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ABSTRACT
The integration of multiple and technologically heteroge-
neous sensors (infrared, color, etc) in vision systems tend
to democratize. The objective is to benefit from the multi-
modal perception allowing to improve the quality and ro-
bustness of challenging applications such as the advanced
driver assistance, 3-D vision, inspection systems or military
observation equipment.

However, the multiplication of heterogeneous processing
pipelines makes the design of efficient computing resources
for the multi-sensor systems very arduous task. In addi-
tion to the context of latency critical application and limited
power budget, the designer has often to consider the param-
eters of sensors varying dynamically as well as the number
of active sensors used at the moment.

To optimize the computing resource management, we in-
spire from the self-aware architectures. We propose an orig-
inal on-chip monitor, completed by an observation and com-
mand network-on-chip allowing the system resources super-
vision and their on-the-fly adaptation. We present the eval-
uation of the proposed monitoring solution through FPGA
implementation. We estimate the cost of the proposed so-
lution in the terms of surface occupation and latency. And
finally, we show that the proposed solution guarantees a pro-
cessing of 1080p resolution frames at more than 60 fps.

CCS Concepts
•Hardware → On-chip resource management; Applica-
tion specific integrated circuits;

Keywords
on-chip monitoring; self-aware computing; auto-adaptive ar-
chitecture; router; vision sensors; multi-stream; FPGA

1. INTRODUCTION
More and more embedded vision systems involve multi-

ple heterogeneous image sensors such as color, infrared or
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Figure 1: Illustration of the use-cases and required perfor-
mances.

low-light sensor. This trend is motivated by the need to
improve the robustness of the applications or to enable a
new industrial usage. To illustrate, we can cite the image
fusion from day and night vision cameras, frequently used
in surveillance and security context [1–3]. Another example
is the fusion of low-light and infrared images, enabling color
night vision system [4]. Also, the ADAS1 and UAV2 sys-
tems benefit from such multi-modal approaches increasing
the capabilities of such systems [5,6].

At the same time, it is commonly expected that the mod-
ern multi-sensor vision system provides computing capabil-
ities supporting the numerous functionalities as photo cap-
ture, face detection, image fusion or moving object track-
ing [7]. However, it imposes to deal with the different per-
formance requirements in terms of frame rate, frame resolu-
tion or processing latency (Fig. 1). Also, the parameters of
each sensor can dynamically vary and the number of sensors
used at the moment can dynamically change according to
the luminosity conditions or the applicative requirements.

This makes the design of computing resources very ardu-
ous task, especially considering the context of latency critical
application with a limited power budget and space occupa-
tion constraints.

1Advanced driver assistance systems
2Unmanned Aerial Vehicles
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Figure 2: Multi-sensor embedded vision system.

1.1 State of the art
The computationally efficient hardware design for multi-

sensor systems (Fig. 2) is a hot research topic that one can
illustrate by the numerous publications.

For instance, in [8] the authors develop and implement an
FPGA-based, scalable and resource-efficient multi-camera
IP core for image reconstruction. In [9] the authors demon-
strate an approach to the minimization of the implementa-
tion cost of multi-modal sensing systems. Also, a runtime
reconfigurable system on chip is proposed in [10,11], but the
authors consider only the utilization of two sensors. And
in [12,13] the authors present an architecture based on net-
work on chip. The main limitations of these solutions remain
in the decreasing performance with respect to the sensor
number. It is the consequence of the limited scalability of
the cited solutions.

Also, they suppose the fixed working parameters set, known
in advance. The computing system is then designed for
some given trade-off, or, frequently even for the worst-case
configuration. Obviously, it results in over-sized computing
pipelines (Fig. 3). And, if all the sensors are not used, such
solutions become very costly and inefficient.

To overcome these issues, some authors propose to use a
principle of the system monitor. It allows observing system
state, collecting the application constraints and to decide in
the real-time how to use the computing resources.

In the past, some interesting monitoring approaches have
been proposed. For instance, in [14, 15], authors present
a Multiprocessor System-on-Chip monitoring for frequency
scaling. Another monitoring method for Partial and Dy-
namic Reconfiguration application is presented in [16].

In [17], authors propose a network on chip monitoring
based on programmable probes.

However, these solutions are not directly applicable to the
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Figure 3: Pipelined static multi-stream architecture
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Figure 4: On-Chip monitoring principle

heterogeneous multi-stream architectures and their scalabil-
ity of this previous solution was limited.

In this paper, we propose a highly scalable, on-chip moni-
toring system for runtime adaptation of heterogeneous multi-
stream architecture. The key element is a proposal of the
network on chip dedicated to system observation and rout-
ing of adaptation command.

The paper is organized as follows. Section II presents the
proposed Monitoring solution. Performance evaluation of
hardware implementation is given in Section III and IV, the
Conclusions resume the main contributions of the paper.

2. ON-CHIP MONITORING SYSTEM
The role of Monitor is used to collect runtime status (Ob-

servations - OBS) of the architecture (processing resources
and hardware controllers) (Fig. 4).

The Observations serve to collect the information required
for the decision of an on-the-fly computing resources adap-
tation. The Monitor compares the observed system status
with the required performances and manages the architec-
ture reorganization through adaptation Commands (CMDs).
During this operation, we have to guarantee the data co-
herency. Hence, the attention is paid to the stream manage-
ment and synchronization during the adaptations. Notice
that the proposed on-chip monitoring solution withstands
multi-pipeline architecture with multiple clocking domains.

According to the considered adaptation, the Monitor may
have to load configuration data from Configuration mem-
ory. Then it generates the Adaptation commands destined
to the processing pipelines or to the hardware controllers of
the architecture. Also, the Monitor supports the partial dy-
namic reconfiguration, the Monitor only needs to check the
bit-stream memory address in the Configuration memory.

The Monitor communicates with processing pipelines via
an original Network on Chip dedicated to the system mon-
itoring and adaptation (Fig. 5). Each processing element
(PE) of is bound to a router. The PEs on the extremities
of a pipeline (the first and last) are bound to a specific RM

router (Monitoring router) while internal PEs are bound to
a RS router (Simple router).
RM is the interface router between processing pipelines

and the Monitor. Each RM router is connected to the Mon-
itor through a CMD channel and an OBS channel (Fig.
5). Observation data reach the Monitor through the OBS
channel while the Monitor sends commands to the pipelines
through CMD channels. OBS and CMD channels of RM
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Figure 5: Monitoring system based on dedicated network on
chip.

routers are enough to reach all the PEs of a pipeline.
A RS router of a PE conveys its observation data to its

right side neighbor router until reaching the ending RM

router. This later conveys the observation data to the Mon-
itor. In the same way, an adaptation command toward an
internal PE is sent to the beginning RM router of the con-
cerning pipeline. This RM router forwards the command to
its right side neighbor router until reaching the target PE.

The number of PEs and pipelines in figure 5 is given only
as an example to put ideas down. For reasons of clarity,
only Restoration and Enhancement processing stages are
presented in this figure. But, the concept remains valid for
Output processing stage too.

In figure 5, we can see that the ending RM routers have
not their CMD channel. Actually, as mentioned before, the
beginning RM router is enough to convey CMD data to all
the PEs of the pipeline. However, the CMD channel of the
ending RM routers can be activated in case of a high latency-
critical application. Some pipelines may have less PEs than
others (ie : pipeline in line number 2). In this case, they will
have less RS routers, but still two boundary RM routers.

To reduce the implementation cost, we adopt the princi-
ple where the adaptation commands are encapsulated into
the data stream header [13]. We complete it by adding also
the Observations into the header packets (Fig. 6). We pro-
pose to use a common communication interface and protocol
between PEs, routers and the Monitor, quite similar to AL-
TERA Avalon or XILINX AXI4 stream interface.

2.1 Monitor communication protocol
A Start and Stop signals indicate respectively the begin-

ning and the end of a data packet. Between Start and Stop
signals, there are a given number of data phits (payload).
A Valid signal indicates the validity of the value presented
in Data. The value of Data while Start is high represents
the packet header. The header has a size of one phit. The
Ready signal is used as a back pressure signal to prevent
data loss. By the way, using a back pressure signal reduces
buffer memory footprint.

Packet header details are given in figure 7. The packet
header has five fields : Type, Source ID, Target ID, Data ID
and Data size. Type indicates whether the packet is a pixel
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Figure 6: Communication interface and protocol

TYPE SOURCE ID TARGET ID DATA ID DATA SIZE

St Ssi Sti Sdi Sds

Header Payload
Packet

PIPE PE PIPE PE

HDR D0 D2D1 D3 Dk

Figure 7: Packet header description

(PIX), an observation (OBS) or command (CMD) packet.
Source and Target IDs give information respectively about
the producing and the targeting component of the packet.
An OBS packet has necessarily the Monitor’s ID as Target
ID. Meanwhile, as a CMD packet comes necessarily from the
Monitor, its Source ID is the Monitor’s one. Data ID is used
to distinguish several OBS or CMD data respectively from
or toward a same PE. Finally, Data size gives the number
of data phits.

2.2 Routers
Figure 8 depicts the internal structure of RM router. RS

router has a similar structure without CMD and OBS chan-
nels. Three dedicated header decoders are used to decode
the header of packets entering from Stream input channel,
CMD input channel and PE output interface. Header infor-
mation, Start and Stop signals are used to synchronize and
control the set of multiplexers of a router. CMD and OBS
channels work in Monitor clock domain, whereas Stream
channels work in the video clock domain.

RM or RS router has exclusively one of the following set
of configurations SCFG = {CFG1, CFG2, CFG3, CFG4,
CFG5, CFG6} (Fig. 9). Two supplementary configurations
are possible: FWDCMD and FWDOBS . They are used to
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Figure 8: RM router internal structure



forward CMD or OBS packet toward upper or lower pipeline
without altering the processing of the current pipeline. Con-
figurations CFG5, CFG6, FWDCMD and FWDOBS are
specific to RM router.

CFG1 CFG2 CFG3

CFG4 CFG5 CFG6

FWDCMD

FWDOBS

Exclusive set of 
configurations

Monitoring 
configurations

Figure 9: Set of routers configurations

Packet routing mechanism of RM is described in figure 10.
At the initialization of the system, a RM router is in default
CFG1 configuration. When a new packet reaches the RM

router (Start signal rising), the packet header is decoded.
The router’s configuration will depend on the Type of the
packet. If the type is PIX, the router is configured as CFG1.

If it is an OBS packet, the router checks whether the OBS
Output channel is busy. As long as the OBS Output channel
is busy, the Ready signal is set to low to keep the OBS
packet. Once the OBS Output channel is free again, the
router takes FWDOBS configuration.

In case of CMD packet, the router checks whether the
CMD Output channel is busy. If the CMD Output channel is
free, the configuration will depend on Target ID. According
to the Target ID, the router will be configured in CFG1,
CFG2 or CFG3. Whatever is the Type, a packet routing
process ends when Stop signal rises.

Notice that for multi-stream Processing Element, such as
color-infrared streams fusion, a Packet Serializer is used to
buffer and interlace both streams (Fig. 5). As the Packet
Serializer has to deal with twice the bandwidth of a sin-
gle router, its frequency is at least twice the frequency of a
general router.
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Figure 10: RM routing mechanism

3. PROTOTYPING AND EVALUATION
We implemented the proposed solution in an ALTERA

Cyclone V FPGA (5CGXFC7D6F). Thereafter, we evalu-
ated the performance of this solution through the two use-
cases taken from Fig. 1.

1: Runtime frame characteristics adaptation
Context: The application requires the sensor frame rate or
resolution adaptation.
Observation: Present sensor characteristics.
Adaptation: Monitor decides and initiates an on-the-fly pixel
clock frequency adaptation.
Controller: Frame synchronization manager for PLL3 recon-
figuration.

When the environment context changes (i.e. luminos-
ity condition), the application could change the set of the
used sensors and/or their appropriated parameters. Conse-
quently, the characteristics of the input stream, especially
the frame rate and the resolution need to change on-the-fly.

Instead of scaling the architecture’s Processing Element
with the highest worst-case frequency, this solution allows
scaling dynamically the pixel clock frequency according to
the runtime context requirements. According to the frame
rate and resolution of the stream (observation data from
the sensor), the Monitor computes the required pixel clock
frequency of a given pipeline of the architecture. Then, the
Monitor drives the fine-tuning of the current clock frequency
if its value does not fit with the required one.
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Figure 11: Stream frame rate and resolution adaptation
principle

The adaptation of the clock frequency consists in recon-
figuring the PLL corresponding to the concerned clock. The
Monitor also manages the frame synchronization and before
any frequency adaptation, it sends a command to the con-
cerned pipeline to freeze the communication interfaces of the
PEs.

1 Observation of the sensor characteristics from the in-
put stream and evaluation of the adaptation require-
ments.

2 Sending the freezing command toward PEs of the con-
cerned pipeline.

3 Acknowledgement of Freezing operation success.

4 New required frequency computation and frequency
adaptation command toward the Clock Manager (then
PLL Reconfiguration).

3PLL - Phase-Lock Loop



5 Frame resolution modification command toward the
Memory Controller.

6 Frame period time modification command toward the
Frame Synchronization Manager.

7 End of freezing command toward PEs of the concerned
pipeline (once all adaptation are completed).

8 End of freezing operation acknowledgement.

2: Runtime sensor type switching
Context : New sensor connected to the system, i.e. switch-
ing between sensor types in the application.
Observation : Processing pipeline characteristics, sensor spe-
cific informations.
Adaptation : Monitor initiates dynamic re-allocation of com-
puting resources.
Controller : Partial Reconfiguration Host of FPGA.

This use-case illustrates the context of sensor type switch-
ing while the frame rate and resolution values remain un-
changed. When the outdoor luminosity condition changes,
the type of the sensor ought to be adapted. For instance,
the vision system shifts to the infrared sensor for night vi-
sion when it is getting nightly. Sensor-specific pre-processing
depends on the type of the sensor.

In a static architecture, when one of the vision system’s
sensor is not used, its pre-processing resources are not re-
usable for the other active sensor. In this dynamically adap-
tive architecture, we propose to deploy sensor-specific pre-
processing in reconfigurable resources. In case of sensor type
switching, these resources would be re-allocated for the new
active sensor.
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Figure 12: Use-case 2 : stream type modification

1 Observation of the characteristics of the sensor from
the input stream.

2 Freezing command toward PEs of the concerned pipeline
in case of any characteristic modification.

3 Acknowledgement of Freezing operation success.

4 Monitor decides of the new required processing context
and sends the PE adaptation request to the Partial
Reconfiguration Host.

5 End of freezing command toward PEs of the concerned
pipeline (once reconfiguration is completed).

6 End of freezing operation acknowledgement.

For evaluation purpose, we simulated luminosity condition
switching scenarios (day, evening, night). When the lumi-
nosity condition changes, the Monitor checks the current ac-
tive sensors. If the required sensor is not active, it shifts the
sensor and adapts the sensor-specific image pre-processing
pipeline by means of partial dynamic reconfiguration.

4. LATENCY COST EVALUATION
The proposed solution has been described in HDL and

evaluated with an HDL simulator (ModelSim). Sensor pixel
streams have been simulated thanks to image vector input
files. Several values of frequency, frame rate and resolution
have been tested.
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Figure 13: Monitoring packet routing latency

Any packet crosses a RM or RS router with a minimal
latency of 2 cycles. These minimal 2 cycles can increase up
to 8 cycles in case of contention in the router. In figure
13, latency performance of typical pipelines is presented.
We evaluated the latencies in the case of 1 to 6 pipelines.
For each case, the worst-case routing path latency has been
reported.

The blue curve presents contention-free scenario whereas
the orange one presents the highest contention scenario. For
3 pipelines-based multi-stream architecture, we have a worst-
case latency of 20 cycles. That is to say, a CMD or OBS
packet from/to the Monitor takes at most 20 cycles to reach
the farthest PE.

Besides, in addition to the interlacing operation latency,
the Packet Serializer adds an extra two cycles latency.

4.1 Synthesis results
The synthesis results are based on Altera Cyclone V FPGA

(5CGXFC7D6F) implementation with a 32 bit data size.
The header fields sizes of this implementation are given in
table 1. The area overhead of the presented monitoring so-
lution is given in table 2.

Field St Ssi Sti Sdi Sds

Size (bits) 2 8 8 10 4

Table 1: Header implementation in 32 bits data

The area utilization of the monitoring solution has been
compared to a typical multi-stream reference design. This
reference design needs 13 RM , 4 RS and 1 Packet Serializer.
The area overhead comparison is given between brackets. In
this reference design, the proposed monitoring solution has
less than 7% of overall area overhead.



Component ALUT Register Memory (bit)

RS 6 144 0
RM 248 408 512

Packet Serializer 39 42 40 960
Monitor 151 164 0

In reference design (%) 6.7% 2.9% 0.9%

Table 2: Monitoring solution area overhead

The architecture of the proposed solution is directly scal-
able in the terms of the sensor number as well as in the
terms of the number of processing stages. It is obvious that
the surface overhead due to the routers will increase linearly
with the size of the monitoring network. Notice that the
monitor router has the capability to manage simultaneous
command and observation packets.

The memory footprint of the Packet Serializer can be im-
proved by reducing the interlacing granularity. Otherwise,
as RM and RS routers have a relative low area overhead, the
solution is easily scalable for architectures with more than
4 pipelines. In case of 64 bit data, we got the following syn-
thesis results. RM (ALUT:289, Regs:620, Mem:1024) and
RS (ALUT:10, Regs:280, Mem:0).

Nb. of pipeline 1 2 3 4 6

Clk Monitor 218 196 177 157 123
Clk Video 237 223 210 198 193

Table 3: Frequency performance (MHz)

Frequency performance of the proposed solution is pre-
sented in table 3. Typical multi-stream architectures have 3
or 4 pipelines. Results in table 3 show a maximum affordable
frequency of 157 MHz for monitoring clock (Clk Monitor)
and 198 MHz for pipeline clock (Clk Video) in case of 4
pipelines. Within this performance, we can deal with 1080p
resolution up to 60 frames per second.

5. CONCLUSION
In this paper, we introduced an original and scalable on-

chip monitoring solution for dynamically adaptive multi-
stream vision architecture. This solution is based on a dedi-
cated network on chip for monitoring observation and adap-
tation.

It supports architecture with numerous heterogeneous pixel
streams and multiple clock domains. Evaluations on FPGA
implementation show fair latency performance with a rel-
atively low area overhead. Future works will focus on the
extension of the proposed network on chip for pixel stream
data path flexibility.
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