
HAL Id: hal-01571615
https://enpc.hal.science/hal-01571615

Submitted on 3 Aug 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The Multiscale Line Segment Detector
Yohann Salaün, Renaud Marlet, Pascal Monasse

To cite this version:
Yohann Salaün, Renaud Marlet, Pascal Monasse. The Multiscale Line Segment Detector. 1st Work-
shop on Reproducible Research in Pattern Recognition, Dec 2016, Cancun, Mexico. pp.167 - 178,
�10.1007/978-3-319-56414-2_12�. �hal-01571615�

https://enpc.hal.science/hal-01571615
https://hal.archives-ouvertes.fr

The multiscale line segment detector

Yohann Salaün1,2, Renaud Marlet1 and Pascal Monasse1

1 LIGM, UMR 8049, École des Ponts, UPE, Champs-sur-Marne, France
2 CentraleSupélec, Châtenay-Malabry, France

{yohann.salaun, renaud.marlet, pascal.monasse}@enpc.fr

Abstract. We propose a multiscale extension of a well-known line seg-
ment detector, LSD. We show that its multiscale nature makes it much
less susceptible to over-segmentation and more robust to low contrast
and less sensitive to noise, while keeping the parameter-less advantage of
LSD and still being fast. We also present here a dense gradient filter that
disregards regions in which lines are likely to be irrelevant. As it reduces
line mismatches, this filter improves the robustness of the application to
structure-from-motion. It also yields a faster detection.

1 Introduction

Fig. 1: Lines detected with LSD [2] (left) or with MLSD [3] (right).
The picture has a resolution of 15 Mpixels.

Among proposed line detectors, LSD [2] is one of the best and most popular
methods. It accurately detects segments and does not use any threshold tuning,
relying instead on the a contrario methodology. Though results are very good
for small images (up to 1 Mpixel), it tends to give poorer results with high
resolution images (5 Mpixels and more). As explained by Grompone von Gioi
et al. [2], the detection is different after scaling or croping the picture. For high
resolution images, detections are often over-segmented into small bits of segments
and some lines are not even detected (see Fig. 1).

These poor results can be traced back to the greedy nature of LSD. De-
tected segments are in fact rectangular areas that contain a connected cluster

of pixels with gradients that are similarly oriented. After they are identified,
a score representing a number of false alarms (NFA) validates the detection
as an actual segment or not. However, in high resolution cases, edges tend to
be less strong which breaks the connectivity between pixel clusters and yields
over-segmentation or lack of detection in low-contrast areas.

We propose a method that generalizes LSD to any kind of images, without
being affected by their resolution. For this, we use a multiscale framework and
information from coarser scales to better detect segments at finer scales. In
our companion paper [3], we compare it to other state-of-the-art line detectors,
namely LSD [2] and EDLines [1], as a building block of a structure from motion
(SfM) pipeline [4] to obtain quantitative, objective results.

2 Notation

We use the same notations as the companion paper [3], recalled here. In the
following, the k index will denote the scale associated with the feature.

2.1 Upscaled segment

Given a coarse segment sk−1i of direction θ(sk−1i) detected with some angular
tolerance π pk−1i (0 ≤ pk−1i ≤ 1 represents a probability), we define Aki as the
rectangular area of sk−1i upscaled in Ik, and Pki as the subset of pixels in Aki
that have the same direction as sk−1i up to π pk−1i :

Pki =
{
q ∈ Aki s.t. |θ(q)− θ(sk−1i)|(mod π) < π pk−1i

}
. (1)

where θ(q) is the direction orthogonal to the gradient at pixel q. Note that we
only consider a gradient direction if the gradient magnitude is above a given
threshold ρ = 2/sin(45◦/2) as in the original LSD because it is a good trade-off
between good and fast detections.

2.2 Fusion score

Given n segments S = {s1, ..., sn}, let Seg(∪ni=1si) be the best segment computed
from the union of the clusters si, defined as the smallest rectangle that contains
the rectangles associated to all segments si. The corresponding fusion score of
the set of segments is defined as:

F(s1, ..., sn) = log

(
NFAM(s1, ..., sn, p)

NFAM(Seg(∪ni=1si), p)

)
. (2)

The NFA is computed with equation (3) of the companion paper [3]:

NFAM(S, p) = γNL

(
(NM)

5
2

n

) n∏
i=1

(|si|+ 1)B(|si|, ksi , p) (3)

2

in an N×M image, where γ is the number of tested values for the probability p,
NL the number of possible segments in the image, and ks the number of pixels
in the rectangle aligned with its direction, with tolerance πp. It uses the tail of
the binomial law:

B(|s|, ks, p) =

|s|∑
j=ks

(
|s|
j

)
pj(1− p)|s|−j . (4)

The fusion score defines a criterion for segment merging that does not rely
on any parameter. If positive, the segments s1, ..., sn should be merged into
Seg(∪ni=1si) otherwise they should be kept separate.

3 Dense-gradient filter

For SfM purpose, a too high density of segment detections in some area, such as
a grid pattern, often leads to incorrect results for line matching. The density of
similar lines also leads to less accurate calibration because it weighs too much
similar information and thus tends to reduce or ignore information from lines
located in other parts of the image. To address this issue, we designed a filter
that disables detections in regions with too dense gradients. It also allows a
faster detection as these regions often generate many tiny aligned segments that
would need to be merged during our post-detection merging.

For this, we first detect regions with a local gradient density above a given
threshold. The segment detection is then disabled in these areas. The process is
fast because we apply it only at the coarsest scale using summed area tables.

With this filter, we may obtain a less exhaustive segment detection in these
areas and at their borders. However, it leads to a better matching and a better
calibration. It also decreases computation time for images with this type of
regions.

4 Implementation

Our implementation is available on GitHub (https://github.com/ySalaun/
MLSD).

4.1 Main algorithm

Our algorithm consists in an iterative loop of three steps for each considered
scale of the picture:

1 Multiscale transition: Upscale information from previous, coarser scale
and use this information to compute segments at current, finer scale.

2 Detection: Detect segments using the standard LSD algorithm [2].
3 Post-detection merging: Merge neighboring segments at current scale.

3

https://github.com/ySalaun/MLSD
https://github.com/ySalaun/MLSD

Input: Image I
Output: Set of segments S

for k = 0 to K do
Compute downscaled image Ik (IK is the original image)

// 1. Initialize segment set at this scale from previous scale information, if any

if k = 0 then
Sk ← ∅
Optionally, disable detection in some regions with dense-gradient filter

else
Sk ← UPSCALE(Sk−1)

end if

// 2. Add the segments detected with LSD [2]:
Sk ← Sk ∪ LSD(Ik)

// 3. Merge aligned neighbors
Sk ← MERGE(Sk)

end for

return SK

Fig. 2: Multiscale Line Segment Detector (MLSD).

Note that step 2 uses the exact same procedure as LSD and thus will not be
described in this paper. The dense-gradient filter can optionally be used at the
coarsest scale.

The number of considered scales is noted K. Though it can be chosen by the
user, we compute it automatically depending on the size of the picture:

K = min{k ∈ N s.t. max(w, h) ≤ 2ksmax},

where w (resp. h) is the width (resp. height) of the picture. We use a scale step
of 2 and chose smax = 1000 as we did not observe over-segmentation for images
of size lower than 1000× 1000 pixels and reducing too much the picture size can
create artifacts.

The overall algorithm is described in Fig. 2. The successive steps are described
below with a pseudo-code giving the main steps and additional details in the text.

4.2 Dense-gradient filter

The general idea of the dense-gradient filter is to discard from detection areas
in which there is a high density of pixels with strong gradients.

Experimentally, we observed that it is difficult to set a density threshold for a
proper filtering. If the density threshold is too low, it tends to discard pixels that

4

may belong to interesting segments. If it is too high, it does not filter out enough
pixels. For this reason, we perform the filtering in two steps. First, we identify
which pixels are at the center of dense-gradient areas. Second, we disregard a
region which is larger than the one that is used to evaluate the density of strong
gradients.

Input: Image at coarsest scale I0

Output: Mask Ĩ0 of valid pixels
Compute summed area table of pixels with significant gradient magnitude for I0

Ĩ0 ←valid
for all pixel p ∈ I0 do

Compute density τ of pixels with significant gradient near p
if τ > τDENSE then

Invalidate pixel p in Ĩ0

end if
end for
Expand invalidated pixels in Ĩ0 by dilation
return Ĩ0

Fig. 3: Dense gradient filter.

This procedure is implemented in our code with the function denseGradient-
Filter and described in Fig. 3. It consists in 3 steps:

1 Summed area table: We use a value of 1 for pixels with a gradient above
ρ and 0 otherwise.

2 Filtering: For each pixel, we estimate the local density τ of pixels within a
5×5 window. The filtered pixels are those with a density τ > τDENSE = 0.75.

3 Expansion: For each filtered pixels p, we also discard every pixel inside a
21× 21 window centered at p.

4.3 Multiscale transition

We use a multiscale exploration that propagates detection information at coarse
scales to finer scales, which contributes in reducing over-segmentation.

This procedure is implemented in our code with the function refineRawSeg-
ments, described in Fig. 4 and some parts are illustrated in Fig. 5. It iterates
over each segment detected at the previous scale:

1 Upscaling: The segment coordinates are upscaled and we compute the set
Pki of pixels aligned with the segment direction (1).

2 Aggregation: Pixels inside Pki initialize clusters and are aggregated follow-
ing an 8-neighborhood greedy method.

3 Merging: The clusters found at step 2 are merged according to the fusion
score (2). As we cannot practically consider all the possible groups of clusters,
we sort them by increasing NFA (i.e., decreasing meaningfulness) and queue

5

Input: Set of segments Sk−1 detected at former scale
Output: Set of upscaled segments Sk

Sk ← ∅
for all si ∈ Sk−1 do

1. Upscale si coordinates and select in this area the pixels whose gradient direc-
tion is similar to the orthogonal direction to si (i.e., compute Pk

i)
2. Aggregate pixels inside Pk

i into 8-connected components
3. Merge w.r.t. fusion score (2)
4. Add to Sk the resulting segments, if meaningful enough

end for

return Sk

Fig. 4: Multiscale transition.

Coarse segment

Step 1: Upscaling Step 2: Aggregation

Step 3: Merging Step 4: Segment computation

Fig. 5: Illustration of the multiscale processing steps. The large orange
rectangular box represent the upscaled region of the coarser segment. The blue
rectangular box at step 4 represents the region of the detected segment at the
finer scale. Pki is represented at step 1 with black pixels. After aggregation we
only keep regions with at least 10 pixels. At step 3, we treat each cluster as an
LSD segment with a barycenter, width and direction. We then consider the line
that goes through its barycenter and with its direction (represented in yellow)

to find merge candidates.

6

them. Then, for each cluster c, we find the set of clusters that intersects
with the line corresponding to c and try to merge the whole set. If merging
is validated by the fusion score, we add the new segment inside the queue
and dequeue the merged segments.

4 Segment computation: For each resulting cluster, if the NFA is low enough,
we compute its corresponding segment and add it to the current set Sk.

In the case where no pixel is selected at step 1 (Pki = ∅) or no segment is
added at step 4, we add the original segment into Sk with a scale information.
It is kept as is, unrefined until all scales are explored. This allows detecting
segments in low-contrast areas. Following LSD [2], we use a threshold ε = 1
for NFA which corresponds to one false detection per image. LSD authors have
shown that with values of TODO, the results do not change too much. In the
code, this value is represented by the variable logeps.

4.4 Post-detection merging

As new segments may be detected by LSD at the current scale, in addition to the
segments originating from coarser scales, and as these segments may correspond
to some form of over-segmentation, we apply another pass of segment merging,
similar to the one used in multiscale transition but simplified to consider a
reduced number of possible fusions.

Input: Set of segments Sk detected at current scale
Output: Set of merged segments S̃k

for all si ∈ Sk do
1. Find aligned neighbors
2. Possibly merge them into a single new segment w.r.t. fusion score (2)
3. Add the new segment, if any, in Sk

end for
return Sk

Fig. 6: Post-detection merging.

This procedure is implemented in our code with the function mergeSegments
and described in Fig. 6. It iterates on each segment previously detected. For this,
as above, we first sort them by increasing NFA and push them to a queue. We
then iterate the following steps until the queue is empty:

1 Clustering: For each segment si, we consider its central line as in multiscale
transition (Sect. 4.3). For each of the two directions of the line, we examine
the first cluster intersecting the line and such that its direction is similar to
the direction of si up to tolerance π pi.

2 Merging: The previously selected segments are merged if needed using the
fusion score as a reference (2).

7

Original image LSD (3.99s) MLSD (3.79s)

Fig. 7: Lines detected with LSD [2] (middle) and with MLSD [3] (right)
in a 15 Mpixels image (left).

Original picture LSD MLSD

Fig. 8: Zoom of the bottom-right corner of pictures in Fig. 7.

3 Queuing: If a merged segment was created, add the new segment to the
queue and dequeue the merged segments.

5 Examples

In this section, we compare MLSD to LSD using images that specifically illustrate
the limitations of LSD. Computation time are given for both methods.

5.1 Low-contrast images

We first consider an image with low contrast (Fig. 7). As can be seen when
zooming the picture (see Fig. 8), the image is also noisy. As the gradient is also
noisy around edges, the tile borders are hardly detected at all, whereas MLSD
does detect them and does not create much over-segmentation.

8

Original picture LSD (1.64 s)

MLSD (6.25 s) MLSD (2.15 s)
without dense-gradient filter

Fig. 9: Comparison between MLSD with and without dense-gradient filter.

5.2 Dense-gradient filter

Fig. 9 illustrates the efficiency of the dense-gradient filter. The main difference
between the two MLSD results occurs in the central part of the image where
there is a grid pattern whereas the other parts are not affected. This type of
pattern tends to slow the algorithm a lot (typically by a factor 3). Moreover,
as argued above, the added segments are similar to each other and tend to
deteriorate matching, and thus SfM results.

5.3 Effect on scaling and crop

Fig. 10 and 11 illustrate the differences between LSD and MLSD for images
with different resolutions. In Fig. 10, we decreased the size of the image (four
times in both height and width) and in Fig. 11, we increased the size of the
image (four times in both height and width).

Fig. 12 illustrates the differences between LSD and MLSD for cropped ver-
sions of the same image. We cropped the original picture into a 2 times smaller
picture and then in a 4 times smaller picture. Whereas MLSD does not show
significant changes from one picture to the other, LSD tends to detect differently
segments.

9

Although in each case the results are different for both algorithms, the
changes are limited for MLSD, whereas LSD gives sensibly different results with
either a change of resolution or a crop.

MLSD LSD

Fig. 10: Comparison between LSD and MLSD on the same image with original
resolution (above, 5 Mpixels) and four times reduced (below, 330 kpixels).

6 Conclusion

We presented MLSD, a multiscale extension to the popular Line Segment De-
tector (LSD). MLSD is less prone to over-segmentation and is more robust to
noise and low contrast. Being based on the a contrario theory, it retains the pa-
rameterless advantage of LSD, at a moderate additional computation cost. The
source code accompanying this paper is not yet at as clean and readable as it
could be. We plan to clean it and build an online demonstration with it on the
IPOL website (http://www.ipol.im/).

References

1. C. Akinlar and C. Topal. EDLines: A real-time line segment detector with a false
detection control. Pattern Recogn. Lett., 32(13):1633–1642, Oct. 2011.

10

http://www.ipol.im/

2. R. Grompone von Gioi, J. Jakubowicz, J.-M. Morel, and G. Randall. LSD: a line
segment detector. Image Process. On Line (IPOL 2012), 2:35–55, 2012. http:

//dx.doi.org/10.5201/ipol.2012.gjmr-lsd.
3. Y. Salaün, R. Marlet, and P. Monasse. Multiscale line segment detector for robust

and accurate SfM. In 23rd International Conference on Pattern Recognition (ICPR),
2016.

4. Y. Salaün, R. Marlet, and P. Monasse. Robust and accurate line- and/or point-
based pose estimation without Manhattan assumptions. In European Conference
on Computer Vision (ECCV), 2016.

11

http://dx.doi.org/10.5201/ipol.2012.gjmr-lsd
http://dx.doi.org/10.5201/ipol.2012.gjmr-lsd

MLSD LSD

Fig. 11: Comparison between LSD and MLSD on the same image with original
resolution (above, 360 kpixels) and resolution four times larger (below, 5.8

Mpixels).

12

MLSD LSD

Fig. 12: Comparison between LSD and MLSD on the same image (top, 18
Mpixels) but with cropped versions (no resolution changes) of respectively 5.6

Mpixels (middle) and 1.5 Mpixels (bottom).

13

	The multiscale line segment detector

