (37)

where the operators S−ix and S−jy define the transpose

of matrices Six and Sjy respectively and have a shifting

effect in the opposite directions. ∇ab is the adjoint op-

erator of∇ab that we will define later in a discrete form.

We also have

K̃∗ = Hᵀ.

This provides all the ingredients needed to implement

the primal-dual algorithm associated to the problem

(29). Let us introduce the discrete setting.

We define the second order differential operators

∇xx, ∇yy, and ∇xy using convolutions with the kernels

kxx =

0 0 0

1 −2 1

0 0 0

 kyy =

0 1 0

0 −2 0

0 1 0

 kxy =

0 0 0

0 1 −1

0 −1 1


As a consequence, the matrix K2 in (27) can be inter-

preted as the kernel k2 defined as:

k2 = kxx + kyy + 2kxy =

0 1 0

1 −2 −1

0 −1 2

 .

Therefore, the result of K2X is merely the convolu-

tion of X with the above linear kernel k2. Moreover,

the transpose of K∗2 is given by the convolution with

the rotated kernel k̄2 in the case of periodic boundary

condition exploited in this paper. Algorithm 1 is used

to perform the deconvolution and denoising of the pro-

posed SR method.

In this algorithm, we choose carefully the weighting

parameter δ. Indeed, we propose a new manner to con-

trol this parameter, using a function depending on the

gradient of the image. Since we know the success of the

BTV regularization in preserving sharp edges and of

the second variational approach in recovering smoother

surfaces, the ideal choice of the weighting parameter is

in the surrounding of 1 along edges; and to avoid the ar-

tifacts due to the BTV regularization, the choice of the

weighting parameter δ is 0 ≤ δ < 1 in smooth regions

and small jumps. Thus, we use the following formula,

which yields the parameter δ giving usually the best

quality of the reconstitution HR image:

δ =

{
exp(−‖∇X‖

2
1

2M2 ) if ‖∇X‖1/M ≤ T
exp(−T

2

2 ) if ‖∇X‖1/M > T
(38)

where T is the Otsu binarization threshold [34]. To ap-

prove this choice, we used several test images; while

sometimes we find a better result for a hand tuned pa-

rameter, this parameter is very close to the controlled

weighting parameters calculated by the function.

To compare the performance of the proposed algo-

rithm to other regularization methods, we set up the fol-

lowing deconvolution and denoising experiment. First,

we added a blur of σ = 5× 3, then, we added Gaussian

white noise of zero mean and standard deviation σ = 30

to the original Lena image. Figure 1 shows the obtained

image using different regularizations. We compare our

method with TV [11], BTV [9], 2nd-order regulariza-

tion [14], and also the combined first order and second
order (TV + TV2) regularizations [17]. We select the

regularization parameters according to the best visual

result. This example demonstrates that the proposed

regularization functional not only produces sharp edges

but also avoids the staircasing effect.

4 Experimental results

In this section, both synthetic and real images are tested

to judge the performance of our proposed method, and

compare it to some popular approaches. Some of the

used benchmark images are listed in Figure 2. The cho-

sen images are often used in image processing applica-

tions, since they differ in texture, smoothness and gray

level histogram. To generate the LR images from these

HR images, we follow the classical steps: First, we define

the sub-pixel motion, after, we align the images using

the registration process [35], in the third and fourth

step we blur and decimate the image respectively and
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Data: Choose τ, σ > 0, (Ŷ 0, Ẑ0, X̂0) ∈ RM × RM and set Ŷ 0 = Ẑ0 = X̂0.

Result: the restored HR image X̂
Iterate until negligible variation of X̂n:
begin

Ŷ n+1 = ΠP (Ŷ n + σKXn) // Use (32)

Ẑn+1 = ΠP (Ẑn + σK̃Xn) // Use (33)

X̂n+1 = X̂n − τ(K∗Ŷ n+1 + K̃∗Ẑn+1) // Use (37)

X̂n+1 = 2X̂n+1 − X̂n

Algorithm 1: Primal-Dual algorithm

(a) The degraded image (b) TV regularization [27] (c) BTV regular. [9] (d) 2nd-order regular. [14]

(e) TV + TV2 regular. [17] (f) Proposed method (p = 2) (g) Proposed method (p = 3)

Fig. 1: Simulation results of deconvolution and denoising of Lena using different regularization methods.

finally we add an additive zero-mean white Gaussian

noise with a chosen Signal-to-Noise Ratio level (SNR).

We can now justify the contribution of this proposed

combination in noise, blur and misregistration errors re-

moving using different generated LR images. Hence, to

evaluate the performance of the SR process, we use two

measures such as peak signal to noise ratio (PSNR) and

the structural similarity (SSIM). The PSNR is a popu-

lar metric used to measure the quality of the estimated

HR image, while the SSIM is a complementary mea-

sure, which gives an indication of image quality based

on known characteristics of the human visual system.

In the next section, we describe the parameters chosen

in the simulation results.

4.1 Simulation results

We use the six image of Figure 2, all these images have

the same size 248 × 248. Then, we generate 120 LR

images for each of the six images: we use a Gaussian

kernel with standard deviation σ = 1.5 truncated in a

3 × 3 window to blur it, and subsample it by a factor

r = 4. Notice that this introduces severe aliasing (a

blur of σ = 4 × 0.8 = 3.2 would be necessary accord-

ing to [36]) and ringing (small window size). In addi-

tion to measure the robustness of our proposed method

against noise, we add an additive white Gaussian noise

with standard deviation σ = 10 to all the generated LR

obtained from the six benchmark images. The initial

HR image X0 is obtained by a bicubic interpolation of

the LR image Y1, the scalar weight α = 0.7, the spa-

tial window size p = 2. We stop at the first iteration n

where ‖X̂n+1 − X̂n‖1 < 10−4‖X̂n‖1. We justify the ef-

fectiveness of our method by comparing it with popular

methods used in SR, such as bicubic, TV [11], BTV [9],

BEP regularizer [12], the second order variational reg-

ularization used in denoising problem [14], and also the

combined first order and second order (TV + TV2) reg-

ularization [17]. We show the reconstructed HR images

X̂ and also the obtained images B̂ from the fusion step
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(a) Baboon (b) Cameraman (c) House

(d) Barbara (e) Goldhill (f) Peppers

Fig. 2: Set of benchmark images used in tests

in figures 3 to 8. By a visual evaluation, we can see

the effectiveness of the proposed method in removing

jagged artifacts. Note that we select the regularization

parameters according to the best visually pleasant re-

sult and the highest PSNR in all the experiments for

the other methods. In Table 1, the SSIM and PSNR

values are computed, with two standard deviations σ

for noise. The best results are represented by a bold

number. Usually, the proposed method outperforms the

others in terms of both PSNR and SSIM. Even if the

result obtained by the BEP method exceeds ours in the

Goldhill figure in terms of both PSNR and SSIM, we

can find a better result if we change the regularization

parameter’s value δ.

4.2 Real experiment

In this section, we discuss the performance of our pro-

posed algorithm on natural data. We use in the first ex-

periment the “Alpaca” video sequence of 55 compressed

grayscale frames of size 96× 128, downloaded from Mi-

lanfar’s web site1. Without clue of the camera’s PSF,

we assume that it is a 11 × 11 Gaussian kernel with

standard deviation equal to 1.5. In figure 9, we show

the reconstituted HR image from 4 LR frames taken

from the video. The resolution is augmented by a fac-

tor r = 2 and we compare our algorithm with the other

SR method used in the previous tests. If we focus on

what happens around the edges of the obtained HR im-

age, we can see that our proposed method can restore

the characters in the images at least as well as the best

other SR algorithms.

In the second experiment, we use 16 low-resolution im-

ages obtained from the EIA video sequence2 of size

90×90. We assume that the PSF is a 3×3 Gaussian ker-

nel with standard deviation equal to 1.5. In figure 10,

we show the result obtained of different SR algorithm

HR image from 16 LR frames taken from the EIA video.

The resolution is augmented by a factor r = 3 and we

compare also our algorithm with the other SR method

1 https://users.soe.ucsc.edu/~milanfar/software/

sr-datasets.html
2 https://users.soe.ucsc.edu/~milanfar/software/

sr-datasets.html
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(a) One LR image (b) Bicubic zoom (c) The obtained image B̂ (d) TV regularization [11]

(e) BTV regular. [9] (f) BEP [12] (g) 2nd-order regular. [14] (h) TV + TV2 regular. [17]

(i) Proposed method

Fig. 3: Super resolution of Baboon by different methods.

used in the previous tests. Since the video of EIA has

a lot more noise compared with Alpaca, we can see

the robustness of the proposed algorithm against noise

compared with the other SR methods.

5 Conclusion

In this paper, a novel energy has been proposed for mul-

tiframe super-resolution image reconstruction problem.

We presented a new combination of BTV regulizer and

a second order variational problem using a controlled

weighting parameter. Since the BTV term is effective

in preserving sharp edges in images when removing blur

and noise, the second order term has been introduced

to avoid the undesirable staircasing effect. To confirm

the choice of this combination, the existence of a min-

imizer has been proved using a relaxation technique.

Also, the results have been performed on both the sim-

ulated and real images, and the proposed method has

confirmed its effectiveness visually and quantitatively

using the PSNR and SSIM criteria. One remaining open

question is the uniqueness of the minimizer. We could

neither prove nor discard this hypothesis. Another in-

teresting path of investigation is the use of a non-local

term instead of the bilateral term.

Acknowledgments

The authors are grateful to the anonymous reviewers for

their insightful remarks and corrections. Their feedback

had a great influence on the improved quality compared

to the first draft version of this paper.

Compliance with Ethical Standards

– Funding: This research was entirely funded by the

respective institutions of the authors.

– Conflict of interest: The authors declare that they

have no conflict of interest.



12 Amine Laghrib et al.

(a) One LR image (b) Bicubic zoom (c) The obtained image B̂ (d) TV regularization [11]

(e) BTV regular. [9] (f) BEP [12] (g) 2nd-order regular. [14] (h) TV + TV2 regular. [17]

(i) Proposed method

Fig. 4: Super resolution of Cameraman by different methods.
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(a) One LR image (b) Bicubic zoom (c) The obtained image B̂ (d) TV regularization [11]

(e) BTV regular. [9] (f) BEP [12] (g) 2nd-order regular. [14] (h) TV + TV2 regular. [17]

(i) Proposed method

Fig. 7: Super resolution of Goldhill by different methods.
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(a) One LR image (b) Bicubic zoom (c) The obtained image B̂ (d) TV regularization [11]

(e) BTV regular. [9] (f) BEP [12] (g) 2nd-order regular. [14] (h) TV + TV2 regular. [17]

(i) Proposed method

Fig. 8: Super resolution of Peppers by different methods.
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Table 1: PSNR and SSIM results obtained by applying different methods to the benchmark images. In bold the

best (highest) score of each row is shown.

Image Method
σ noise Metric Bicubic TV second order BEP BTV TV+TV2 proposed

Baboon 20 PSNR 17.95 25.69 25.79 26.50 26.45 26.50 26.74
SSIM 0.229 0.738 0.744 0.788 0.781 0.789 0.801

30 PSNR 16.98 24.22 24.57 25.11 24.96 25.09 25.77
SSIM 0.201 0.685 0.688 0.713 0.699 0.704 0.746

Cameraman 20 PSNR 18.22 26.48 26.52 27.52 26.63 26.93 27.58
SSIM 0.288 0.852 0.837 0.848 0.855 0.864 0.892

30 PSNR 17.88 25.43 25.49 26.48 26.04 26.18 26.89
SSIM 0.200 0.783 0.768 0.796 0.795 0.802 0.827

House 20 PSNR 18.62 33.27 32.45 33.53 33.32 33.90 34.40
SSIM 0.326 0.870 0.858 0.875 0.872 0.878 0.900

30 PSNR 17.55 31.82 31.49 32.88 32.05 32.92 33.21
SSIM 0.256 0.838 0.833 0.814 0.810 0.838 0.876

Barbara 20 PSNR 18.83 26.97 27.31 27.68 27.02 27.34 27.87
SSIM 0.412 0.772 0.787 0.796 0.770 0.787 0.813

30 PSNR 17.41 26.15 26.93 26.94 26.55 26.85 27.03
SSIM 0.328 0.709 0.750 0.752 0.750 0.754 0.763

Goldhill 20 PSNR 20.19 29.16 29.15 29.99 29.02 29.24 29.98
SSIM 0.487 0.832 0.829 0.847 0.820 0.836 0.868

30 PSNR 19.45 28.00 28.11 28.68 28.22 28.29 28.66
SSIM 0.338 0.771 0.763 0.809 0.779 0.790 0.820

Peppers 20 PSNR 18.39 30.74 30.58 31.40 30.81 31.37 31.65
SSIM 0.438 0.889 0.885 0.893 0.889 0.883 0.920

30 PSNR 17.88 29.73 29.80 30.15 29.24 30.08 30.72
SSIM 0.318 0.855 0.856 0.853 0.839 0.835 0.896
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(a) First LR frame (b) Fourth LR frame (c) Bicubic zoom (d) TV regular. [11]

(e) BTV regular. [9] (f) BEP [12] (g) 2nd-order regular. [14] (h) TV + TV2 regular. [17]

(i) Our method

Fig. 9: Results on the first four frames of the Alpaca sequence.

(a) First LR frame (b) Bicubic zoom (c) TV regular. [11] (d) BTV regular. [9]

(e) BEP [12] (f) 2nd-order regular. [14] (g) TV + TV2 regular. [17] (h) Our method

Fig. 10: Results on the EIA sequence.


