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ABSTRACT

Saturated, isotropic, poroelastic materials are classically described by their elastic stiffness, one
Biot coefficient and one Biot modulus (Coussy 2010; Dormieux, Molinari, and Kondo 2002).
The situation becomes more complex for unsaturated, isotropic, poroelastic materials that require
multiple Biot coefficients and moduli (Coussy and Brisard 2009). These poroelastic coefficients
are dependent and linked by several linear relationships.

Micromechanical estimates of these coefficients have been proposed by several authors (Ulm,
Constantinides, and Heukamp 2004; Pichler and Hellmich 2010). However, these estimates may
fail to fulfill the linear relationships that relate the exact poroelastic coefficients. This might be
regarded as an undesirable inconsistency of the model.

In this work, we propose new, consistent (in the sense that the above mentioned linear relation-
ships are preserved) estimates of the poroelastic coefficients. Our point of departure is the prin-
ciple of Hashin and Shtrikman, suitably extended to eigenstressed materials (Bornert et al. 2001).
Adopting stress-polarization fields that are similar to the eigenstress-free case (Willis 1977; Ponte
Castañeda and Willis 1995) allows us to derive variational estimates of the poroelastic coefficients,
which can be shown to fulfill all known linear relationships required from the exact values.

After outlining the derivation within the general framework of eigenstressed, heterogeneous
materials, the results will be specialized to poroelasticity. This will lead to a variational justification
of the ad-hoc pore isodeformation assumption (Coussy and Brisard 2009).

INTRODUCTION

The present paper is dedicated to the homogenization of eigenstressed, N-phase materials. We
consider a representative volume element (RVE) Ω of such a material; phase α = 1, . . . ,N occupies
the domain Ωα ⊂ Ω. The eigenstressed, linear elastic constitutive law of phase α reads

σ = Cα : ε +$α, (1)

where Cα denotes the elastic stiffness and $α the eigenstress (σ: stress; ε: strain).
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The effective behavior of such materials is governed by the following macroscopic equations
(Dvorak and Benveniste 1992)

〈ε〉α = Aα : E −
∑
β

Dαβ : C−1
β : $β, (2a)

Σ = Ceff : E +$eff , (2b)

where Σ = 〈σ〉 and E = 〈ε〉 denote the macroscopic stress and strain (volume averages over the
whole RVE Ω); 〈ε〉α denotes the average strain over phase α. Unless otherwise stated, all sums in
this paper span all N phases. A1, . . .AN are the well-known strain-localization tensors, and

Ceff =
∑
α

fαCα : Aα, (3a)

$eff =
∑
α

fαAT
α : $α, (3b)

are the effective stiffness and eigenstress, respectively. The fourth-rank tensors Dαβ are the eigen-
strain influence tensors introduced by Dvorak and Benveniste (1992). They enjoy the following
properties ∑

β

Dαβ = I − Aα, (4a)∑
β

Dαβ : C−1
β = 0, (4b)∑

α

fαDαβ = 0, (4c)

fαDαβ : C−1
β = fβ

(
Dβα : C−1

α

)T
, (4d)

where fα denotes the volume fraction of phase α = 1, . . . ,N.
The macroscopic properties of the eigenstressed, heterogeneous material are classically ob-

tained from the application of equations (2a), (3a) and (3b) to the solution of the following problem
on the RVE Ω

divσ(x) = 0 (x ∈ Ω), (5a)
σ(x) = Cα : ε(x) +$α (x ∈ Ωα, α = 1, . . . ,N), (5b)
ε(x) = sym grad u(x) (x ∈ Ω), (5c)
u(x) = E · x (x ∈ ∂Ω). (5d)

However, solving the above local problem is often quite difficult, and estimates of the Aα and
Dαβ are of great practical value.

Revisiting the work of Mori and Tanaka (1973), Benveniste (1987) proposed estimates of the
strain localization tensors. His approach was then extended by Dvorak and Benveniste (1992) to
the eigenstrain influence tensors. The estimates of Dvorak and Benveniste were however restricted
to materials with aligned inclusions of identical (ellipsoidal) shape. This limitation was later over-
come by Pichler and Hellmich (2010), who derived closed-form expressions of the estimates of the
eigenstrain influence tensors for any distribution of ellipsoidal inclusions.
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It is well-known that the Mori–Tanaka approach might deliver estimates of the effective stiff-
ness that are not symmetric. Such unphysical estimates might occur in the case of non-aligned in-
clusions and/or inclusions of different shapes (Benveniste, Dvorak, and Chen 1991; Ferrari 1991;
Schjødt-Thomsen and Pyrz 2001). Pichler and Hellmich (2010) have shown that in those cases
where the classical Mori–Tanaka estimate of the effective stiffness is symmetric, their estimates of
the eigenstrain influence tensors are consistent with properties (4a), (4b), (4c) and (4d). Conversely,
if the Mori–Tanaka estimate of the effective stiffness is not symmetric, the Pichler–Hellmich esti-
mates of the eigenstrain influence tensors are not physically acceptable.

Our aim is to propose alternative estimates of these tensors, which are always acceptable. Our
estimates are derived from the variational framework introduced by Hashin and Shtrikman (1962b)
and later extended to eigenstressed materials by Bornert et al. (2001). Our main contribution is to
show that these estimates always verify identities (4a), (4b), (4c) and (4d)]. Such robustness comes
with a price, though. Indeed, it requires additional information (namely, the so-called P-tensors of
Ponte Castañeda and Willis 1995) on how the phases are distributed.

THE PRINCIPLE OF HASHIN AND SHTRIKMAN WITH EIGENSTRESSES

The variational principle of Hashin and Shtrikman was introduced in Hashin and Shtrikman (1962b)
(see also Willis 1977) and later extended to eigenstressed materials by Bornert et al. (2001). It is
stated below in a form amenable to the derivations proposed in the next section.

Introducing a reference (linear, elastic) material of stiffness C0, the functional HS of Hashin
and Shtrikman is defined as follows

HS(τ; E,$1, . . . ,$N) = 1
2E : C0 : E + E : 〈τ +$〉 − 1

2〈τ : (C − C0)−1 : τ〉
− 1

2〈 (τ +$) : Γ0[τ +$]〉, (6)

where C(x) [resp. $(x)] is the phase-wise constant local stiffness (resp. eigenstress): C(x) = Cα

[resp. $(x) = $α] for x ∈ Ωα. Γ0 denotes the Green operator for strains of the large (but finite)
domain Ω (Korringa 1973; Zeller and Dederichs 1973; Kröner 1974; Willis 1977). The second-
rank, symmetric tensor field τ that appears in the definition (6) of the functional HS of Hashin and
Shtrikman is called stress-polarization.

For arbitrary reference materials, the principle of Hashin and Shtrikman states that i. the func-
tional HS is stationary at (C − C0) : ε, where ε is the strain that solves problem (5) and ii. the
value of HS at this critical point is the macroscopic strain energy

∂HS
∂τ

((C − C0) : ε; E,$1, . . . ,$N) = 0, (7a)

HS((C − C0) : ε; E,$1, . . . ,$N) = 1
2〈ε : C : ε〉 + 〈$ : ε〉 = 1

2E : Ceff : E

+
∑
α

fα$α : Aα : E − 1
2

∑
α,β

fα$α : Dαβ : C−1
β : $β.

(7b)

Furthermore, if the reference material C0 is stiffer (resp. softer) than all phases, meaning that
C0 ≥ Cα (resp. C0 ≤ Cα) in the sense of quadratic forms for all α = 1, . . . ,N, then this critical
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point is in fact the unique minimum (resp. maximum) of HS

C0
≥

≤ Cα(α = 1, . . . ,N) ⇒ HS(τ; E,$1, . . . ,$N)
≥

≤ 1
2E : Ceff : E +

∑
α

fα$α : Aα : E

− 1
2

∑
α,β

fα$α : Dαβ : C−1
β : $β, (8)

where the second inequality holds for any choice of the trial stress-polarization τ.

DERIVATION OF THE VARIATIONAL ESTIMATES

From the principle of Hashin and Shtrikman, finding the critical point of HS over the whole space
of stress-polarizations delivers the exact values of the effective stiffness Ceff , strain localization
tensors Aα and eigenstrain influence tensors Dαβ [see equations (7a) and (7b)]. Likewise, finding
the critical point of HS over a (usually, finite dimension) subspace of stress-polarizations delivers
estimates.

The obvious choice for this subspace is the space of phasewise constant stress polarizations:
τ(x) = τα for all x ∈ Ωα (α = 1, . . . ,N), where τ1, . . . , τN are constant, second-rank, symmetric
tensors. In the eigenstress-free case, this results in the classical estimates of Hashin and Shtrikman
(1962a) of the effective stiffness; these estimates turn out to be bounds provided that either condi-
tion in equation (8) is satisfied. The same approach is extended here to eigenstressed materials.

It can be shown that for large RVEs Ω, the functional of Hashin and Shtrikman HS defined in
equation (6) evaluates to

HS(τ; E,$1, . . . ,$N) = 1
2E : C0 : E +

∑
α

fαE : (τα +$α) − 1
2

∑
α

fατα : (Cα − C0)−1 : τα

− 1
2

∑
α,β

(τα +$α) : Pαβ :
(
τβ +$β

)
. (9)

In the above equation, the so-called P-tensors Pαβ are weighted averages of the Green operator
for strains Γ∞0 of the whole space

Pαβ =
[
Sαβ(0) − fα fβ

]
P0 + lim

δ→0

∫
r∈Rd

‖r‖≥δ

[
Sαβ(r) − fα fβ

]
Γ∞0 (r) d Vr, (10)

where Sαβ denotes the two-point probability function of phases α and β (see e.g. Torquato 2002).
It should be noted that in Ponte Castañeda and Willis (1995), the P-tensors were denoted 〈A(rs)〉

(where r and s are phase indices in this publication). For weakly isotropic materials, Sαβ(r) depends
on the norm ‖r‖ of r only, and (Willis 1977)

Pαβ = fα
(
δαβ − fβ

)
P0. (11)

Stationarity of HS with respect to the τα leads to the following linear system of equations
(indexed by α = 1, . . . ,N)

(Cα − C0)−1 : τα +
1
fα

∑
β

Pαβ :
(
τβ +$β

)
= E. (12)
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In the above system, the stiffness C0 of the reference material, the stiffness Cα of the consti-
tuants (α = 1, . . . ,N) and the microstructural parameters Pαβ [defined by equation (10), α, β =

1, . . . ,N] are given. The macroscopic strain E and phase eigenstresses $1, . . . ,$N are loading
parameters. Finally, the stress-polarization τ1, . . . , τN are unknown.

Equation (12) can in general not be solved analytically. However, owing to linearity, it is
formally possible to express the solution as follows (Brisard and Ghabezloo 2017)

(Cα − C0)−1 : τα = Avar
α : E −

∑
β

Dvar
αβ : C−1

β : $β, (13)

where the tensors Avar
α and Dvar

αβ are found (numerically) from the inversion of equation (12). Plug-
ging equation (13) into equation (9) and introducing

Cvar =
∑
α

fαCα : Avar
α , (14)

it is found that

HS(τ; E,$1, . . . ,$N) = 1
2E : Cvar : E +

∑
α

fα$α : Avar
α : E − 1

2

∑
α,β

fα$α : Dvar
αβ : C−1

β : $β. (15)

Comparing equations (7b) and (15) finally shows that Cvar, Avar
α and Dvar

αβ ought to be considered
as variational estimates of Ceff , Aα and Dαβ, respectively. For isotropic microstructures, these
estimates coincide with that of Dvorak and Benveniste (1992) (which are identical to the estimates
of Pichler and Hellmich 2010, in this case). Outside this particular case, they generally differ from
the estimates of Pichler and Hellmich (2010), as will be discussed in the next section.

PROPERTIES OF THE VARIATIONAL ESTIMATES

Careful analysis of the linear system (13) shows that the variational estimates Cvar, Avar
α and Dvar

αβ

enjoy the same properties (4a)–(4d) as their exact counterparts (see Brisard and Ghabezloo 2017).
In particular, the variational estimate Cvar of the effective stiffness is always symmetric, unlike

the Mori–Tanaka estimate. This suffices to prove that the proposed variational estimates of the
eigenstrain influence tensors differ in general from their Pichler–Hellmich estimates. While the
latter might take unphysical values (when the Mori–Tanaka estimate of the effective stiffness is not
symmetric), the former are always consistent with identities (4a)–(4d).

The proposed variational estimates are therefore appealing alternatives to the Pichler–Hellmich
estimates in cases where the latter do not satisfy identities (4a)–(4d).

APPLICATION TO POROELASTICITY

The above general framework can be specialized to poroelastic materials: the solid skeleton is
made of N phases α = 1, . . . ,N, while the porous network is decomposed in P families α =

N + 1, . . . ,N + P. Pores of the familiy α are filled with a fluid at pressure p. The effective behavior
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of the porous material is deduced from equations (2) and (3b) with$α = 0 (α = 1, . . . ,N), Cα → 0
(α = N + 1, . . . ,N + P) and $α = −pαI (α = N + 1, . . . ,N + P)

Σ = Ceff : E −
N+P∑
α=N+1

Bα pα, (16a)

〈 tr ε〉α = Bα : E +

N+P∑
β=N+1

pβ
Nαβ

, (16b)

where

Bα = fαAT
α : I, (17a)

N−1
αβ = fα lim

CN+1,...,CN+P→0

(
I : Dαβ : C−1

β : I
)
. (17b)

The second-rank tensor Bα is the tensor of Biot coefficients; the scalars Nαβ are the Biot moduli.
For isotropic materials, the tensors of Biot coefficients degenerate to scalars (Bα = bαI), and the
classical equations of unsaturated poroelasticity (Coussy and Brisard 2009) are retrieved.

Variational estimates of the poroelastic coefficients can therefore be deduced, for a given mi-
crostructure, from the above variational estimates of the eigenstrain influence tensors. For isotropic
microstructures, the variational estimates coincide with the estimates of Pichler and Hellmich
(2010) when the solid matrix is selected as a reference material.

We further assume that the solid skeleton is homogeneous (κS: bulk modulus; µS: shear mod-
ulus) and that the pore space is filled with a liquid (S L: saturation; pL: pressure) and a gas
(S G = 1 − S L: saturation; pG: pressure). Since the variational estimates coincide with the Pichler
and Hellmich (2010) estimates in that case, the closed-form expressions proposed in Coussy and
Brisard (2009) can be used. In particular

bvar = 1 −
κvar

κS
, bvar

L = S Lb, bvar
G = S Gb, (18)

and it is observed that the variational estimate of the Bishop coefficient bL/b is the saturation in
liquid. This approximation is usually called pore isodeformation assumption (Coussy and Brisard
2009). It can in fact be shown that this assumption is exact for microstructures that realize the
Hashin–Shtrikman upper-bound on the bulk modulus. Indeed, inequality (8) can be specialized for
isotropic elasticity

1
2

(
κvar − κeff

)
E2 −

(
bvar

L − bL
)

pLE −
(
bvar

G − bG
)

pGE −
1
2

(
1

NLL
−

1
Nvar

LL

)
p2

L

−

(
1

NLG
−

1
Nvar

LG

)
pL pG −

1
2

(
1

NGG
−

1
Nvar

GG

)
p2

G ≥ 0, (19)

where E denotes the macroscopic volumetric strain (E = tr E). The above inequality must hold for
all E, pL and pG. Therefore, the following matrixκ

var − κeff bL − bvar
L bG − bvar

G
bL − bvar

L 1/Nvar
LL − 1/NLL 1/Nvar

LG − 1/NLG

bG − bvar
G 1/Nvar

LG − 1/NLG 1/Nvar
GG − 1/NGG

 (20)
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must be positive. In particular, κeff ≤ κvar (upper-bound on the bulk modulus) and

(
bL − bvar

L
)2
≤

(
κvar − κeff

) ( 1
Nvar

LL
−

1
NLL

)
. (21)

If the microstructure is such that κeff = κvar, then we must have bL = bvar
L and the pore isodefor-

mation assumption is rigorous.

CONCLUSION

Using the framework of Hashin and Shtrikman (1962b), we have presented a derivation of vari-
ational estimates of the eigenstrain influence tensors of a heterogeneous microstructure. It was
shown that these estimates are always physically acceptable, contrary to Mori–Tanaka estimates.
This robustness has a price: the P-tensors defined by equation (10) must be evaluated.

For porous materials, estimates of the poroelastic coefficients are readily deduced from the
estimates of the eigenstrain influence tensors. Our analysis shows that for isotropic porous media
with homogeneous solid skeleton, the pore isodeformation assumption is rigorous provided that
the drained bulk modulus coincides with the Hashin–Shtrikman upper-bound.

It is known that for a wide range of microstructures, the drained bulk modulus is actually very
close to its upper-bound. For such microstructures, our results indicate that the pore isodeformation
assumption should be an excellent approximation.
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