Complement to 'Equilibrium large deviations for mean-field systems with translation invariance'

Julien Reygner

ABSTRACT. We show that the metric space $(\overline{\mathcal{P}}(\mathbb{R}^d), \overline{d}_P)$ introduced in the Appendix of [2] is separable and complete. Together with [2, Lemma A.3], this proves that the quotient topology on the orbit space $\overline{\mathcal{P}}(\mathbb{R}^d)$ is Polish.

We recall that the space $\mathcal{P}(\mathbb{R}^d)$ of Borel probability measures on \mathbb{R}^d endowed with the Prohorov metric d_P defined by Eq. (61) in [2] is separable and complete [1, Theorem 6.8, p. 73]. In the Appendix of [2], the *quotient* Prohorov metric \overline{d}_P is constructed on the orbit space $\overline{\mathcal{P}}(\mathbb{R}^d)$, and it is proved that the associated metric topology coincides with the quotient topology.

Lemma 0.1 (Separability). The metric space $(\overline{\mathcal{P}}(\mathbb{R}^d), \overline{d}_P)$ is separable.

Proof. This follows from the facts that $\mathcal{P}(\mathbb{R}^d)$ is separable and that, by the definition of the quotient topology, the orbit map $\rho: \mathcal{P}(\mathbb{R}^d) \to \overline{\mathcal{P}}(\mathbb{R}^d)$ is continuous. \square

Lemma 0.2 (Completeness). The metric space $(\overline{\mathcal{P}}(\mathbb{R}^d), \overline{d}_{\mathcal{P}})$ is complete.

Proof. Let $(\overline{\mu}_n)_{n\geq 1}$ be a Cauchy sequence in $\overline{\mathcal{P}}(\mathbb{R}^d)$. There exists an increasing sequence of integers $(n_k)_{k\geq 1}$ such that, for any $k\geq 1$, for all $m\geq n_k$,

(1)
$$\overline{d}_{\mathbf{P}}(\overline{\mu}_{n_k}, \overline{\mu}_m) \le 1/k^2.$$

We now construct a sequence $(\nu_k)_{k\geq 1}$ in $\mathcal{P}(\mathbb{R}^d)$ as follows:

- $\nu_1 \in \mathcal{P}(\mathbb{R}^d)$ is such that $\rho(\nu_1) = \overline{\mu}_{n_1}$;
- if $\nu_k \in \mathcal{P}(\mathbb{R}^d)$ is such that $\rho(\nu_k) = \overline{\mu}_{n_k}$, then combining Eq. (63) in [2] with (1), there exists $\nu_{k+1} \in \mathcal{P}(\mathbb{R}^d)$ such that $\rho(\nu_{k+1}) = \overline{\mu}_{n_{k+1}}$ and $d_{\mathrm{P}}(\nu_k, \nu_{k+1}) \leq \overline{d}_{\mathrm{P}}(\overline{\mu}_{n_k}, \overline{\mu}_{n_{k+1}}) + 1/k^2 \leq 2/k^2$.

As a consequence, $(\nu_k)_{k\geq 1}$ is a Cauchy sequence in $\mathcal{P}(\mathbb{R}^d)$ and therefore it converges to some $\nu_*\in\mathcal{P}(\mathbb{R}^d)$. Using the continuity of ρ , we deduce that $\rho(\nu_k)=\overline{\mu}_{n_k}$ converges to $\rho(\nu_*)$ in $\overline{\mathcal{P}}(\mathbb{R}^d)$, so that the Cauchy sequence $(\overline{\mu}_n)_{n\geq 1}$ possesses a converging subsequence, and thus converges to $\rho(\nu_*)$, which ends the proof. \square

References

- [1] P. Billingsley. Convergence of probability measures. John Wiley & Sons Inc., New York, second edition, 1999.
- [2] J. Reygner. Equilibrium large deviations for mean-field systems with translation invariance. *Ann. Appl. Probab.*, 28(5):2922–2965, 2018.

E-mail address: julien.reygner@enpc.fr