
HAL Id: hal-01571616
https://enpc.hal.science/hal-01571616

Submitted on 3 Aug 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The IPOL Demo System: A Scalable Architecture of
Microservices for Reproducible Research

Martín Arévalo, Carlos Escobar, Pascal Monasse, Nelson Monzón, Miguel
Colom

To cite this version:
Martín Arévalo, Carlos Escobar, Pascal Monasse, Nelson Monzón, Miguel Colom. The IPOL Demo
System: A Scalable Architecture of Microservices for Reproducible Research. 1st Workshop on Re-
producible Research in Pattern Recognition, Dec 2016, Cancun, Mexico. pp.3-16, �10.1007/978-3-319-
56414-2_1�. �hal-01571616�

https://enpc.hal.science/hal-01571616
https://hal.archives-ouvertes.fr

The IPOL demo system: a scalable architecture
of microservices for Reproducible Research

Mart́ın Arévalo1, Carlos Escobar2, Pascal Monasse3, Nelson Monzón4, and
Miguel Colom2

marevalo@cup.edu.uy, carlos.escobar101@alu.ulpgc.es,
pascal.monasse@enpc.fr, monzon@ctim.es, colom@cmla.ens-cachan.fr

1 Department of Biological Engineering, Universidad de la República, Uruguay,
2 CMLA, ENS Cachan, CNRS, Université Paris-Saclay, 94235, Cachan, France,

3 LIGM, UMR 8049, École des Ponts, UPE, Champs-sur-Marne, France,
4 CTIM, University of Las Palmas de Gran Canaria, Spain.

All authors contributed equally

Abstract. We identified design problems related to the architecture,
ergonomy, and performance in the previous version of the Image Pro-
cessing on Line (IPOL) demonstration system. In order to correct them
we moved to an architecture of microservices and performed many refac-
torings. This article first describes the state of the art in Reproducible
Research platforms and explains IPOL in that context. The specific prob-
lems which were found are discussed, along with the solutions imple-
mented in the new demo system, and the changes in its architecture
with respect to the previous system. Finally, we expose the challenges of
the system in the short term.

Keywords: IPOL, reproducible research, research, journal, SOA, mi-
croservices, service-oriented, platform, continuous integration.

1 Introduction

Image Processing on Line (IPOL) is a research journal started in 2010 on Re-
producible Research in the field of Signal Processing (mainly Image Processing,
but also video, sounds, and 3D data), giving a special emphasis on the role of
mathematics in the design of the algorithms [1]. This article discusses the cur-
rent system after the changes that were anticipated in [2], and towards which
direction it plans to move in the future.

As pointed by Donoho et al. [3], there is a crisis of scientific credibility since
in many published papers it is not possible for the readers to reproduce exactly
the same results given by the authors. The causes are many, including incom-
plete descriptions in the manuscripts, not releasing the source code, or that the
published algorithm does not correspond to what actually is implemented. Each
IPOL article has an online demo associated which allows users to run the algo-
rithms with their own data; the reviewers of the IPOL articles must carefully
check that both the description and the implementation match.

II

Since it started in 2010 the IPOL demo system has been continuously im-
proved and according to usage statistics collected along these years it has about
250 unique visitors per day. However, several problems of design and potential
improvement actions were identified and, in February 2015, it was decided to
build a second version of the system based on microservices [4]. Among these
problems can be listed: the lack of modularity, tightly-coupled interfaces, diffi-
culties to share the computational load along different machines, or complicated
debugging of the system in case of malfunction.

The plan of the article follows. Sec. 2 discusses the state of the art in Repro-
ducible Research and microservices platforms. Sec. 3 discusses the particularities
of IPOL as a journal, and Sec. 4 presents the architecture of microservices of the
new IPOL demo system. Sec. 5 reveals the software development methodologies
in the software engineering process the IPOL team is applying internally. Sec. 6
refers to a particular tool we designed for the IPOL editors which allows them
to manage the editorial process. Sec. 7 presents a very important novelty of the
new system, which is the capability of quickly creating new demos from a textual
description. Finally, Sec. 8 presents the conclusions.

2 State of the art in Reproducible Research platforms

Some very well-known platforms whose use is closely related to Reproducible
Research exist nowadays. Some of them are are domain-specific while others are
more general.

In the case of Biology, the Galaxy project [5] is a platform for genomic
research which makes available tools which can be used by non-expert users
too. Galaxy defines a workflow as a reusable template which contains different
algorithms applied to the input data. In order to achieve reproducibility the
system stores: the input dataset, the tools and algorithms which were applied
to the data within the chain, the parameters, and the output dataset. Thus,
performing the same workflow with the same data ensures that the same results
are obtained given that the version of all the elements is kept the same.

Generic tools for Reproducible Research include the IPython tool and its
notebooks. This mature tool created in 2001 allows to create reproducible arti-
cles by not only editing text in the notebook, but allowing code execution and
creating figures in situ. This approach follows closely the definition of a “repro-
ducible scientific publication” given by Claerbout and followed also by Buckheit
and Donoho: An article about computational science in a scientific publication is
not the scholarship itself, it is merely advertising of the scholarship. The actual
scholarship is the complete software development environment and the complete
set of instructions which generated the figures [6].

In 2014 the Jupyter project was started as a spin-off of IPython in order to
separate the Python language part of IPython to all the other functionalities
needed to run the notebooks, such as the notebook format, the web framework,
or the message protocols. IPython turns then into just another computation

III

kernel for Jupyter, which nowadays supports more than 40 languages that can
be used as kernels5.

There are also other generic tools which can be seen as dissemination plat-
forms since their main objective is to make source code and data widely available
to the public. In this category we find for example Research Compendia6 focused
on reaching reproducible research by storing data, code, in a form that is accessi-
ble, traceable, and persistent, MLOSS7 for machine learning, datahub8 to create,
register, and share generic datasets, and RunMyCode9 to associate code and
data to scientific publications. Compared to these platforms, IPOL differs from
them in the sense that it is a peer reviewed journal, and not only a dissemination
platform.

Regarding the system architecture of IPOL, it is built as a Service-Oriented
Architecture (SOA) made of microservices. This type of architecture allows IPOL
to have simple units (called modules in its own terminology) which encapsulate
isolated high-level functions (see in Sec. 4.1). Specifically, we use the CherryPy
framework to provide the REST HTTP [7] services. Microservices in distributed
system are specially useful for those system which need to serve millions of simul-
taneous requests. A good example of SOAs made of microservices is the Amazon
AWS API Gateway10 used by millions of users. Also, multimedia streaming ser-
vices such as Netflix11 which receives about two-billion daily requests or Spotify12

are usually based on SOAs of microservices.

3 IPOL as a peer-reviewed scientific journal

IPOL is a scientific journal on mathematical signal processing algorithms (image,
video, audio, 3D) which focuses on the importance of reproducibility. It differs
from other classic journals in its editorial policy: each IPOL article must present
a complete description of its mathematical details together with a precise ex-
planation of its methods with pseudo-codes. These ones must describe exactly
the implementation that achieves the results depicted in the paper. The idea
is that readers with sufficient skills could implement their own version (in any
programming language or environment) from the IPOL article. Furthermore,
submitting an IPOL paper means to upload the manuscript coupled with the
original source codes. Both are reviewed in depth by the referees to ensure the
quality of the publication and that the pseudo-codes match exactly with the at-
tached program, before the editor’s decision. The publication process is divided

5 https://github.com/ipython/ipython/wiki/IPython-kernels-for-other-languages
6 http://104.130.4.253/
7 http://mloss.org
8 https://datahub.io/
9 http://www.runmycode.org/

10 https://aws.amazon.com/api-gateway
11 https://media.netflix.com/en/company-blog/completing-the-netflix-cloud-

migration
12 http://es.slideshare.net/kevingoldsmith/microservices-at-spotify

IV

in two stages: first, the reviewers evaluate the scientific interest, the experiments
and the reproducibility of the work; secondly, if this evaluation is positive, the
authors submit the original code and the online demo is published.

Each IPOL article contains [1]:

1. A description of one algorithm and its source code;
2. a PDF article associated with an online demonstration;
3. archived experiments run by users.

All these data, accessible through different tabs of the article webpage, make
IPOL an open science journal in favor of reproducible research. The philosophy
of the journal follows the guidelines on reproducible research topics, by obeying
the standards of reproducible research [8, 9]. This is meant as an answer to the
credibility crisis in scientific computation pointed out by Donoho et al. [3].

IPOL publishes algorithms along with their implementation, but not com-
piled/binary software. Neither is it a software library, since each code must have
minimal dependencies. The objective of IPOL is not simply to be a software or
code diffusion platform. In this sense, the code must be as transparent to the
reader as possible, not using implementation tricks unless they are described in
the article. It should be seen as a reference implementation, always preferring
clarity over run time optimization. Both the article text and the source code are
peer-reviewed and the reviewers must carefully check that what is described in
the paper matches what is actually implemented in the source code.

The current form of an IPOL article is illustrated in Fig. 1. The first tab (a)
presents the links to the low- and high-resolution PDF manuscripts, and also to
the reference source code. An embedded PDF viewer presents a preview of the
manuscript. The second tab (b) is the interface of the demonstration system,
proposing some illustrative input data. The user can also upload its own data
from this page. Clicking on one proposed input dataset or uploading a new one
brings to a page presenting a list of adjustable parameters of the algorithm, and
possibly an image selection tool, used for example for cropping an image too big
for real-time processing by the system (almost all demonstrations are expected
to achieve their processing in at most 30 seconds). A click on the “Run” button
brings to a waiting page, while the server runs the author’s code, which finally
updates into a webpage showing the results. At this stage, the user has the option
to re-run on the same input data but modifying the parameters, or to change
the input data. Running the algorithm on newly uploaded input data proposes
to archive them and their results. The archived data of tab (c) in Figure 1
have permanent URL. This facilitates online communication between distant
collaborators working on an algorithm. The archived data allow to understand
what usages are aimed at by visitors, can reveal failure cases not anticipated by
the authors, etc. The amount of archived data can also serve as a crude measure
of the interest an algorithm raises in the community, as a kind of substitute or
complement to the number of citations in a standard journal. The most cited
IPOL articles have also tens of thousands of archived online experiments.

Each IPOL demo downloads and compiles by itself the source code. This
ensures that the users can reproduce exactly the results claimed by the authors.

V

However, the authors of the demo can additionally add scripts or data, which
is not peer-reviewed, but is needed to show the results in the website. This
allows to avoid mixing the peer-reviewed source code of the submitted method
with support extra codes needed only by the demo. This approach differs from
classic publishing, where the method and some details about the implementation
are usually described but it is not possible to reproduce and thus confirm the
published results.

(a) (b) (c)

Fig. 1. The current form of an IPOL article with its three tabs: (a) article with
manuscript, online viewer, and link to source code, (b) demonstration system, and
(c) archived experiments.

Apart from this specific form of the articles, IPOL presents the same aspects
as a classic scientific journal, with an editorial committee, contributors in the
form of authors and editors, a reviewing process, an ISSN, a DOI, etc. Some spe-
cial issues are proposed, for example some selected papers from the 16th IAPR
International Conference on Discrete Geometry for Computer Imagery (DGCI)
in 2011. There is also an agreement for publishing companion papers in SIAM
Journal of Imaging Sciences (SIIMS) and IPOL, the first submission concen-
trating on the theory and general algorithm and the second one on practical
implementation and algorithmic details. Note that originality of the algorithm is
not a prerequisite for IPOL publication: the usefulness and efficiency of an algo-
rithm are the decisive criteria. IPOL articles are indexed by all major indexers,
such as Scirus, Google Scholar, DBLP, SHERPA/RoMEO, CVonline, etc.

The role of the reviewer is not restricted to the evaluation of the manuscript.
The reviewers are also expected to test the online demonstration, check the
algorithmic description in the article, and the source code. Most importantly,
they must verify that the description of the algorithm and its implementation
code match. An important requirement is that the code be readable and well
documented.

VI

4 The IPOL system architecture

The architecture of the new IPOL demo system is an SOA based on microser-
vices. This change was motivated by the problems found in the previous version
of the demo system. First, it was designed as a monolithic program13 which
made it quite easy to deploy in the servers and to run it locally, but at the cost
of many disadvantages. Given that it was a monolithic system, it was difficult
to split it into different machines to share the computational load of the algo-
rithms being executed. A simple solution would be to create specialized units to
run the algorithms and to call them from the monolithic code, but this clearly
evokes the first step to move to a microservices architecture. Indeed, this first
step of breaking the monolith [4] can be iterated until all the functions of the
system have been delegated in different modules. In the case of IPOL, we cre-
ated specialized modules and removed the code from the monolith until the very
monolith became a module itself: the Core. This Core module is in charge of all
the system and delegates the operations to other modules. Fig. 2 summarizes
the IPOL modules and other components of the system.

Fig. 2. IPOL as a modular system.

Other problems we had in the previous version of the demo system got solved
when we moved to the microservices architecture. Since there is a loose coupling
between the Core and the other modules, different members of the development
team can work at the same time without worrying about the implementation
details or data structures used in other parts of the system. Also, tracking down
malfunctions is easier: since the Core centralizes all the operations, when a bug

13 Of course, with a good separation of functionality among different classes.

VII

shows it can only be generated either at the Core or at the involved module, but
not at any other part of the system. In the old system a bug could be caused by
complex conditions which depend on the global state of the program, making
debugging a complex task. And as noted before, the fact that the architecture of
the system is distributed and modular by design makes it very natural and simple
to have mechanisms to share the computational load among several machines.

Hiding the internal implementation details behind the interfaces of the mod-
ules is an essential part of the system, and it is needed to provide loose coupling
between its components. The internal architecture of the system is of course
hidden from the users when they interact with the system, but it is also hidden
from the inside. This means that any module (the Core included) does not need
to know the location of the modules. Instead, all of them use a published API.

Once the API is defined, the routing to the modules is implemented by a
reverse proxy14. It receives the requests from the clients according to this pattern:
/api/<module>/<service> and redirects them to the corresponding module.
Fig. 3 shows how the API messages received by the proxy are routed to the
corresponding modules, thus hiding the internal architecture of the system.

Fig. 3. The reverse proxy routes the API messages to the corresponding modules.

4.1 The IPOL modules

IPOL is made of several standalone units used by the Core module to dele-
gate specialized and well isolated functions. This section describes briefly these
modules implementing microservices.

Archive The archive module stores all the experiments performed by the IPOL
with their original data. The database stores the experiments and blobs, which
are related with a junction table with a many-to-many relationship. It is worth
noting that the system does not save file duplicates of the same blob, but detects
them from their SHA1 hash.

This module offers several services, such as adding (or deleting) an exper-
iment or deleting all the set of experiments related to a particular demo. The

14 We use Nginx as the reverse proxy.

VIII

archive also has services to show particular experiments or several pages with
all the experiments stored since the first use of the archive.

Blobs Each demo of IPOL offers the user a set of defaults blobs which can
be tagged and linked to different demos. Thus, the users are not forced to sup-
ply their own files for the execution of the algorithms. This module introduces
the concept of templates, which are sets of blobs which can be associated to a
particular demo. For example, this allows all the demos of an specific type (e.g.,
denoising) to share the same images as default input data. Instead of editing each
demo one by one, the editors can simply edit their template to make changes in
all the demos, and then particular changes to each specific demo.

Core This module is the centralized controller of the whole IPOL system. It
delegates most of the tasks to the other modules, such as the execution of the
demos, archiving experiments, or retrieving metadata, among others.

When an execution is requested, it obtains first textual description of the
demo (the DDL) from the DemoInfo module and it copies the blobs chosen by
the users as the algorithm’s input. Then, it asks for the workload of the different
DemoRunners and gives this information to the Dispatcher module in order to
pick the best DemoRunner according to the Dispatcher’s selection policy. The
Core asks the chosen DemoRunner to first ensure that the source codes are well
compiled in the machine and then to run the algorithm with the parameters
and inputs set by the user. The Core waits until the execution has finished
or a timeout happens. Finally, it delegates into the Archive module to store
the results of the experiment. In case of any failures, the Core terminates the
execution and stores the errors in its log file. Eventually, it will send warning
emails to the technical staff of IPOL (internal error) or to the IPOL editors of
the article (compilation or execution failure).

Dispatcher In order to distribute the computational load along different ma-
chines, this module is responsible of assigning a concrete DemoRunner accord-
ing to a configurable policy. The policy takes into account the requirements of
a demo and the workload of all the DemoRunners and returns the DemoRun-
ner which best fits. The DemoRunners and their workloads are provided by the
Core. Figure 4 shows the communication between the Core, Dispatcher, and the
DemoRunner modules.

Currently the Dispatcher implements three policies:

– random: it assigns a random DemoRunner

– sequential: it iterates sequentially the list of DemoRunners;

– lowest workload: it chooses the DemoRunner with the lowest workload.

Any policy selects only the DemoRunners satisfying the requirements (for ex-
ample, having MATLAB installed, or a particular version of openCV).

IX

Fig. 4. Communication between the Core, Dispatcher, and the DemoRunner modules.

DemoInfo The DemoInfo module stores the metadata of the demos. For ex-
ample, the title, abstract, ID, or its authors, among others. It also stores the
abstract textual description of the demo (DDL). All this information can be
required by the Core when executing a demo or by the Control Panel when the
demo is edited with its website interface.

It is possible that the demo requires non-reviewed support code to show
results. In this case, the demo can use custom scripts to create result plots. Note
that this only refers to scripts and data which is not peer-reviewed. In case they
are important to reproduce the results or figures in the article, they need to be
in the peer-reviewed source code package.

DemoRunner This module controls the execution of the IPOL demos. The
DemoRunner module is responsible of informing the Core about the load of
the machine where it is running, of ensuring that the demo execution is done
with the last source codes provided by the authors (it downloads and compiles
these codes to maintain them updated), and of executing the algorithm with the
parameters set by the users. It takes care of stopping the demo execution if a
timeout is reached, and to inform the Core about the causes of a demo execution
failure so the Core can take the best action in response.

5 Software engineering in the IPOL demo system

The current IPOL project tries to follow the best practices in software engineer-
ing. Specifically, for this kind of project we found that Continuous Integration
was a good choice in order to achieve fast delivery of results and ensuring quality.
Continuous Integration is a methodology for software development proposed by
Martin Fowler, which consists of making automatic integrations of each incre-
ment achieved in a project as often as possible in order to detect failures as soon

X

as possible. This integration includes the compilation and software testing of the
entire project.

It is a set of policies that, together with continuous deployment, ensures that
the code can be put to work quickly. It involves automatic testing in both in-
tegration and production environments. In this sense, each contribution in the
IPOL system is quickly submitted and several automatic test are performed.
If any of these tests fail the system sends an email indicating the causes. An-
other advice of Continuous Integration is minimal branching. We use two. On
one hand, master is the default branch and where all the contributions are com-
mitted. It is used for the development, testing and this continuous integration;
on the other hand, the prod branch is used only in the production servers. It
is merged with master regularly. We use two different environments: integration
and production. The integration server is where the master branch is pulled after
each commit. The prod branch is used for the production servers and the code in
this branch is assumed to be stable. However, the code in the integration server
is also assumed to be stable and theoretically the code in the master branch
could be promoted to production at any time once it has been deployed to the
integration server and checked that is is fully functional and without errors.

Quality is perhaps the most important requirement in the software guidelines
of the IPOL development team. The code of the modules must be readable and
the use of reusable solution is advised [10]. The modules must be simple, well
tested and documented, with loose interface coupling, and with proper error log-
ging. Note that it is not possible to ensure that any part of the IPOL will not fail,
but in case of a failure we need to limit the propagation of the problem through
the system and to end up with diagnostic information which allows to determine
the causes afterwards. Refactoring [11] is performed regularly and documenta-
tion is as important as the source code. In fact, any discrepancy between the
source code and the documentation is considered as a bug.

5.1 Tools

The IPOL development team has created so far three main tools for the system
administrators, developers, and editors to interact with the IPOL system. Some
of their capabilities might be duplicated or overlapping with the Control Panel
(for example, reading and modifying the DDL of the demos is a function imple-
mented in the DDL tool and in the Control Panel, but they are still useful to
perform massive changes or to automatize tasks).

Terminal The Terminal is a small Python standalone application intended for
system administrators which allows to start, stop, and query the status of each
module. The current list of commands is: start: launches the specified module;
ping: checks if the module is up; shutdown: stops the specified module; info:
prints the list of available commands of the module; modules: displays the list
of the modules of the system.

XI

Control Panel The Control Panel web application offers a unified interface
to configure and manage the platform. It provides a navigation menu option
for each module, which allows the editors to edit the demos or the modules
directly (say, the add or remove images of a demo, or to delete experiments from
the Archive upon request). Look at Sec. 6 for more information on the Control
Panel.

DDL tool This tool is a standalone Python script which allows to read and
write the DDLs of each demo. The main justification for this tool is to perform
massive changes in the DDLs and automatize some needed tasks. It admits the
following list of commands. Read: downloads the DDLs of the specified demos;
Read all: downloads the DDLs of all the demos known by the system; Write:
uploads the content of the file with the DDLs of the specified demos.

6 Editorial management: the Control Panel

The Control Panel is a Django web application which offers a unified interface
to configure and manage the platform. Its graphical interface gives to the editors
a menu with options to access the different modules available on the system. It
provides many editing options to the users. The first option is the Status, that
shows a list of the modules with summarized information about them, allowing
the user to monitor if they are currently running. In second place there is an
Archive Module option to provide a list of the demos with stored experiments,
as a result of an execution with original data. It allows the editor to remove
specific experiments upon request (e.g., inappropriate images). There is also a
Blobs Module option, which allows to add and remove blobs for a particular
demo.

Additionally, the DemoInfo Module option permits the user to access infor-
mation about the demos, authors and editors stored on the IPOL demo system,
organized in three sections. The Demos section is the option selected by default,
and makes it possible to edit the demo metadata, such as its ID, title, or the
source code URL, the assigned editors, or its support scripts, among others.
Fig. 5 shows a screen capture of the Control Panel application as shown in the
browser.

7 Automatic demo generation

In the previous version of the IPOL demo system the demo editors had to write
Python code to create a new demo. Specifically, to override some methods in a
base demo class in order to configure its input parameters, to call the program
implementing the algorithm, and also to design Mako HTML templates for the
results page.

This approach does not really solve anything, since it simply moves the inabil-
ity to generate demos from a simple description from the system to the demo

XII

Fig. 5. List of demos in DemoInfo Module option of the Control Panel.

editors. Since the Python code is written by the demo editors, it is prone to
bugs which are specific to each demo. Moreover, fixing a bug in a demo does not
prevent the others the have similar problems, with different implementations.

In fact, it is evident that this is a bad design, since to completely define
a demo all that is needed is: (1) The title of the demo; (2) the URL where
the system should download the source code of the demo; (3) the compilation
instructions; (4) a description of the input parameters; (5) a description of what
needs to be shown as results.

This information is not tied to any particular language or visualization tech-
nique, but it can be a simple abstract textual description. In IPOL we called
this abstract textual description the Demo Description Language (DDL). The
IPOL editors only need to write such a description and the system takes care
of making available the demo according to it. This not only avoids any coding
problems (since there is nothing to code, but writing the short DDL), but also
allows IPOL to have non-expert demo editors, and makes it possible to edit and
publish demos quickly.

As an example, the following DDL listing is from a published IPOL demo:

1 { "archive": {
2 "files": {
3 "derivative1.png": " Derivative 1",

4 "sinc3.png": "Sinc 3"

5 },
6 "params": [

7 "a1", "a2", "variable", "orientation", "sigma"

8]

9 },
10 "build": {
11 "build1": {
12 "url": "http://www.ipol.im/pub/art/2016/116/filtering_1.00.zip",

13 "construct": "cmake filtering_1.00 && make -C filtering_1.00",

14 "move": "main_comparison"

15 }
16 },

XIII

17 "general": {
18 "demo_title": "How to Apply a Filter Defined in the Frequency Domain by a Continuous Function",

19 "xlink_article": "http://www.ipol.im/pub/art/2016/116/"

20 },
21 "inputs": [

22 {
23 "description": "input",

24 "dtype": "3x8i", "ext": ".png",

25 "max_pixels": "700*700", "max_weight": "10*1024*1024",

26 "type": "image"

27 }
28],

29 "params": [

30 {
31 "id": "a1",

32 "label": "x-component shifting",

33 "type": "range",

34 "values": {
35 "default": 0.25, "max": 1, "min": 0, "step": 0.05

36 }
37 },
38 (...)

39],

40 "results": [

41 {
42 "contents": {
43 "Derivative 1": "derivative1.png",

44 "Sinc 3": "sinc3.png"

45 },
46 "label": "Filtered and difference images",

47 "type": "gallery"

48 },
49],

50 "run": [

51 "main_comparison input_0.png -a $a1 -b $a2 -V $variable -g $sigma -Q $orientation -e png"

52]}

8 Conclusions

The first version of the IPOL demo system has been working since the first article
was published in 2010, with a total of 1434 citations and h- and i10-indexes of 20
and 36 respectively; its demo system is receiving about 250 unique visitors per
day. While it is clear that the system is functional, some problems were detected:
the system was difficult to debug to track down malfunctions, it suffered from
tightly coupled interfaces, it was complicated to distribute the computational
load among different machines, and the editors needed to write Python code
to create and edit demos. These problems compromised the durability of the
system at the same time they started to create a bottleneck that prevented to
create and edit demos quickly.

The new system moved to a distributed architecture of microservices which
solved many of these problems. It introduced however the typical problems of
moving the complexity from the monolithic code to the boundaries of the mi-
croservices, but in general the balance has been quite positive. The system is
made now of simple parts and the development team has gained flexibility due
to the isolation of the microservices. Also, the editors are able now to quickly
create and edit demos thanks to the abstract syntax of the DDL.

The next challenges for the very short term are to integrate new data types
such as video, audio, and 3D, and the development team is quite optimistic
about that, since the system is able to manage generic types (even if we refer to
images, for the system they are simply blobs) and it comes down to a visualization
problem in the website interface.

XIV

In conclusion, we managed to fix many of the problems found in the previous
system by redesign and refactoring and now the system is ready to be expanded
again, with a solid architecture and codebase.

Acknowledgments

This work was partly funded by the European Research Council (advanced grant
Twelve Labours), the Office of Naval Research (ONR grand N00014-14-1-0023),
and the ANR-DGA project ANR-12-ASTR-0035.

About the authors

Mart́ın Arévalo has a degree of Bachelor of Information Technology, from the Universidad de la
República (UdelaR), Uruguay. He also is a Cisco Certified Network Associated (CCNA). He works at
the Department of Biological Engineering, performing task of algorithm programming for different
biological problems and support of critical infrastructures mainly oriented to management of clinical
studies involving data of human subjects. Currently, he is also a collaborator in the IPOL project.

Carlos Escobar is a software engineer in the IPOL project at the CMLA, ENS Cachan. He has a
degree in Computer Science from the University of Las Palmas de Gran Canaria (ULPGC), Spain.

Pascal Monasse is professor of computer science at École des Ponts ParisTech (France). He is an
editor of the IPOL journal. He holds a PhD in applied mathematics from Université Paris-Dauphine.
His main research area is computer vision (stereovision, structure from motion, 3D reconstruction).

Nelson Monzón holds a M.S. degree in Computer Science, a M.Ed. degree in Media and Technol-
ogy and a M.S. degree in Intelligent Systems and Numerical Application in Engineering, from the
University of Las Palmas de Gran Canaria (ULPGC), Spain. He also obtained several certifications
in Agile Methodologies. He is a researcher at the CTIM (ULPGC), where he is finishing his PhD.
Currently, he is also a research colaborator and software engineer at CMLA, ENS Cachan. His main
scientific interests are related to optical flow and stereoscopic vision. Besides, he is also interested
in software development and agile methodologies, topic in which he is official professor of the Scrum
Manager organization.

Miguel Colom is the technical director and system architect of the IPOL project, and part of
the IPOL Editorial Board. He holds a PhD in in Applied Mathematics from Universitat de les Illes
Balears (UIB), the MVA master from ENS Cachan, and a master in Free-Software from Universitat
Oberta de Catalunya (UOC). His background is in Compute Science (Eng. degree from UOC) and
Telecommunication (Eng. degree from UIB). His scientific interests are Signal and Image/Video
Processing, and he works currently on denoising of satellite hyperspectral images and image forgery
detection in the team of Jean-Michel Morel at CMLA, ENS Cachan.

References

1. N. Limare, Reproducible research, software quality, online interfaces and publish-
ing for image processing. PhD thesis, École normale supérieure de Cachan-ENS
Cachan, 2012.

2. M. Colom, B. Kerautret, N. Limare, P. Monasse, and J.-M. Morel, “IPOL: a new
journal for fully reproducible research; analysis of four years development,” in 2015
7th International Conference on New Technologies, Mobility and Security (NTMS),
pp. 1–5, IEEE, 2015.

3. D. L. Donoho, A. Maleki, I. U. Rahman, M. Shahram, and V. Stodden, “Repro-
ducible research in computational harmonic analysis,” Computing in Science &
Engineering, vol. 11, no. 1, pp. 8–18, 2009.

4. S. Neuman, “Building microservices: Designing fine-grained systems,” 2015.

XV

5. J. Goecks, A. Nekrutenko, and J. Taylor, “Galaxy: a comprehensive approach for
supporting accessible, reproducible, and transparent computational research in the
life sciences,” Genome biology, vol. 11, no. 8, p. 1, 2010.

6. J. B. Buckheit and D. L. Donoho, Wavelab and reproducible research. Springer,
1995.

7. T. Berners-Lee, R. Fielding, and H. Frystyk, “Hypertext transfer protocol–
HTTP/1.0,” tech. rep., 1996.

8. V. Stodden, “The legal framework for reproducible scientific research: Licensing
and copyright,” Computing in Science & Engineering, vol. 11, no. 1, pp. 35–40,
2009.

9. V. Stodden, “Enabling reproducible research: Open licensing for scientific inno-
vation,” International Journal of Communications Law and Policy, Forthcoming,
2009.

10. E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns: Elements of
Reusable Object-Oriented Software. Addison–Wesley, 2008.

11. M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts, “Refactoring: Improving
the design of existing programs,” 1999.

