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Abstract

The influence of material heterogeneities is studied in the context of dynamic

failure. We consider a pre-strained plate problem, the homogeneous case of

which has been widely studied both experimentally and numerically. This setup

is used to isolate the effects of the elastic field resulting from pre-straining

and stress wave interactions throughout the crack propagation by adding stiffer

and denser regions in the plate. While the crack tip is pushed away by stiffer

inclusions, it is attracted to the denser ones. With the presence of denser media,

only a portion of the total elastic energy in the system is effectively used to drive

crack propagation, leading to a drop in the velocity of its tip in comparison to

the homogeneous case. The crack velocity is shown to be an invalid criterion

for crack branching. Instead, we introduce an effective stored energy to analyze

the crack velocity and the emergence of crack branching instabilities.

Keywords: pre-strained plate, dynamic fracture, cohesive elements, crack

propagation, branching

1. Introduction

Fracture prevention of materials and structures plays a key role in mod-

ern engineering designs. Understanding the physical mechanisms governing

the dynamics of fracture in brittle and quasi-brittle media is thus crucial to

improve existing procedures and design better products. However, this is still5
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a challenge due to the presence of material heterogeneities at different length

scales, complexity of fracture process zone, and dynamic stress redistribution

caused by the emitted stress waves from the moving crack tip and boundary

reflections [1]. Although elastodynamic linear fracture mechanics theory pro-

vides the time variation of the dynamic stress intensity factor as well as other10

field quantities, it is not adequate to capture the dynamic response of brittle

materials [2]. Experiments indicate several phenomena including limiting crack

velocities below the Rayleigh wave speed of the material and crack branching

at micro and macroscale that the linear theory fails to describe.

Especially for the evolution of crack dynamics, much of the theoretical and15

experimental work is done in homogeneous settings. Heterogeneity is present

in materials at different scales, which are likely to introduce modifications to

the homogeneous medium solutions [3, 4]. Material inhomogeneities have been

studied at all scales from kilometers [5, 6] to nanometers [7, 8], the applications

of which range from earthquake faults to the nanocomposition of materials.20

These various alterations to the dynamic process of fracturing are governed by

the changes in the elastic field and stress wave emissions and reflections in the

medium. Here, we focus on the evolution and propagation of fractures and the

resulting crack patterns.

The objective of this paper is to examine the influence of distant hetero-25

geneities on the dynamics of fracture. For this purpose, we numerically analyze

the well-studied pre-strained plate configuration [9, 10, 11, 12, 13, 1]. Stiffer

and denser regions are introduced within this rapid fracture scheme to study

their effect on the crack propagation velocity and crack branching instabilities.

In Section 2, the cohesive-element methodology, which is used to model30

fracture is explained. Section 3 presents a pre-strained rectangular plate prob-

lem using a homogeneous medium and the influence of the heterogeneities are

studied in Section 4. Stiffer inclusions are added to alter the elastic field in

Section 4.1. The strip is narrowed with denser regions in Section 4.2 to investi-

gate the influence of wave interactions while preserving the homogeneous elastic35

properties. Wave interactions are further studied with circular dense inclusions
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in Section 4.3, allowing comparisons with the cases having stiffer inclusions.

Conclusions are given in Section 5.

2. Fracture model

Dynamic fracture is modeled using the cohesive-element methodology. The

method is based on the cohesive crack model of Dugdale [14] and Barenblatt [15].

To represent the decohesion, we bury all complex debonding processes in a phe-

nomenological, simple, cohesive law relating the traction and opening displace-

ment. This constitutive response is called traction-separation law:

T = T(∆∆∆), (1)

where T is the traction acting on the separating surfaces and ∆∆∆ is the rela-

tive opening displacement vector. We use a simple linear irreversible softening

law [16, 17]. The existing free potential energy φ, is assumed to depend only on

one effective scalar displacement δ of the following form:

δ =
√

∆2
n + β2∆2

s, (2)

where ∆n and ∆s are the normal and tangential displacement components while

β is the parameter that couples these two displacements. This parameter can be

estimated by imposing lateral confinement on specimens subjected to high strain

rate axial compression [18] and roughly defines the ratio of the critical stress

intensity factors of Mode II to Mode I of the material [19]. The derivation of

free potential energy with respect to the opening displacement gives the cohesive

tractions:

T =
∂φ

∂∆∆∆
=
T

δ

(
∆nn + β2∆ss

)
, (3)

where n and s are the unit vectors in normal and tangential directions. Crack

opening condition is denoted with δ = δmax and δ̇ > 0, and crack closure and

reopening case is stated as δ < δmax. Thus, the traction is

T =

fct

(
1− δ

δc

)
for δ = δmax and δ̇ > 0

δ
δmax

Tmax for δ < δmax

, (4)
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where fct is the critical stress associated to the cohesive element, δc is the effec-40

tive relative displacement value beyond which complete decohesion occurs, δmax

is the maximum value of the achieved effective displacement up to that instant

and Tmax is the associated traction value for maximum relative displacement.

The cohesive law and the areas that are associated to the energy dissipation

are illustrated in Figure 1. Cohesive elements are dynamically inserted at the

inter-element boundaries when and where the local stress exceeds a critical

stress threshold, which is the tensile strength of the corresponding material.

The irreversible part of dissipated energy is shown with the dark grey area

and denoted by Eirrev while the reversible part is the light grey area named

Erev. Damaging of the cohesive element is an irreversible process while traction-

seperation law allows recovering energy upon unloading. Damage in a cohesive

element is denoted as:

D = min

(
δmax

δc
, 1

)
. (5)

A simple penalty model is incorporated in the cohesive law for the case of

compression:

Tn = αp∆n if ∆n < 0, (6)

where αp is the stiffness parameter and Tn is the normal component of the

traction vector.45

The total dissipated fracture energy during the separation process is given

by the entire grey region. When the dissipated energy is equal to the total area

under the curve shown in the figure, which is 1
2fctδc, full decohesion occurs and

two free surfaces are formed at the interelement boundaries.

3. Pre-strained rectangular plate50

The pre-strained rectangular plate problem was studied experimentally by [9]

using PMMA and by [11, 20, 21, 12] using polyacrylamide gels. Several numer-

ical investigations can be found using different fracture modeling approaches

such as cohesive elements [10], non-local damage modeling [13], and phase-field

modeling [1].55
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Figure 1: Graphical representation of linear irreversible cohesive law [16, 17]. Arrows denote

loading and unloading directions.

The model experiment is conducted as follows. First, the plate is pre-strained

by moving the upper and lower boundaries to the desired displacement. In this

strained state, a sharp crack is created in the middle of one side of the sample

using a razor edge. Pre-notched version of the identical setup is also popular and

widely studied both experimentally [22, 23, 24, 25] and numerically [26, 27, 28].60

The only difference with the pre-strained condition is that the crack is seeded

in the specimen before applying the load. For the plate geometry, pre-straining

conditions, and crack size, see Figure 2.

PMMA is used as the plate material, see Table 1 for the material parameters.

The coupling parameter β for the cohesive-element method is chosen to be 1

for this uniaxial tension case. Using the finite-element method, we solve the

equation of motion

Mü + f int = f ext, (7)

where M is the mass matrix, u is the displacement vector, and f int and f ext are

the internal and external force vectors respectively. This equation is solved at
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Figure 2: Pre-strained PMMA plate problem with an applied displacement ∆u to the top and

bottom boundaries.

every time step using an explicit time integration scheme and the displacement

field is updated. For further details regarding the implementation see [29]. The

finite-element code used for the study is based on a Newmark explicit time

integration scheme, which is conditionally stable when the time step is less than

a critical value set by the Courant-Friedrichs-Lewy condition [30]:

∆tcrit = α min
e=1...N

(
le
c

)
, (8)

where c is the pressure wave speed of the associated material, le is the size of

element e, and N is the total number of elements. The smallest value of the

calculated time step over all elements is the chosen time step for the simulation.

A security coefficient, α, is also used (0.2 for this study) to ensure stability.

A two-dimensional model with plane-stress assumption is used. Rayleigh wave

speed of the material is calculated using the following formula:

cR =
0.862 + 1.14ν

1 + ν
cs, (9)

where cs is the shear wave speed, cs =
√
µ/ρ. For PMMA, cs = 984.8 m/s and

cR = 919.9 m/s.65
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Cohesive-zone modeling introduces another length scale set by the elastic

and fracture properties. This length scale can be expressed for simple cases

(mode I loading, homogeneous material) as [31, 32]:

lz =
EGc

f2
ct

. (10)

The condition lm < lz between the length scales has to be satisfied in our

simulations where lm is the biggest element size. The cohesive zone must contain

several elements (typically around four [33]) and should be small compared to

the sample size for mesh independency. The cohesive zone length for PMMA

material is calculated as 0.23 mm. A mesh of average mesh size lav = 0.05 mm70

is used to correctly resolve the cohesive zone in front of the crack tip.

Table 1: Material properties of PMMA [10, 1].

PMMA

Young’s modulus, E (GPa) 3.09

Poisson’s ratio, ν 0.35

Density, ρ (kg/m3) 1180

Fracture energy, Gc (J/m2) 300

Tensile strength, fct (MPa) 75

Coupling parameter, β 1

Figure 3 illustrates the crack patterns at displacements from ∆u = 0.035 mm

to ∆u = 0.10 mm. At lower displacements, there exists only a single crack

propagating from the initial cut. However, increasing the level of pre-straining,

we observe first microbranching and an increase in the damage band. Micro-75

branches are defined as the local branching events where main crack sprouts

side branches that propagate for a short distance and die [24]. This is a numer-

ical instability observed beyond a critical velocity, which [34] observed around

0.4cR. The limiting velocity is in fact a result of this instability as it prevents

the crack to further accelerate while energy dissipation is not limited to a single80

propagating crack tip [1]. In addition, local branching events turn into mac-
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robranches, which do not die right away and can propagate in the medium for

some time when ∆u ≥ 0.06 mm.

The cohesive-element approach is known to exhibit a mesh dependency on

the dissipated energy, thus the amount of microcracking, especially for coarse85

meshes [35]. In this study, we use meshes that are fine enough to fully resolve

the cohesive zone in front of the crack tip with the help of parallel computing.

However, a convergence analysis of the dissipated energy with the mesh size

is missing. Nonetheless, salient experimental features of the dynamic crack

propagation scheme such as the limiting crack velocity and branching at higher90

pre-straining levels [9, 10] may be captured using cohesive elements.

The snapshots in Figure 3 are taken when the crack fully propagates from

one end to the other. The crack needs less time to reach the right end of the

plate at higher pre-straining levels. Crack propagation velocities as a function

of x-position of the crack tip are plotted in Figure 4. The instantaneous crack95

velocity is calculated by fitting a linear function for several consecutive time

steps versus crack tip position around that particular location.

The velocities are higher than the experimentally observed limiting veloc-

ities. It was shown by [10] that the rate-independent cohesive law wrongly

predicts Rayleigh wave speed of the material, cR as the limiting velocity, which100

is reproduced by our model. However, experiments show that the limiting ve-

locities are in the range of 0.5− 0.65cR for glass, 0.58− 0.62cR for PMMA, and

0.3 − 0.45v/cR for Homalite-100, see [2] and references therein. This velocity

also depends on the experimental setup for a given material. Zhou et al. [10]

also showed that the experimentally observed limiting velocities can be obtained105

with a phenomenological rate-dependent cohesive law. Since this study focuses

on the effects of heterogeneities, the rate-independent scheme is preserved.

Crack propagation in this setting can be altered by two mechanisms. First is

the changes in the elastic field, which can be obtained by introducing inclusions

of different elastic properties. Wave dynamics can also influence crack prop-110

agation. To have different stress wave interaction in an identical elastic field,

regions with same elastic modulus but different mass density will be introduced.
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(a) (b)

(c) (d)

(e) (f)

Figure 3: Crack propagation with different pre-strain loadings. The snapshots are taken at

times (a) t = 4.53×10−5 s (b) t = 4.30×10−5 s (c) t = 4.07×10−5 s (d) t = 3.85×10−5 s (e)

t = 3.62×10−5 s (f) t = 3.40×10−5 s. The applied displacements are (a) ∆u = 0.035 mm (b)

∆u = 0.04 mm (c) ∆u = 0.05 mm (d) ∆u = 0.06 mm (e) ∆u = 0.08 mm (f) ∆u = 0.10 mm.
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Figure 4: Crack velocity normalized with the Rayleigh wave speed of the material as a function

of crack tip position for different levels of pre-straining the homogeneous PMMA plate given

in Figure 2.

4. Influence of heterogeneities

4.1. Stiff inclusions

The pre-strained elastic field is changed by adding a series of circular inclu-115

sions, see Figure 5. Elastic modulus of inclusions is ten times the plate material,

Einc = 10E0 = 30.9 GPa. Boundary conditions are identical to the homoge-

neous case. lx is the x-distance from the initial crack tip to the centerline of

the first inclusion, ly is the y-distance from the plate centerline to the bottom

tangent of the inclusions and lc is the distance between centers of the inclusions.120

The first inclusion is lx = 3 mm away from the initial crack tip and the distance

between the inclusions is lc = 3 mm. These two dimensions are kept constant

while the inclusion size and distance to the plate centerline are varied.

Figure 6 shows crack propagation for different inclusion size and centerline

proximity. The displacement is ∆u = 0.035 mm is applied for all cases to have125

a single propagating crack.

We observe that the crack is pushed away by the stiff inclusions. This deflec-

tion increases when the diameters of the inclusions are larger. Total deflections
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32 mm

16 mm
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ly
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+∆u

−∆u

Figure 5: Pre-strained PMMA plate problem with the addition of stiff inclusions of Young’s

modulus Einc = 10E0 and diamater dinc. The density of the inclusions is identical to PMMA.

lx is the x-distance from the initial crack tip to the centerline of the first inclusion, ly is the

y-distance from the plate centerline to the bottom tangent of the inclusions and lc is the

distance between centers of the inclusions. The applied displacement is ∆u and boundary

conditions are identical to Figure 2.

from the centerline are 0.4 mm for dinc = 1 mm and 0.7 mm for dinc = 2 mm.

Pushing the inclusions closer to the centerline (ly from 0.5 to 0.1) does not130

have a prominent influence to the total deflection, they are measured in this

case 0.5 mm and 0.7 mm respectively. No significant change in crack velocity is

observed with the stiff inclusions.

4.2. Dense strip

Crack propagation may also be influenced by the elastic wave interactions135

during its movement. The pre-strained plate is a suitable setup to control stress

wave dynamics as the boundaries are fixed at a given displacement and only the

propagating crack tip emits stress waves. Here, we introduce regions ten times

denser than PMMA material, ρd = 10ρ0 in the upper and lower part of plate

keeping the elastic modulus constant. Thus, the initial elastic field is identical140

to the homogeneous case and only wave interactions can modify the crack. The
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(a) (b)

(c) (d)

Figure 6: Crack propagation in different inclusion pattern configurations with the inclusions

having the same density but different Young’s modulus Einc = 10E0. The applied displace-

ment is ∆u = 0.035 mm for all cases. The snapshots are taken at times (a) t = 4.67 × 10−5 s

(b) t = 4.67× 10−5 s (c) t = 4.55× 10−5 s (d) t = 4.55× 10−5 s. The diameters and distance

from the centerline are (a) dinc = 1 mm, ly = 0.5 mm (b) dinc = 1 mm, ly = 0.1 mm (c)

dinc = 2 mm, ly = 0.5 mm (d) dinc = 2 mm, ly = 0.1 mm. The first inclusion is lx = 3 mm

away from the initial crack tip and the distance between the inclusions is lc = 3 mm.

model is sketched in Figure 7. Again, boundary conditions are identical to the

homogeneous case.

Dense media change wave dynamics considerably. The crack tip emits com-

pressive waves as it propagates. Without denser regions, these waves hit the

fixed boundaries and reflect fully as tensile waves. However, hitting a boundary

with a different density, some portion of the wave is transmitted to the following

medium and the remaining part is reflected back. Using the impedance ratio

R, we can estimate the amount of transmitted and reflected wave. This ratio is

12
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ρd = 10ρ0

ρd = 10ρ0

ρ0

Figure 7: Pre-strained PMMA plate problem modified with dense regions. The density of

grey regions is ten times the density of PMMA, ρd = 10ρ0. The stiffness is identical for both

regions, Ed = E0. The applied displacement is ∆u and boundary conditions are identical to

Figure 2.

calculated for the given material values as

R =
cdρd
c0ρ0

=
ρd
ρ0

√
Edρ0

ρdE0
=

√
ρd
ρ0

=
√

10. (11)

Assuming one-dimensional stress-wave propagation of magnitude fI , re-

flected and transmitted waves are found using the impedance ratio:

fR = fI
R− 1

R+ 1
= 0.52fI , fT = fI

2R

R+ 1
= 1.52fI . (12)

At the boundary of dense region, a compressive wave is reflected back as a

compressive wave of half the magnitude and transmitted to the dense region with145

a higher magnitude. Transmitted compressive wave is then reflected back from

the plate boundary as a tensile wave, however travels at a lower speed since the

medium is denser. Entering back to the PMMA region, the impedance ratio is

reversed. With R = 1/
√

10, the reflection coefficient is −0.52 and transmission

coefficient is 0.48. Hence, approximately 73% of the compressive wave emitted150

returns back as a tensile wave when it travels to the simulation-box boundary

and back. Note that this is valid for only one wave in a one-dimensional setting,
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thus with continuous wave emission from a fast moving crack tip, the wave

interaction picture is much more complex.

Figure 8 shows crack velocities for various PMMA widths (b parameter).155

The plots are grouped under the levels of pre-straining. In all cases we observe

that crack velocity decreases as b gets narrower. Apart from this global decrease,

local drops are observed.
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Figure 8: Crack velocities as a function of crack tip position for different dense region config-

urations, b-widths (mm) in the legends. The applied displacements are (a) ∆u = 0.035 mm

(b) ∆u = 0.04 mm (c) ∆u = 0.05 mm (d) ∆u = 0.06 mm. The horizontal dashed line is the

Rayleigh wave speed of the material. In all cases it is observed that decreasing b, the crack

velocity decreases. Apart from this global decrease, local drops are also observed, see cases

b = 8 and 10 mm in (a).
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This setup is closer to the infinite strip problem [36, 37] than the infinite

plate problem. As we decrease the width of the PMMA material with denser160

media, we can draw analogies with infinite strip case. The system is bounded

vertically in this case hence the interactions with external boundaries are not

neglected. Once time t significantly exceeds 2b/cs, which is the time that an

emitted wave travels from the crack tip and back, crack velocity approaches a

steady state value, which can be significantly lower than cR [12]. The crack165

tip can emit both longitudinal and shear waves thus the time scale of interest

is defined by the slower wave speed to remain in the conservative side. In

our configuration, the proposed time scale 2b/cs is much lower than the crack

propagation time from one end to the other, which explains the decrease in the

steady-state velocities as we decrease b.170

Figure 9 shows the crack configurations at different dense region configu-

rations at ∆u = 0.06 mm. Despite the slowing of the crack tip, branching

occurs at b = 1 mm at a later stage of propagation. We observe that local

branching events can be suppressed by decreasing b (which decreases crack tip

velocity), see the homogeneous case in Figure 3d for comparison. However, at175

extremely low b values, macrobranching occurs at a velocity much lower than

cR. Hence, the crack velocity alone does not seem to be a valid criterion for

branching phenomena. The efforts to relate the crack velocity to its branching

dates back to the analysis of [38] with the argument that a critical velocity of

0.6cs causes the crack tip to branch at an angle 60◦ to the initial direction of180

crack propagation. Instead, crack branching can be viewed as a consequence

of an excess of available energy flowing to the crack tip, which cannot be dissi-

pated by a single crack propagation, suggesting the existence of a critical value

of the stress intensity factor or energy release rate [39, 2, 1]. Furthermore, the

experiments of [40] show that the cracks propagate at an identical speed after185

and prior to branching event, justifying that the crack velocity by itself cannot

be a meaningful criterion.

The initially stored energy is a well-defined property of the system and can be

related to dynamic parameters such as the crack tip velocity or fracture energy
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(a) (b)

(c) (d)

Figure 9: Crack propagation in different dense plate configurations. Grey areas denote the

PMMA material and black areas are for the denser region with ρd = 10ρ0. The applied

displacement is ∆u = 0.06 mm for all cases. The snapshots are taken at times (a) t =

4.01 × 10−5 s (b) t = 4.32 × 10−5 s (c) t = 6.91 × 10−5 s (d) t = 1.03 × 10−4 s. The width of

the confined PMMA regions are (a) b = 10 mm (b) b = 5 mm (c) b = 3 mm (d) b = 1 mm.

dissipated by crack advance [1]. For the pre-strained plate configuration, total

stored energy per specimen width is calculated as

W =
2E(∆u)2

h
. (13)

Figure 10a shows the crack velocities versus the total stored energy. Filled

points indicate the homogeneous plate cases while hollow points are the cases

with b < 16 mm. Although the set of points corresponding to a particular190

pre-straining level indicate different crack velocities, total stored energy is iden-

tical. Introducing dense regions do not change the total energy available in the

system as it is only a function of stiffness (constant in all cases) and applied
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displacement.

One can attain much lower velocities when the propagating crack is sur-

rounded with denser regions. and this is proportional to their amount. In other

words, These regions limit the elastic energy, which can be used to propagate

the crack tip. To explain the difference in the failure dynamics, we introduce

an effective stored energy, which is the multiplication of total stored energy by

b/h, the ratio of actual PMMA volume in the plateto the denser material:

Weff =
2E(∆u)2

h

b

h
. (14)

Using the effective stored energy instead of the total one, the points in Fig-195

ure 10a fall remarkably on the same curve, see Figure 10b. Thus, the given

density ratio is able to trap the corresponding portion of the mechanical poten-

tial energy of the system to the denser regions where mechanical waves travel

slower, therefore limiting the amount to be used for crack propagation.
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Figure 10: Stored energy per unit length W (a) as a function of crack velocity. Legend shows

the applied displacement. Filled circles represent the homogeneous cases while hollow circles

are the cases where b < 16 mm. Using the effective stored energy per unit length Weff (b) we

observe that the points fall on the same curve. The vertical dashed line is the Rayleigh wave

speed of the material.

Dividing the total dissipated energy by the distance from the initial crack200

tip to the end of the plate (28 mm), we get the specific fracture energy, which

is plotted in Figure 11 for different b and ∆u with respect to the crack velocity
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and effective stored energy. The outlier point is the case ∆u = 0.06 mm,

b = 1 mm, at which crack branching is observed at a low velocity, see Figure 9d

for the pattern. The material property Gc constitutes a lower bound for the205

normalized dissipated energy in the system. Above this limit, local branching

events start, which is found to be around 650 m/s. With the increasing energy

dissipation capability of the system, we observe macrobranches, which can also

occur at low velocities.
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Figure 11: Total dissipated energy normalized with the distance from the initial crack tip to

the plate end (0.028 m) versus the crack velocity (a) and effective stored energy (b). Filled

circles represent the homogeneous cases while hollow circles are the cases where b < 16 mm.

(a) A lower bound of 300 J/m2, which is the material property of the traction-separation

law is shown with a horizontal dashed line. The vertical dashed line is the Rayleigh wave

speed of the material. (b) Both the horizontal and vertical dashed lines denote the limit

Gc = 300 J/m2. It is possible to have crack propagation in the grey area (Weff < Gc) as the

total stored energy is higher than the effective one.

Figure 11b shows the relation between the dissipated and effective stored210

energies. In this case, both the horizontal and vertical limits denote the material

fracture energy, Gc = 300 J/m2. An explanation for the initiation of the local

branching events is provided by the effective stored energy. We observe that

when Weff > Gc, microbranching starts. It is possible to have crack propagation

when Weff < Gc (the grey-colored area), since the total available elastic energy215

in the plate is higher as shown before in Figure 10a.
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4.3. Dense inclusions

Lastly, we consider circular shaped dense inclusions for direct comparison

with stiff inclusions. The scheme in Figure 5 is used but with identical elastic

modulus and density of inclusions ρinc = 10ρ0. Only ly = 0.1 mm case is com-220

pared. The applied displacement is ∆u = 0.035 mm to prevent any branching.

Figure 12 illustrates the crack propagation for two different inclusion sizes.

Unlike the original stiffer inclusions case (see Section 4.1), the crack tip is at-

tracted to the denser inclusions and this attraction is proportional to the inclu-

sion size.225

(a) (b)

Figure 12: Crack propagation in different inclusion pattern configurations with the inclusions

having the same Young’s modulus but a density of ρinc = 10ρ0. The snapshots are taken

at times (a) t = 6.74 × 10−5 s (b) t = 9.93 × 10−5 s. The diameters are (a) dinc = 1 mm

(b) dinc = 2 mm and the distance to the centerline is ly = 0.1 mm in both cases. The first

inclusion is lx = 3 mm away from the initial crack tip and the distance between the inclusions

is lc = 3 mm.

The attraction of the crack tip can be explained by the stress wave interac-

tions creating energy favored directions. Figure 13 shows the evolution of strain

energy density.

We observe that the strain energy density is higher at the upper portion

of the crack tip vicinity as it propagates. The crack tip can be located in230

each snapshot by tracking the localized region of strain energy density. The

deflection in the energy-favorable direction is expected as the Young’s modulus
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(a) (b)

(c) (d)

Figure 13: Strain energy density
(
N/mm2

)
at times (a) t = 0 s (b) t = 1.75 × 10−5 s (c)

t = 2.34× 10−5 s (d) t = 4.68× 10−5 s with the inclusions having the same Young’s modulus

but a density of ρinc = 10ρ0. The diameters are dinc = 2 mm and the distance to the

centerline is ly = 0.1 mm. The first inclusion is lx = 3 mm away from the initial crack tip and

the distance between the inclusions is lc = 3 mm (the configuration shown in Figure 12b).

is constant throughout the plate. The contribution of the kinetic energy is found

to be insignificant compared to the strain energy.

The velocity of the crack tip is plotted in Figure 14. When the crack is235

passing by an inclusion it slows down and this effect is also proportional to the

inclusion size. The crack tip is attracted to the dense inclusions and it passes

through them during the analysis. The drop in the velocity is considerably

higher while the crack propagates in the denser inclusion as the material wave

speed is
√
ρinc/ρ0 times lower.240
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Figure 14: Crack velocity as a function of crack tip position for different inclusion pattern

configurations with the inclusions having the same Young’s modulus but a density of ρinc =

10ρ0. Inclusion positions are colored with grey. The diameters are (a) dinc = 1 mm (b)

dinc = 2 mm and the distance to the centerline is ly = 0.1 mm in both cases. The first

inclusion is lx = 3 mm away from the initial crack tip and the distance between the inclusions

is lc = 3 mm. The horizontal dashed line is the Rayleigh wave speed of the material. The

grey areas are the x-locations of the inclusions.

5. Conclusions

We have numerically analyzed the pre-strained plate configuration to study

the influence of distant material heterogeneities on dynamic failure. PMMA is

used as the plate material. With this setup, the effects of elastic field resulting

from pre-straining and stress wave interactions throughout the crack propaga-245

tion are isolated by defining stiffer and denser media in the plate. The crack tip

is repelled by the stiffer inclusions, while it is attracted to the identical-shaped

denser ones.

Lower steady-state crack velocities are obtained when the PMMA strip is

narrowed down by defining denser media at the top and bottom of the plate.250

We have shown that a portion of the total stored elastic energy can be trapped

in the dense regions, thereby limiting the energy flow to the crack tip. The

portion that is still effective in the process of crack propagation is calculated

by multiplying the total stored energy by the volume fraction of actual PMMA
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material. Using the effective stored energy instead of the total elastic one, the255

crack velocities at different applied displacements collapse on the same curve.

We observed crack branching at much lower velocities than the limiting velocity

of our system, providing further evidence that the crack velocity is not a valid

criterion for the branching phenomena.

This study limits itself to the theoretical considerations of distant hetero-260

geneities. There are engineering materials such as metals, ceramics, polymers

and elastomers, the combinations of which can give the discussed stiffness and

density ratios by various designs, see an Ashby plot of Young’s modulus and

density, for example [41]. However, the recommendations for possible material

combinations are outside the scope of this work as this requires a thorough265

analysis of considered materials, design and production phases.
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