
HAL Id: hal-01613008
https://enpc.hal.science/hal-01613008

Submitted on 9 Oct 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Parallel skeletonization algorithms in the cubic grid
based on critical kernels
Gilles Bertrand, Michel Couprie

To cite this version:
Gilles Bertrand, Michel Couprie. Parallel skeletonization algorithms in the cubic grid based on critical
kernels. Punam Saha Gunilla Borgefors Gabriella Sanniti di Baja. Skeletonization: Theory, Methods
and Applications, Elsevier, pp.181-210, 2017, Skeletonization: Theory, Methods and Applications,
9780081012925. �hal-01613008�

https://enpc.hal.science/hal-01613008
https://hal.archives-ouvertes.fr


Parallel skeletonization algorithms in the cubic

grid based on critical kernels

Gilles Bertrand, Michel Couprie

Université Paris-Est, LIGM, Équipe A3SI, ESIEE Paris, France
e-mail: gilles.bertrand@esiee.fr, michel.couprie@esiee.fr

Abstract. We propose two compact and generic thinning schemes, both
based on the critical kernels framework, which encompass an enormous
variety of homotopic parallel 3D thinning algorithms—including asym-
metric and symmetric algorithms that produce ultimate, curve, surface,
and other kinds of skeletons. Our algorithms are fast and our approach is
validated experimentally. We also propose an effective filtering strategy
based on the notion of isthmus persistence that can be easily performed
within our framework.

1 Introduction

Parallel thinning in discrete grids is a topic that has been studied since the pi-
oneering years of digital image processing. The most essential requirement for
a skeletonization method is topology preservation, hence the abundant litera-
ture devoted to the study of conditions under which a thinning method meets
this requirement. Among these works, the notions of minimal non-simple set
[1], P-simple point [2] and critical kernel [3] constitute major contributions to a
systematic study of topology preservation in parallel thinning. Critical kernels
provide, to our knowledge, the most general framework for the design of topolog-
ically sound thinning algorithms. In particular, we proved in [4] that the notions
of minimal non-simple sets and P-simple points can be characterized in terms of
critical kernels.

An important distinction must be made among parallel thinning algorithms,
between symmetric and asymmetric algorithms. Symmetric algorithms [5–7], on
one hand, are the ones that produce skeletons which are uniquely defined and
invariant under 90 degrees rotations. Such skeletons may contain parts that are
not as thin as possible, like two-voxel wide ribbons for example. On the other
hand, asymmetric algorithms [8–17] produce thinner skeletons, but the price
to pay for the improved thinness is the loss of 90 degrees rotations invariance.
Both kinds of thinning algorithms are useful in applications. Choosing between
a symmetric and an asymmetric algorithm is a matter of context.

Let us outline briefly and informally the framework that we will detail in
section 3, derived from the notion of critical kernel. First of all, instead of con-
sidering single voxels, we consider cliques. A clique is a set of mutually adjacent
voxels. In a voxel set X, certain cliques called critical cliques cannot be removed



from X without altering its topological characteristics. The critical cliques of X
can be identified using local conditions. The main theorem of the critical kernels
framework [3, 18] implies that any subset of the object X can be removed in
parallel, provided that at least one voxel of every critical clique is preserved, and
this guarantees topology preservation.

Since each clique can contain between one and eight voxels, there usually
exists a huge number of combinations for the choice of the voxels that are kept
during one step of thinning.

Consider for example the case of a critical clique made of two voxels a, b.
A first possibility is to keep both of them, thus avoiding to make an arbitrary
choice between a and b. Such a strategy applied to all the critical cliques, leads
to symmetric thinning algorithms,

On the other hand, if we prefer thinner skeletons, we may use a systematic
rule to decide which voxel among a and b will be removed. This leads to a
so-called asymmetric thinning algorithm.

In addition, various constraints can easily be added in order to preserve some
voxels having certain geometrical properties, to obtain curve or surface skeletons
for example. The notions of 1-isthmus and 2-isthmus (section 5.2) will allow us
to detect such voxels.

In this chapter, after providing the necessary background notions in section 2
and recalling the notion of critical clique in section 3, we discuss in section 4 a
general strategy to design parallel thinning algorithms in this framework. Then,
we propose an asymmetric (section 5) and a symmetric (section 6) generic thin-
ning scheme. These schemes can be used to obtain different kinds of skeletons,
for example ultimate, curve or surface skeletons, by choosing appropriate pa-
rameters.

It is well known that skeletons are highly sensitive to contour noise, that is,
a small perturbation of the contour may provoke the appearing or the disap-
pearing of an arbitrarily long skeleton branch. In section 8, we propose a natural
extension of our thinning methods that copes with the robustness to noise is-
sue. This extension is based on a notion of “isthmus persistence” [19], which
has been introduced in the framework of arbitrary 3D complexes (objects that
are not necessarily made of voxels). Isthmus persistence is natural in our frame-
work, and could not be adapted to other approaches based, e.g., on end voxel
detection.

We also propose in section 9 a way to efficiently compute a hierarchy of nested
filtered skeletons, corresponding to the different values of isthmus persistence.

We provide in section 7 some local characterizations that allow for the effec-
tive implementation of our methods. All the algorithms proposed in this chapter
can be implemented to run in linear time complexity (section 10).

This chapter is essentially based on the contents of the papers [20, 21, 18].
However, it offers a new perspective on these works, thanks to a compact, syn-
thetic and self-contained presentation.

2



2 Voxel Complexes and simple voxels

Let us first give some basic definitions for voxel complexes, see also [22, 23].
Let Z be the set of integers. We consider the families of sets F

1
0, F

1
1, such that

F
1
0 = {{a} | a ∈ Z}, F1

1 = {{a, a + 1} | a ∈ Z}. A subset f of Zn, n ≥ 2, that
is the Cartesian product of exactly d elements of F1

1 and (n − d) elements of
F
1
0 is called a face or an d-face of Zn, d is the dimension of f , and we write
dim(f) = d.

In the illustrations of this chapter, unless explicitely stated, a 3-face (resp.
2-face, 1-face, 0-face) is depicted by a cube (resp. square, segment, dot), see e.g.
figure 3.

A 3-face of Z3 is also called a voxel . A finite set that is composed solely of
voxels is called a (voxel) complex (see figure 1). We denote by V

3 the collection
of all voxel complexes.

Notice that, by identifying each voxel with its center of mass, we get an
equivalence between the data of a voxel complex and the one of a subset of Z3.

We say that two voxels x, y are adjacent if x∩ y 6= ∅. We write N (x) for the
set of all voxels that are adjacent to a voxel x, N (x) is the neighborhood of x.
Note that, for each voxel x, we have x ∈ N (x). We set N ∗(x) = N (x) \ {x}.

Let d ∈ {0, 1, 2}. We say that two voxels x, y are d-neighbors if x ∩ y is a
d-face. Thus, two distinct voxels x and y are adjacent if and only if they are
d-neighbors for some d ∈ {0, 1, 2}. For example in figure 1, voxels b and c are
2-neighbors, voxels a and b are 1-neighbors but not 2-neighbors, voxels b and d
are 0-neighbors but neither 2-neighbors nor 1-neighbors.

Let X ∈ V
3. We say that X is connected if, for any x, y ∈ X, there exists a

sequence 〈x0, ..., xk〉 of voxels in X such that x0 = x, xk = y, and xi is adjacent
to xi−1, i = 1, ..., k.

Intuitively, a voxel x of a complex X is called a simple voxel if its removal
from X “does not change the topology of X”. This notion may be formalized
with the help of the following recursive definition introduced in [18], see also [24,
25] for other recursive approaches for the notion of simple point.

Definition 1. Let X ∈ V
3. We say that X is reducible if either:

i) X is composed of a single voxel; or
ii) there exists x ∈ X such that N ∗(x)∩X is reducible and X \ {x} is reducible.

Definition 2. Let X ∈ V
3. A voxel x ∈ X is simple for X if N ∗(x) ∩ X

is reducible. If x ∈ X is simple for X, we say that X \ {x} is an elementary
thinning of X.

Thus, a complex X ∈ V
3 is reducible if and only if it is possible to reduce X

to a single voxel by iteratively removing simple voxels. Observe that a reducible
complex is necessarily non-empty and connected.

In figure 1 (left), the voxel a is simple for X (N ∗(a) ∩ X = {b} is made of
a single voxel), the voxel d is not simple for X (N ∗(d) ∩X = {c, e, f, g} is not
connected), the voxel h is simple for X (N ∗(h) ∩ X = {f, g} is made of two
voxels that are 2-neighbors and is reducible).

3



In [18], it was shown that the above definition of a simple voxel is equivalent to
classical characterizations based on connectivity properties of the voxel’s neigh-
borhood [26–30]. An equivalence was also established with a definition based on
the operation of collapse [31], this operation is a discrete analogue of a continuous
deformation (a homotopy), see [24, 3, 30].

The notion of a simple voxel allows one to define thinnings of a complex, see
an illustration figure 1 (right).

Let X,Y ∈ V
3. We say that Y is a thinning of X or that X is reducible to

Y , if there exists a sequence 〈X0, ..., Xk〉 such that X0 = X, Xk = Y , and Xi is
an elementary thinning of Xi−1, i = 1, ..., k. Thus, a complex X is reducible if
and only if it is reducible to a set made of a single voxel.

a
b c

d

e
gh

f

b

d

gh

Fig. 1. Left: a complex X which is made of 8 voxels, Right: A complex Y ⊆ X, which
is a thinning of X.

3 Critical cliques

Let X be a voxel complex. It is well known that, if we remove simultaneously
(in parallel) simple voxels from X, we may “change the topology” of the original
object X. For example, the two voxels f and g are simple for the object X
depicted figure 1 (left). Nevertheless X \ {f, g} has two connected components
whereas X is connected.

In this section, we recall a framework for thinning in parallel discrete objects
with the warranty that we do not alter the topology of these objects [3, 32, 18].

Let d ∈ {0, 1, 2, 3} and let C ∈ V
3. We say that C is a d-clique or a clique if

∩{x ∈ C} is a d-face. If C is a d-clique, we say that d is the rank of C.
For example in figure 1, {d, e, f, g} is a 0-clique, {f, g, e} is a 1-clique, {b, c}

is a 2-clique, {a} is a 3-clique.
If C is made of solely two distinct voxels x and y, we note that C is a d-clique

if and only if x and y are d-neighbors, with d ∈ {0, 1, 2}.
Let X ∈ V

3 and let C ⊆ X be a clique. We say that C is essential for X if
we have C = D whenever D is a clique such that:
i) C ⊆ D ⊆ X; and
ii) ∩{x ∈ C} = ∩{x ∈ D}.

4



In other words, C is essential for X if it is maximal with respect to the
inclusion, among all the cliques D in X such that ii) holds.

Observe that any complex C that is made of a single voxel is a clique (a
3-clique). Furthermore any such clique in a complex X is essential for X.

In figure 1 (left), {f, g} is a 2-clique that is essential for X, {b, d} is a 0-
clique that is not essential for X, {b, c, d} is a 0-clique essential for X, {e, f, g}
is a 1-clique essential for X.

Definition 3. Let S ∈ V
3. The K-neighborhood of S, written K(S), is the set

made of all voxels that are adjacent to each voxel in S. We set K∗(S) = K(S)\S.

We note that we have K(S) = N (x) whenever S is made of a single voxel x.
We also observe that we have S ⊆ K(S) whenever S is a clique.

Definition 4. Let X ∈ V
3 and let C be a clique that is essential for X. We say

that the clique C is regular for X if K∗(C) ∩X is reducible. We say that C is
critical for X if C is not regular for X.

Notice that, if C = {x} is a 3-clique in X, then C is regular for X if and only
if x is simple for X. We can thus say that the notion of regular clique generalizes
the one of simple voxel.

In figure 1 (left), the cliques C1 = {b, c, d}, C2 = {f, g}, and C3 = {g, h}
are essential for X. We have K∗(C1) ∩ X = ∅, K∗(C2) ∩ X = {d, e, h}, and
K∗(C3) ∩ X = {f}. Thus, C1 and C2 are critical for X, while C3 is regular
for X.

The following result is a consequence of theorem 16 of [18] and a general
theorem that holds for complexes of arbitrary dimensions [3].

Theorem 5. Let X ∈ V
3 and let Y ⊆ X. The complex Y is a thinning of X if

any clique that is critical for X contains at least one voxel of Y .

See an illustration in figure 1 where the complexes X and Y satisfy the
condition of theorem 5. For example, the voxel d is a non-simple voxel for X,
thus {d} is a critical 3-clique for X, and d belongs to Y . Also, Y contains voxels
in the critical cliques C1 = {b, c, d}, C2 = {f, g}, and the other ones.

The notion of critical kernel has been defined in the framework of simplicial
or cubical complexes [3, 18]. However, it is possible to give a characterization of
the critical kernel of a voxel complex X in terms of cliques. The trace of a clique
C is the face f = ∩{x ∈ C}. The critical kernel of X is the set formed of the
traces of the critical cliques of X (see an illustration in figure 3) and of all the
faces included in these ones. Thus, theorem 5 can be restated in the following
terms: The complex Y is a thinning of X if each face of the critical kernel of X
is in at least one voxel of Y .

Notice that definitions of simple voxels and critical cliques, in this chapter,
take advantage of special properties of faces in Z

d, they cannot be transposed
to other kinds of complexes (such as simplicial complexes).

5



4 Decreasing rank strategy

A parallel thinning algorithm consists of repeatidly aplying thinning steps, each
of which is aimed at identifying and removing a subset of the current object.
Equivalently, we have to define the subset of the object that will be kept until the
end of the current step. In order to ensure topology preservation, when designing
such an algorithm, we have to define a subset Y of a voxel complex X that is
guaranteed to include at least one voxel of each clique that is critical for X. By
theorem 5, this subset Y is a thinning of X.

There are many possible choices for defining such a subset Y . Among all the
possible choices, we prefer the ones that provide sets Y having smaller sizes.
Such a strategy will provide us with efficient thinning algorithms, in the sense
where few thinning steps will be needed to achieve the final result.

Suppose that we examine critical cliques by decreasing rank (see figure 2 for
the illustrations):
- A critical 3-clique is a clique composed of a unique, non-simple voxel (like voxel
b). This is the simplest case, as no choice needs to be made: this voxel must be
preserved.
- A critical 2-clique (like clique {a, b}) is necessarily composed of two voxels that
intersect in a 2-face. If one of these two voxels forms a critical 3-clique (i.e., is
not simple, like voxel b), then this voxel has been detected previously and must
be preserved. It is not necessary to keep the other one.
- A critical 1-clique (like clique {e, f, g, h}) may include critical 3-cliques or
critical 2-cliques (like here, clique {e, g}). If it is the case, then at least one voxel
of the included critical clique(s) has been chosen to be preserved, and no other
voxel needs to be kept.

f e

h g

ba

c

d

Fig. 2. A complex X.

Following this reasonning, which also applies to critical 0-cliques, we see that
in order to reduce both the number of decisions and the number of kept voxels,
we have to examine critical cliques by decreasing rank, and to keep track of the
decisions that have been made for the cliques of higher ranks. This strategy will
guide us for the design of all the algorithms proposed in this chapter.

6



5 Asymmetric thinning

We first introduce our 3D parallel asymmetric thinning scheme (see also [32, 4,
18]). Then, in 5.2 we show how to use this scheme in order to compute curve or
surface skeletons, based on the notion of isthmus that we will introduce. We show
in 5.3 some experimental results for curve thinning, which permits to compare
our approach with respect to all previously published methods of the same kind.

5.1 Generic parallel asymmetric thinning scheme

The main features of the proposed scheme (algorithm AsymThinningScheme) are
the following:
- Following the strategy presented in section 4, critical cliques are considered
according to their decreasing ranks (step 3). Thus, each iteration includes four
sub-iterations (steps 3–6). Voxels that have been previously selected are stored
in a set Y (step 6). At a given sub-iteration, we consider only critical cliques
included in X \ Y (step 4).
- Select is a function from V

3 to V 3, the set of all voxels. More precisely, Select
associates, to each set S of voxels, a unique voxel x of S. We refer to such a
function as a selection function. This function allows us to select a voxel in any
given critical clique (step 5). A possible choice is to take for Select(S), the first
voxel of S in the lexicographic order of the voxels coordinates.
- In order to compute curve or surface skeletons, we have to keep other voxels
than the ones that are necessary for the preservation of the topology of the
object X. In the scheme, the set K corresponds to a set of features that we want
to be preserved by a thinning algorithm (thus, we have K ⊆ X). This set K,
called constraint set , is updated dynamically at step 8. The parameter SkelX
is a function from X on {True, False} that allows us to detect some skeletal
voxels of X, e.g., some voxels belonging to parts of X that are surfaces or curves.
For example, if we want to obtain curve skeletons, a popular solution is to set
SkelX(x) = True whenever x is a so-called end voxel of X: an end voxel is a
voxel that has exactly one neighbor inside X. However, this solution is limited
and does extend easily to the case of surface skeletons. Alternative choices for
such a function will be introduced in section 5.2.

By construction, at each iteration, the complex Y at step 7 satisfies the
condition of theorem 5. Thus, the result of the scheme is a thinning of the
original complex X, whatever the choices of parameters K and SkelX . Observe
also that, except step 3, each step of the scheme may be computed in parallel.

Figure 3 provides an illustration of AsymThinningScheme. Let us consider
the complex X depicted in (a). We suppose in this example that we do not keep
any skeletal voxel, i.e., the initial constraint set K is empty, and for any x in
X, we set SkelX(x) = False. The set of traces of the cliques that are critical
for X is represented in (b). Thus, the set of the cliques that are critical for X
is precisely composed of six 0-cliques, two 1-cliques, three 2-cliques, and one
3-clique. In (c) the different sub-iterations of the first iteration of the scheme
(lines 3–5) are illustrated:

7



Algorithm 1: AsymThinningScheme(X,K, SkelX)

Data: X ∈ V
3, K ⊆ X, SkelX is a function from X on {True, False}

Result: X
repeat1

Y := K;2

for d← 3 to 0 do3

B := set of all d-cliques that are critical for X and included in X \ Y ;4

A := {Select(C) | C ∈ B};5

Y := Y ∪A;6

X := Y ;7

foreach voxel x ∈ X \K such that SkelX(x) = True do K := K ∪ {x};8

until stability ;9

- when d = 3, only one clique is considered, the dark grey voxel is selected
whatever the selection function;
- when d = 2, all the three 2-cliques are considered since none of these cliques
contains the above voxel. Voxels that could be selected by a selection function
are depicted in medium grey;
- when d = 1, only one clique is considered, a voxel that could be selected is
depicted in light grey;
- when d = 0, no clique is considered since each of the 0-cliques contains at least
one voxel that has been previously selected.

After these sub-iterations, we obtain the complex depicted in (d). The figures
(e) and (f) illustrate the second iteration, at the end of this iteration the complex
is reduced to a single voxel.

Of course, the result of the scheme may depend on the choice of the selection
function. This is the price to be paid if we try to obtain thin skeletons. For
example, some arbitrary choices have to be made for reducing a two voxels wide
ribbon to a simple curve.

In the sequel of the chapter, we take for Select(S), the first voxel of S in the
lexicographic order of the voxels coordinates.

Figure 4 shows another illustration, on bigger objects, of AsymThinningScheme.
Here also, we give ∅ as parameter K, and for any x in X, we have SkelX(x) =
False (no skeletal voxel). The result is called an ultimate asymmetric skeleton.

5.2 Isthmus-based asymmetric thinning

In this section, we show how to use our generic scheme AsymThinningScheme in
order to get a procedure that computes either curve or surface skeletons. This
thinning procedure preserves a constraint set K that is made of “isthmuses”.

Intuitively, a voxel x of an object X is said to be a 1-isthmus (resp. a 2-
isthmus) if the neighborhood of x corresponds - up to a thinning - to the one of
a point belonging to a curve (resp. a surface) [18].

8



(a) (b)

(c) (d)

(e) (f)

Fig. 3. (a): A complex X made of precisely 12 voxels. (b): The set of traces of the
cliques that are critical for X (i.e., the maximal faces of the critical kernel of X). (c):
Voxels that have been selected by the algorithm. (d): The result Y of the first iteration.
(e): The set of traces of the cliques that are critical for Y . (f): The result of the second
iteration.

We say that X ∈ V
3 is a 0-surface if X is precisely made of two voxels x

and y such that x ∩ y = ∅.
We say that X ∈ V

3 is a 1-surface (or a simple closed curve) if:
i) X is connected; and
ii) For each x ∈ X, N ∗(x) ∩X is a 0-surface.

Definition 6. Let X ∈ V
3, let x ∈ X. We say that:

the voxel x is a 1-isthmus for X if N ∗(x) ∩X is reducible to a 0-surface,
the voxel x is a 2-isthmus for X if N ∗(x) ∩X is reducible to a 1-surface,
the voxel x is a 2+-isthmus for X if x is a 1-isthmus or a 2-isthmus for X.

See figure 5 for an illustration of 1- and 2-isthmuses.

Notice that statement 1) of forthcoming theorem 8 (and the fact that 0-
and 1-surfaces are not reducible) will imply that every 1- or 2-isthmus voxel is
non-simple.

Our aim is to thin an object, while preserving a constraint set K, ini-
tially empty, that is made of voxels that are detected as k-isthmuses during
the thinning process. We obtain curve skeletons with k = 1, and surface skele-
tons with k = 2+. These two kinds of skeletons may be obtained by using

9



Fig. 4. Ultimate asymmetric skeletons obtained by using AsymThinningScheme. On
the left, the object is a solid cylinder bent to form a knot. Its ultimate skeleton S is a
discrete curve, i.e., for any x in S, N ∗(x) ∩ S is made of exactly two voxels. On the
right, the object is connected and without holes and cavities. Its ultimate skeleton is a
single voxel.

AsymThinningScheme, with the function SkelX defined as follows:

SkelX(x) =

{

True if x is a k-isthmus,
False otherwise.

Observe that a voxel may belong to a k-isthmus at a given step of the algo-
rithm, but not at further steps. This is why previously detected isthmuses are
stored (see line 8 of AsymThinningScheme).

In figure 6, we show a curve skeleton and a surface skeleton obtained by our
method from the same object.

5.3 Comparison with other parallel curve skeletonization methods

In order to validate our approach, we made some experiments to compare our
isthmus-based curve thinning method using AsymThinningScheme with all other
existing methods of the same kind. To make a fair comparison, we considered
only parallel asymmetric thinning methods that produce curve skeletons of voxel
objects, and that have no parameter, namely [8–17].

In figure 7 and figure 8, we show the results of all these methods and ours for
a same shape. We notice in particular that some methods, for example [8] (a),
are not sufficiently powerful to produce results that may be interpreted as curve
skeletons. This illustrates the difficulty of designing a method that keeps enough
voxels in order to preserve topology, and in the same time, deletes a sufficient
number of voxels in order to produce thin curve skeletons. This difficulty is
indeed high when these two opposite constraints are not made explicit in the
algorithm. The strength of our approach lies in a complete separation of these
constraints.

The example of figure 8 illustrates very well the sensitivity to contour noise of
the methods. The original object is a discretized thickened spiral, and its curve

10



x x y y

(a) (b) (c) (d)

Fig. 5. In this figure, a voxel is represented by its central point. (a): A voxel x and the
set N (x) ∩X (black points). (b): A set S which is a 0-surface, N ∗(x) ∩X is reducible
to S, thus x is a 1-isthmus for X. (c): A voxel y and the set N (y) ∩X (black points).
(d): A set S which is a 1-surface, N ∗(y) ∩ X is reducible to S, thus y is a 2-isthmus
for X.

skeleton should ideally be a simple curve. Any extra branch of the skeleton
must undoubtedly be considered as spurious. To count the number of spurious
branches for this example, we can simply count the number of end points and
substract 2, as the ideal skeleton has exactly two extremities. In figure 8, we
indicate for each skeleton the number of spurious branches. Notice that only [15]
and AsymThinningScheme produce a skeleton free of spurious branches for this
object.

Furthermore, in [21], we describe a quantitative study that shows that our
method outperforms the other ones with respect to contour noise sensitivity.

11



Fig. 6. Asymmetric skeletons obtained by using AsymThinningScheme. Left: curve
skeleton. The function SkelX is based on 1-isthmuses. Right: surface skeleton. The
function SkelX is based on 2+-isthmuses.

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Fig. 7. Curve skeletons of a same object obtained through different methods: (a) [8],
(b) [9], (c) [10], (d) [11], (e) [12], (f) [13], (g) [14], (h) [15], (i) [16], (j) [17], (k) [17], (l)
AsymThinningScheme.

12



(a): 32 (b): 6 (c): 21 (d): 44

(e): 194 (f): 29 (g): 14 (h): 0

(i): 8 (j): 4 (k):2 (l): 0

Fig. 8. Idem figure 7, the number of spurious branches is given for each skeleton.

13



6 Symmetric thinning

As in the previous section, our goal here is to define a subset of a voxel complexX
that is guaranteed to include at least one voxel of each clique that is critical forX.
By theorem 5, this subset will be a thinning of X.

But now, we want our method to be independent of arbitrary choices, in
particular of a choice of specific voxels in a given critical clique. This will ensure
that the obtained skeletons are invariant with respect to 90 degrees rotations.

To obtain this result, we do not consider individual voxels anymore, but only
cliques. We denote by C(X) the set of all cliques included in X.

6.1 Generic parallel symmetric thinning scheme

As in section 5.1, we first propose a generic algorithm (algorithm SymThinningScheme)
that takes as input parameters a voxel complex X, a constraint set K ⊆ X, and
a boolean function SkelX , which serves to dynamically detect the cliques that
must be preserved during the thinning.

Following the strategy presented in section 4, critical cliques are considered
according to their decreasing ranks (step 3).

Algorithm 2: SymThinningScheme(X,K, SkelX)

Data: X ∈ V
3, K ⊆ X, SkelX a function from C(X) on {True, False}

Result: X
repeat1

Y := K;2

for d← 3 to 0 do3

A := union of all d-cliques that are critical for X and included in X \ Y ;4

Y := Y ∪A;5

X := Y ;6

foreach clique C ∈ C(X) such that SkelX(C) = True do K := K ∪ C;7

until stability ;8

Let us illustrate this scheme with a commonly used kind of constraint set,
namely, the medial axis of X.

The notion of medial axis has been introduced by Blum in the 60s [33]. Let
S be a subset of Rn or Z

n, the medial axis of S consists of the centers of the
n-dimensional balls that are included in S but that are not included in any other
n-dimensional ball included in S. The medial axis of a voxel set X may be readily
defined by identifying each voxel of X with its center.

In the continuous space R
n, the medial axis of any set S is known to be

homotopy-equivalent to S, under certain conditions of “smoothness” [34]. How-
ever, this is not the case in discrete grids, whatever the distance that is chosen
to define the notion of ball. This fact is illustrated in 2D in figure 9 (a).

14



In order to ensure topology preservation, we use SymThinningScheme to thin
the original object X with the only constraint of preserving the medial axis of X,
see figure 9 (b). Notice that, by its very definition, the medial axis is invariant
to 90 degrees rotations. Thus, using SymThinningScheme, we ensure that the
skeleton finally obtained is invariant to 90 degrees rotations.

(a) (b)

Fig. 9. (a): A voxel set X and its medial axis MA(X), based on the so-called city
block distance or 4-distance. (b): Result of SymThinningScheme(X,MA(X), SkelX),
with SkelX(C) = False for any C ∈ C(X).

6.2 Isthmus-based symmetric thinning

In section 5.2, we defined 1-isthmuses and 2-isthmuses as voxels satisfying a
certain condition. In order to handle thick structures, as for example two-voxel
thick ribbons that may exist in symmetric curve skeletons, we replace the notion
of a voxel by the one of a clique. Intuitively, and generalizing definition 6, a
critical clique C of an object X is said to be a 1-isthmus (resp. a 2-isthmus) if
the neighborhood of C corresponds - up to a thinning - to the one of a point
belonging to a curve (resp. a surface).

Definition 7. Let X ∈ V
3 and let C be a clique which is essential for X. We

say that :
the clique C is a 1-isthmus for X if K∗(C) ∩X is reducible to a 0-surface,
the clique C is a 2-isthmus for X if K∗(C) ∩X is reducible to a 1-surface,
the clique C is a 2+-isthmus for X if C is a 1-isthmus or a 2-isthmus for X.

Recall that a clique C is critical for X if C is essential for X and if K∗(C)∩X
is not reducible to a single voxel (Def. 4). It will follow from statement 1) of
forthcoming theorem 8 that a k-isthmus, k ∈ {1, 2, 2+}, is necessarily critical.
See figure 10 and figure 5 where several examples of 1- and 2-isthmuses are given.

Curve skeletons (with k = 1), and surface skeletons (with k = 2+) may
be obtained by using SymThinningScheme, with the function SkelX defined as

15



x
y

(a) (b) (c)

x
y

x
y

x

y

z

(d) (e) (f)

Fig. 10. In this figure, a voxel is represented by its central point. (a): A 2-clique
C = {x, y} and the set K(C) ∩ X (black points). It can be seen that C is essential
for X. (b): The set D = K∗(C) ∩ X. (c): A set E, D is reducible to E. The set E
is a 1-surface, thus C is a 2-isthmus for X. (d): A 2-clique C = {x, y} and the set
K(C) ∩X (black points), C is a 1-isthmus for X. (e): A 2-clique C = {x, y} and the
set K(C) ∩X, C is neither a 1-isthmus nor a 2-isthmus for X. In fact C is regular for
X. (f): A 1-clique C = {x, y, z} and the set K(C) ∩X, C is a 1-isthmus for X.

follows, for any C in C(X):

SkelX(C) =

{

True if C is a k-isthmus,
False otherwise.

In figure 11 and figure 12, we illustrate the above algorithm for computing
curve and surface skeletons respectively.

To our knowledge, the only other parallel and symmetric method for obtain-
ing both types of skeletons was proposed in [6]. It is based on P -simple points,
introduced by one of the authors [2]. The obtained skeletons are very close to
the ones produced using the methods described in this chapter. However, in [6],
the preservation of salient object features is achieved through the detection of
end voxels. Using this strategy, it is not possible to define a notion of persis-
tence (see section 8) that allows one to filter skeletons. Filtering is mandatory in
almost all applications dealing with skeletons, as noise is usually affecting real
data and skeletons are notoriously sensitive to noise (see figures 11, 12, 13). This
problem will be studied and a solution will be proposed in the following section
(see figure 14).

16



Fig. 11. Illustrations of isthmus-based curve thinning using SymThinningScheme.

Fig. 12. Illustration of isthmus-based surface thinning using SymThinningScheme.

7 Characterization of critical cliques and k-isthmuses

A key point, in the implementation of the algorithms proposed in this chapter,
is the detection of critical cliques and k-isthmuses.

In this section, we will see that it is possible to detect these cliques with
efficient algorithms operating on four different kinds of neighborhoods. See also
[18] where a set of masks is proposed for critical cliques.

First of all, recall that a clique that is either critical or a k-isthmus for a
complex X in V

3, is necessarily essential for X.

Up to π/2 rotations, the three configurations C2, C1, and C0 given in figure 15
may be used for the detection of a clique that is essential for a complex X ∈ V

3

(in this figure a voxel is represented by a point). Let C ⊆ X. It may be seen
that, up to π/2 rotations:
- C is a 2-clique that is essential for X if and only if C = C2.
- C is a 1-clique that is essential for X if and only if C = C1 ∩X and there exist
two voxels of C that are 1-neighbors.
- C is a 0-clique that is essential for X if and only if C = C0 ∩X and there exist

17



Fig. 13. Illustrations of isthmus-based curve thinning using SymThinningScheme with
noisy shapes (a small amount of random noise has been added to the contours of the
shapes).

Fig. 14. Preview of the filtered skeletons obtained using the method of section 8, on
the same noisy shapes as in figure 13.

two voxels of C that are 0-neighbors, or three voxels of C that are mutually
1-neighbors.

The K-neighborhoods of the configurations C2, C1, and C0 are given figure 16.
Observe that we have K0 = C0.

Recall that a set made of a single voxel x of an object X constitutes a clique
(a 3-clique) which is essential for X. Therefore, there are precisely four different
kinds of neighborhoods for an essential clique (K0, K1, K2, and N (x)).

Thus, the neighborhoods involved in the very definitions of critical cliques
and k-isthmuses (Def. 4 and Def. 7) are fully specified.

Nevertheless, we observe that, in these two definitions, we have to check if
a given complex S is reducible to a certain complex T determined by specific
properties.

For example, for checking whether an essential clique C is a 2-isthmus for X,
we have to verify whether S = K∗(C) ∩X is reducible to a simple closed curve
(a 1-surface).

18



A

B

C

E

F

D H

G I

J

N

MK

L

C2 C1 C0

Fig. 15. Masks for 2-cliques (C2), 1-cliques (C1), and 0-cliques (C0). Here, a voxel is
represented by its central point.

B

A

C

D

F

E

H

G I

J

N

MK

L

K2 K1 K0

Fig. 16. K-neighborhoods for 2-cliques (K2), 1-cliques (K1), and 0-cliques (K0). A voxel
is represented by its central point.

Let S ∈ V
3 be an arbitrary complex which is reducible to a complex T . In

fact, there is the possibility that S is reducible to a complex R, with T ⊆ R, but
that R is not reducible to T .

For example, such a situation occurs when S is a cuboid, T is made of a
single voxel, and R is an object such as the so-called dunce hat [35], or the house
with two rooms [36]. In [30], this kind of object is referred to as a lump.

As a consequence of this fact, for testing if an arbitrary complex S is reducible
to T , it is a priori necessary to compute all the complexes R such that S is
reducible to R, and T ⊆ R. In other words, the “reducibility problem” is, in
general, a complex problem from the algorithmic point of view. See e.g. [37] for
this issue.

In [30], it was shown that it is possible to find lumps in the neighborhood of
a cubical element (a face) of Z5. The following result —which has been proved
with the help of a computer program, as explained in [20]— shows that, in V

3,
there is not enough space for such objects to lie in the K-neighborhood of a
clique. Note that point 1) of theorem 8 corresponds to theorem 17 of [18].

Theorem 8 ([20]). Let C ∈ V
3 be a clique, let S ⊆ K∗(C), and let x be a voxel

which is simple for S.

19



1) If S is reducible, then S \ {x} is reducible.
2) If S is reducible to a 0-surface, then S \ {x} is reducible to a 0-surface.
3) If S is reducible to a 1-surface, then S \ {x} is reducible to a 1-surface.

As a consequence of theorem 8, we can use a greedy algorihm for testing
if an essential clique C is critical, a 1-isthmus, a 2-isthmus or not critical for
X. We can arbitrarily select and remove a voxel which is simple for the set
S = K∗(C) ∩X. After repeating this operation until stability, we check if C is
critical (S is not made of a single voxel), if C is a 1-isthmus (S is made of two
voxels), or if C is a 2-isthmus (S is a simple closed curve).

Testing whether a voxel x is simple or not for an object S ∈ V
3 can be done in

constant time. This may be done by using previously proposed characterizations
[30], or by using a pre-computed look-up table. From theorem 8, testing the
status of a clique may be performed in linear time with respect to the size of its
neighborhood (at most 26). Again, the results can be pre-computed and stored
in look-up tables to speed up the test. Each test (simple, critical, 1-isthmus,
2-isthmus) can thus be performed in constant time.

8 Isthmus persistence and skeleton filtering

In this section and the following one, we focus on symmetric thinning. How-
ever, the persistence-based thinning method presented next is adaptable with
only very minor changes to the asymmetric thinning algorithm presented in sec-
tion 5.2.

Even in the continuous framework, the skeleton suffers from its sensitivity to
small contour perturbations, in other words, it lacks stability. This fact, among
others, explains why it is often necessary to add a filtering step (or pruning
step) to any method that aims at computing the skeleton. Hence, there is a rich
literature devoted to skeleton pruning, in which different criteria were proposed
in order to discard “spurious” skeleton points or branches, see e.g. [20], section 7.

A particularly appealing approach to prevent the appearance of spurious
skeleton branches (or surfaces) is based on the notion of isthmus persistence. Its
advantages are the following:
- it applies both in 2D and 3D cases, and to curve as well as surface skeletons,
- it is governed by a single parameter,
- it is effective (although measuring this criterion is difficult, because the quality
of a skeleton is always a tradeoff between fidelity and low complexity, see [38],
and therefore its assessment depends very much on the application),
- it is quite simple to compute in the framework of a thinning procedure.

This notion first appeared, to our knowledge, in the context of cubical com-
plexes, in the work of L. Liu et al. [19].

The idea is the following. When a voxel is detected as belonging to an isthmus
for the first time during the thinning process, the number of thinning steps that
have been performed at this moment is recorded and called the birth date of this
voxel. Intuitively, it gives an information about the local thickness of the object

20



around this voxel (see figure 17 for an illustration in 2D). Then, later on during
the thinning process, the same voxel may become a candidate for deletion, that
is, it is no longer in an isthmus. At this time, we record the number of thinning
steps that were performed, and we call this number the death date of the voxel.
The difference death date − birth date is called the persistence of the voxel
(see also [39]). A voxel that has a short persistence is very likely to be part of
a spurious skeleton branch, whereas voxels with long persistences indicate the
presence of robust skeleton parts (figure 17). In this approach, only isthmuses
having a persistence greater than a given threshold will be kept.

Fig. 17. The intervals depicted with a solid line correspond to the birth dates, the
dotted lines to the death dates.

The works [19] and [39] present some asymmetric thinning procedures which
take place in the framework of general cubical complexes, i.e., complexes that
are not necessarily made of voxels. With our definitions of 1D and 2D isthmuses,
either single-voxel or multiple-voxels cliques, it becomes easy to implement this
stragegy to detect robust skeleton elements in the context of symmetric or asym-
metric parallel thinning of objects made of voxels.

In the following algorithm, k stands for the type of the considered isthmuses
(1 or 2+), and p is a parameter that sets the persistence threshold. The function
b associates to certain voxels their birth date, and K is a constraint set that is
dynamically updated by adding those voxels whose persistence is greater than
the threshold p (lines 9–10).

In line 8, the birth date b(x) of each new isthmus voxel x is recorded. Notice
also that the voxels in P (line 9) are deletable. The test b(x) > 0 means that
such a voxel x was an isthmus voxel formerly, and its death date is i. These
voxels are kept in X, and added to the constraint set K (line 10) because of
their long persistence (at least p).

In figures 18 and 19 we show outcomes of algorithm PersistenceSymThinning,
with k = 1 and k = 2+, respectively, for different values of parameter p.

21



Algorithm 3: PersistenceSymThinning(X, k, p)

Data: X ∈ V
3, k ∈ {1, 2+}, p ∈ N ∪ {+∞}

Result: X
i := 0; K := ∅; foreach x ∈ X do b(x) := 0;1

repeat2

i := i+ 1; Y := K; Z := ∅;3

for d← 3 to 0 do4

A := union of all d-cliques that are critical for X and included in X \ Y ;5

B := union of all d-cliques that are k-isthmuses for X and included in6

X \ Y ;
Y := Y ∪A; Z := Z ∪B;7

foreach x ∈ Z such that b(x) = 0 do b(x) := i;8

P := {x ∈ X \ Y | b(x) > 0 and i− b(x) > p};9

K := K ∪ P ; X := Y ∪ P ;10

until stability ;11

p = 0 p = 2 p = 3 p = 4 p = 6

Fig. 18. Outcomes of algorithm PersistenceSymThinning, with k = 1, for different
values of parameter p.

9 Hierarchies of skeletons

With the preceding examples, we saw that —intuitively— the greater the per-
sistence, the smaller the filtered skeleton. By varying the value of the persistence
parameter, we may compute a whole family of nested homotopic skeletons, to the
cost of applying the previous algorithm once for each parameter value (“naive”
approach). Once computed, such a family can be efficiently stored as a function,
i.e., a grayscale image, obtained by stacking all the filtered skeletons. Thresh-
olding this function (named skeleton stack function, or SSF in the sequel) at a
given value would give back the filtered skeleton corresponding to this value of
the parameter.

More specifically, given a voxel complex X, we want to compute a function
Ψ from X to N ∪ {+∞}. Let Ψk denote the threshold of Ψ at level k, i.e., Ψk =
{x ∈ X | Ψ(x) > k}. The function Ψ must meet the two following requirements:

22



p = 0 p = 10 p = 20

Fig. 19. Outcome of algorithm PersistenceSymThinning, with k = 2+, for different
values of parameter p.

i) Ψ0 is a symmetric skeleton of X (unfiltered), and
ii) for any k and any ℓ in N such that k > ℓ, Ψk is a symmetric thinning of Ψℓ.

It may be interesting to compute a SSF instead of a single filtered skeleton
in cases, which are frequent, where there is no trivial way to fix a priori a single
parameter value for a set of images. In such cases, the precomputed SSF may
allow a user to interactively visualize the effect of each parameter value on the
filtering. Alternatively, a post-processing algorithm may be applied, in certain
applications, to automatically choose a threshold of the SSF that satisfies a given
criterion (for example, a chosen number of skeleton branches).

Now, we are facing the problem of efficiently computing an SSF. We show
in the rest of this section that the cost of this computation can be dramatically
reduced with respect to the one of the naive method evoked at the beginning of
this section.

A first idea consists of storing, during the thinning process, the function Π
that associates its persistence to each voxel that is detected as an isthmus at
any step. The algorithm Persistence (algorithm 4), derived from algorithm
PersistenceSymThinning, plays this role. This algorithm computes the birth
and death dates of all non-permanent isthmus voxels, and stores the differences
(lines 8–12). This corresponds to the case where the parameter p is set to infinity
in algorithm PersistenceSymThinning.

What happens if we threshold the map Π at a given level π? We could expect
to get a filtered skeleton as computed by algorithm PersistenceSymThinning

with parameter p = π, but this is not always the case: see figure 20 for a counter-
example. We also see with this example that the topological characteristics are
not always preserved by this procedure.

In order to compute a skeleton stack based on the persistence map, we in-
troduce algorithm PersistenceSymThinning (algorithm 5). This algorithm first
computes a persistence function Π using algorithm Persistence (line 1). Then,
it computes the lowest function Ψ that is above Π and satisfies the requirements
i) and ii) of an SSF. To do this, the algorithm performs a symmetric parallel

23



Algorithm 4: Persistence(X, k)

Data: X ∈ V
3, k ∈ {1, 2+}

Result: Π : a function from X into N ∪ {+∞}
i := 0; foreach x ∈ X do Π(x) := 0;1

repeat2

i := i+ 1;3

Y := ∅; Z := ∅; for d← 3 to 0 do4

A := union of all d-cliques that are critical for X and included in X \ Y ;5

B := union of all d-cliques that are k-isthmuses for X and included in6

X \ Y ;
Y := Y ∪A; Z := Z ∪B;7

foreach x ∈ Z such that Π(x) = 0 do8

Π(x) := i; // birth9

foreach x ∈ X \ Y such that Π(x) 6= 0 do1111

Π(x) := i−Π(x); // death12

X := Y ;1414

until stability ;15

foreach x ∈ X do Π(x) := +∞;16

thinning of X guided by Π (that is, voxels are, loosely speaking, considered in
increasing order of the value Π(x), see lines 6 and 8–14. Notice however that,
when a voxel x is deleted at some iteration, each undeleted neighbor y of x will
be considered for possible deletion at a future iteration even if Π(y) < Π(x), see
lines 15 and 17–18). For each deleted voxel x, the value of a variable ψ is stored
as Ψ(x) (line 16). The value of ψ increases monotonically during the thinning,
as slowly as possible, but at each iteration of the main loop line 7 ensures that
it will not be less than λ, which is the persistence value Π(x) of the voxels x
that are to be considered for deletion at that iteration.

We illustrate this algorithm in 2D, as it is much easier to visualize a 2D map
than a 3D one. Figure 21 displays an object X, its SSF computed by the above
algorithm, and two thresholds of this map. The first threshold, at the value 1,
is indeed identical to the result of algorithm IsthmusSymmetricThinning with
k = 1 (curve skeleton). The second threshold, at the value 3, provides a filtered
skeleton that captures the main structure of the object.

24



Fig. 20. Left: a threshold of the map Π, computed by algorithm Persistence, at
value 3. Right: outcome of algorithm PersistenceSymThinning with p = 3. Bottom
row: detail (zoomed).

Fig. 21. First row: an object X (left), and its SSF Ψ (right). The darker the pixel, the
lowest the value. Notice that the brightest value corresponds to the value +∞, which
is given to pixels that belong to any filtered skeleton. Second row: thresholds of the
map Ψ at values 1 (left) and 3 (right).

25



Algorithm 5: PersistenceSSF(X, k)

Data: X ∈ V
3, k ∈ {1, 2+}

Result: Ψ : a function from X into N ∪ {+∞}
Π := Persistence(X, k);1

ψ := −∞;2

foreach x ∈ X do Ψ(x) := +∞;3

Q := {(x,Π(x)) | x ∈ X};4

repeat5

λ := min{π | (., π) ∈ Q};6

if λ > ψ then ψ := λ;7

P := {x ∈ X | (x, λ) ∈ Q};8

Q := Q \ {(x, λ) | x ∈ P};9

Y := X \ P ;10

for d← 3 to 0 do11

A := set of all voxels belonging to any d-clique which is critical for X12

and included in X \ Y ;
Y := Y ∪A;13

V := X \ Y ; X := Y ;14

foreach x ∈ V do15

Ψ(x) := ψ;16

foreach y ∈ N ∗(x) ∩X do17

Q := Q ∪ {(y,Π(y))};18

until Q = ∅ ;19

26



10 Complexity

In this section, we discuss the time complexity of the five algorithms presented
in the chapter.

Algorithm 1 (AsymThinningScheme), Algorithm 2 (SymThinningScheme):
These algorithms may be computed in O(t.n) time on a sequential computer,
where t is the number of steps to thin the object (which corresponds, intuitively,
to its thickness), and in O(t) on an ideal parallel computer.

Alternatively, a breadth-first strategy may be employed in order to achieve a
linear (O(n)) processing time for these algorithms with a sequential computer.
It consists of maintaining a list of the voxels whose status changes during an
iteration, and to use it to restrict the work to be done, in the next iteration, to
their neighborhoods.

Algorithm 3 (PersistenceSymThinning):
On an ideal parallel computer, the instructions in lines 5–7 may be executed in
constant time. Thus, the overall complexity of the algorithm is in O(t), where
t represents the number of steps of the repeat loop needed to reach stability
(intuitively, this corresponds to the thickness of the object X). On a sequential
computer, a direct implementation leads to an algorithm in O(t × n), where n
is the number of voxels in the boolean array representation of X. However, the
use of a breadth-first strategy leads to a linear-time (O(n)) algorithm.

Algorithm 4 (Persistence):
The complexity analysis is the same as for Algorithm 3 (PersistenceSymThinning).

Algorithm 5 (PersistenceSSF):
To obtain the best complexity for this algorithm, a breadth-first strategy must be
employed to compute the sets Y , as in Algorithm 3 (PersistenceSymThinning).
Also, an adapted priority queue data structure must be used to represent the
set Q. As the priorities are small integers (step indices), which may be sorted in
linear time by counting sort, Q can be managed to perform insertion and min
extraction operations in constant time (see [40]). Furthermore, observe that the
sets V (lines 14–15) at different iterations of the repeat loop are disjoint, and
that for each voxel x there are at most 26 neighboring voxels y (line 17). Overall,
the algorithm may be implemented to run in O(n) complexity.

11 Conclusion

We presented two generic parallel thinning schemes acting in the cubic 3D grid.
The first scheme is asymmetric, with the aim of producing “thin” skeletons. The
second one is symmetric and produces skeletons that are uniquely defined and
invariant to 90 degrees rotations.

We showed how these schemes can be used to produce ultimate, curve, or
surface skeletons of 3D objects made of voxels, based in particular on the notions
of 1- and 2-isthmus. However, it should be noticed that any static constraint
set, and any dynamic skeletal voxel detection rule (for example, an application-
dependent one) can be used. In any case, topology preservation is ensured by
the properties of critical kernels.

27



We performed some experiments in order to compare our asymmetric curve
skeletonization method with all methods of the same class found in the litera-
ture. The results show clearly that our method outperforms the other ones with
respect to robustness to noise. All our algorithms can be implemented to run in
linear time.

Furthermore, we showed that an effective filtering can be easily performed
within our framework, thanks to the notion of persistence. In this approach,
the filtering is done dynamically, with very little added cost, and is governed
by a unique parameter. Persistence is closely linked to the notion of isthmus,
and we stress that this kind of filtering cannot be adapted to the other methods
considered in our experiments.

References

1. Ronse, C.: Minimal test patterns for connectivity preservation in parallel thinning
algorithms for binary digital images. Discrete Applied Mathematics 21(1) (1988)
67–79

2. Bertrand, G.: On P-simple points. Comptes Rendus de l’Académie des Sciences,
Série Math. I(321) (1995) 1077–1084

3. Bertrand, G.: On critical kernels. Comptes Rendus de l’Académie des Sciences,
Série Math. I(345) (2007) 363–367

4. Bertrand, G., Couprie, M.: On parallel thinning algorithms: Minimal non-simple
sets, P-simple points and critical kernels. Journal of Mathematical Imaging and
Vision 35(1) (2009) 23–35

5. Manzanera, A., Bernard, T., Prêteux, F., Longuet, B.: n-dimensional skeletoniza-
tion: a unified mathematical framework. Journal of Electronic Imaging 11(1)
(2002) 25–37

6. Lohou, C., Bertrand, G.: Two symmetrical thinning algorithms for 3D binary
images. Pattern Recognition 40 (2007) 2301–2314

7. Palágyi, K.: A 3D fully parallel surface-thinning algorithm. Theoretical Computer
Science 406(1-2) (2008) 119–135

8. Tsao, Y., Fu, K.: A parallel thinning algorithm for 3D pictures. Computer Graphics
and Image Processing 17(4) (1981) 315–331

9. Tsao, Y., Fu, K.: A 3D parallel skeletonwise thinning algorithm pictures. In:
Proceedings PRIP 82: IEEE Computer Society Conference on Pattern Recognition
and Image Processing, I.E.E.E. (1982) 678–683

10. Palágyi, K., Kuba, A.: A 3d 6-subiteration thinning algorithm for extracting medial
lines. Pattern Recognition Letters 19(7) (1998) 613–627

11. Ma, C.M., Wan, S.Y.: Parallel thinning algorithms on 3D (18,6) binary images.
Computer Vision and Image Understanding 80 (2000) 364–378

12. Ma, C.M., Wan, S.Y., Lee, J.D.: Three-dimensional topology preserving reduction
on the 4-subfields. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence 24(12) (2002) 1594–1605

13. Ma, C., Wan, S., Chang, H.: Extracting medial curves on 3D images. Pattern
Recognition Letters 23(8) (2002) 895–904

14. Lohou, C., Bertrand, G.: A 3D 12-subiteration thinning algorithm based on P-
simple points. Discrete Applied Mathematics 139 (2004) 171–195

15. Lohou, C., Bertrand, G.: A 3D 6-subiteration curve thinning algorithm based on
P-simple points. Discrete Applied Mathematics 151 (2005) 198–228

28



16. Németh, G., Kardos, P., Palágyi, K.: Topology preserving 2-subfield 3D thinning
algorithms. In: Proceedings Signal Processing, Pattern Recognition and Applica-
tions (SPPRA 2010), ACTA Press (2010) 311–316

17. Németh, G., Kardos, P., Palágyi, K.: Topology preserving 3D thinning algorithms
using four and eight subfields. In Campilho, A., Kamel, M., eds.: Image Analysis
and Recognition. Volume 6111 of Lecture Notes in Computer Science. Springer
Berlin / Heidelberg (2010) 316–325

18. Bertrand, G., Couprie, M.: Powerful Parallel and Symmetric 3D Thinning Schemes
Based on Critical Kernels. Journal of Mathematical Imaging and Vision 48(1)
(2014) 134–148

19. Liu, L., Chambers, E.W., Letscher, D., Ju, T.: A simple and robust thinning
algorithm on cell complexes. Computer Graphics Forum 29(7) (2010) 2253–2260

20. Bertrand, G., Couprie, M.: Isthmus based parallel and symmetric 3D thinning
algorithms. Graphical Models 80 (2015) 1–15

21. Couprie, M., Bertrand, G.: Asymmetric parallel 3D thinning scheme and algo-
rithms based on isthmuses. Pattern Recognition Letters 76 (2016) 22–31 Special
Issue on Skeletonization and its Application.

22. Kovalevsky, V.: Finite topology as applied to image analysis. Computer Vision,
Graphics and Image Processing 46 (1989) 141–161

23. Kong, T.Y., Rosenfeld, A.: Digital topology: introduction and survey. Computer
Vision, Graphics and Image Processing 48 (1989) 357–393

24. Kong, T.Y.: Topology-preserving deletion of 1’s from 2-, 3- and 4-dimensional
binary images. In: Proceedings Discrete Geometry for Computer Imagery. Volume
1347 of Lecture Notes in Computer Science., Springer (1997) 3–18

25. Bertrand, G.: New notions for discrete topology. In: Proceedings Discrete Geom-
etry for Computer Imagery. Volume 1568 of Lecture Notes in Computer Science.,
Springer (1999) 218–228

26. Bertrand, G., Malandain, G.: A new characterization of three-dimensional simple
points. Pattern Recognition Letters 15(2) (1994) 169–175

27. Bertrand, G.: Simple points, topological numbers and geodesic neighborhoods in
cubic grids. Pattern Recognition Letters 15 (1994) 1003–1011

28. Saha, P., Chaudhuri, B., Chanda, B., Dutta Majumder, D.: Topology preservation
in 3D digital space. Pattern Recognition 27 (1994) 295–300

29. Kong, T.Y.: On topology preservation in 2-D and 3-D thinning. International
Journal on Pattern Recognition and Artificial Intelligence 9 (1995) 813–844

30. Couprie, M., Bertrand, G.: New characterizations of simple points in 2D, 3D
and 4D discrete spaces. IEEE Transactions on Pattern Analysis and Machine
Intelligence 31(4) (2009) 637–648

31. Whitehead, J.: Simplicial spaces, nuclei and m-groups. Proceedings of the London
Mathematical Society 45(2) (1939) 243–327

32. Bertrand, G., Couprie, M.: Two-dimensional thinning algorithms based on critical
kernels. Journal of Mathematical Imaging and Vision 31(1) (2008) 35–56

33. Blum, H.: A transformation for extracting new descriptors of shape. In Wathen-
Dunn, W., ed.: Models for the perception of speech and visual form. MIT Press
(1967) 382–380

34. Lieutier, A.: Any open bounded subset of Rn has the same homotopy type as its
medial axis. Computer-Aided Design 36(11) (2004) 1029–1046

35. Zeeman, E.: On the dunce hat. Topology 2 (1964) 341–358
36. Bing, R.: Some aspects of the topology of 3-manifolds related to the Poincaré

conjecture. Lectures on modern mathematics II (1964) 93–128

29



37. Malgouyres, R., Francés, A.: Deciding whether a simplicial 3-complex collapses
to a 1-complex is NP-complete. In: Proceedings Discrete Geometry for Computer
Imagery. Volume 4992 of Lecture Notes in Computer Science., Springer (2008)
177–188

38. Shaked, D., Bruckstein, A.M.: Pruning medial axes. Computer Vision and Image
Understanding 69(2) (1998) 156–169

39. Chaussard, J.: Topological tools for discrete shape analysis. Ph.D. dissertation,
Université Paris-Est (2010)

40. Thorup, M.: Equivalence between priority queues and sorting. In: Proceedings
43rd Symposium on Foundations of Computer Science. FOCS ’02, Washington,
DC, USA, IEEE Computer Society (2002) 125–134

30


