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Abstract

We discuss risked competitive partial equilibrium in a setting in which agents are endowed with coherent risk measures. In
contrast to social planning models, we show by example that risked equilibria are not unique, even when agents’ objective functions
are strictly concave. We also show that standard computational methods find only a subset of the equilibria, even with multiple
starting points.
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1. Introduction

Most industrialised regions of the world have over the last
thirty years established wholesale electricity markets that take
the form of an auction that matches supply and demand. The ex-
act form of these auction mechanisms vary by jurisdiction, but
they typically require offers of energy from suppliers at costs
they are willing to supply, and clear a market by dispatching
these offers in order of increasing cost. Day-ahead markets
such as those implemented in many North American electric-
ity systems, seek to arrange supply well in advance of its de-
mand, so that thermal units can be prepared in time. Since the
demand cannot be predicted with absolute certainty, day-ahead
markets must be accompanied by a separate balancing market
to deal with the variation in load and generator availability in
real time. These are often called two-settlement markets. The
market mechanisms are designed to be as efficient as possible
in the sense that they should aim to maximize the total welfare
of producers and consumers.

In response to pressure to reduce CO2 emissions and in-
crease the penetration of renewables, electricity pool markets
are procuring increasing amounts of electricity from intermit-
tent sources such as wind and solar. If probability distribu-
tions for intermittent supply are known for these systems then
it makes sense to maximize the expected total welfare of pro-
ducers and consumers in each dispatch. Then many repetitions
of this will yield a long run total benefit that is maximized.
Maximizing expected welfare can be modeled as a two-stage
stochastic program. Methods for computing prices and single-
settlement payment mechanisms for such a stochastic market
clearing mechanism are described in a number of papers (see
Pritchard et al. [11], Wong and Fuller [16] and Zakeri et al.
[17]). When evaluated using the assumed probability distribu-
tion on supply, stochastic market clearing can be shown to be
more efficient than two-settlement systems.

If agents in these systems are risk averse then one might also
seek to maximize some risk-adjusted social welfare. In this set-

ting the computation of prices and payments to the agents be-
comes more complicated. If agents use coherent risk measures
then it is possible to define a complete market for risk in a pre-
cise sense. If the market is complete then a perfectly competi-
tive partial equilibrium will also maximize risk-adjusted social
welfare, i.e. it is efficient. On the other hand if the market for
risk is not complete, then perfectly competitive partial equilib-
rium can be inefficient. This has been explored in a number of
papers (see e.g. de Maere d’Aertrycke et al. [4], Ehrenmann
and Smeers [5] and Ralph and Smeers [12]).

In this paper we study a class of stochastic dispatch and pric-
ing mechanisms under the assumption that agents will attempt
to maximize their risk-adjusted welfare at these prices. Agents
have coherent risk measures and are assumed to behave as price
takers in the energy and risk markets. We aim at enlightening
some difficulties that arise when risk markets are not complete.
We describe a simple instance of a stochastic market that has
three different equilibria. Two of these points are stable in the
sense of Samuelson [13] and are attractors of tatônnement al-
gorithms. The third equilibrium is unstable, yet is the solution
yielded by the well-known PATH solver in GAMS (See Ferris
and Munson [8]). Our example illustrates the delicacy of seek-
ing numerical solutions for equilibria in incomplete markets.
Since these are used for justifying decisions, the nonuniqueness
of solutions in this setting is undesirable.

The paper is laid out as follow. In Section 2 we present the
equilibrium and optimization models we are going to study. In
Section 3 we give links between equilibrium and optimization
problems in the risk neutral and complete risk-averse cases. Fi-
nally, in Section 4 we showcase a simple example with multiple
equilibria in the incomplete risk-averse case.

1.1. Notation
We use the following notation throughout the paper: [[a; b]] is

the set of integers between a and b (included), random variables
are denoted in bold, Ω is a finite sample space, P is a probabil-
ity distribution over Ω, EP is used to refer to expectation with
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respect to P, F is used to refer to a risk measure. We denote by
x ⊥ y the complementarity condition xT y = 0.

2. Statement of problem

Consider a two time-step single-settlement market for one
good. In a single-settlement market, the producer can arrange
in advance for a production of x at a marginal cost cx as a first-
step decision, and choose the value of a recourse variable xr

incurring an uncertain marginal cost crxr. We assume that there
are a finite number of scenarios ω ∈ Ω determining the coeffi-
cient cr(ω).

The product is purchased in the second step by a consumer
with a utility function V(ω)y(ω) − 1

2 r(ω)y2(ω). The consumer
has no first-stage decision, and the amount purchased y(ω) de-
pends on the scenario.

2.1. Social planner problem

Decisions x, xr(ω) and y(ω) can be made to maximize a so-
cial objective. We denote by

Wp(ω) = −
1
2

cx2 −
1
2

cr(ω)xr(ω)2 , (1a)

the welfare of the producer, and by

Wc(ω) = V(ω)y(ω) −
1
2

r(ω)y(ω)2 , (1b)

the welfare of the consumer where both these expressions ig-
nore the price paid for the good in scenario ω. Then the welfare
of the social planner can be defined by Wsp = Wp + Wc.

Optimization of the social objective requires us to aggregate
the uncertain outcomes from the scenarios. This can be done
by taking expectations with respect to an underlying probability
measure P or using a more general risk measure.

2.1.1. Risk neutral social planner problem
Endow the set of scenario Ω with a probability P, then a risk-

neutral social planner might seek to maximize the expected total
social welfare under the constraint that supply equals demand.
This problem is denoted by RnSp(P) and reads

RnSp(P) :
max
x,xr ,y

EP[Wsp] , (2a)

s.t. x + xr(ω) ≥ y(ω) , ∀ω ∈ Ω . (2b)

2.1.2. Risk averse social planner problem
Choosing expectation EP, assumes a risk-neutral point of

view, where two random losses with same expectation but dif-
ferent variances are deemed equivalent. In practice a number of
agents are risk averse. To model risk aversion we generally use
a risk measure F, that is a functional that associates to a ran-
dom welfare its deterministic equivalent, i.e. the deterministic
welfare deemed as equivalent to the random loss.

A risk-averse planner solves a maximization problem
RaSp(F) defined by

RaSp(F) :
max
x,xr ,y

F[Wsp] , (3a)

s.t. x + xr(ω) ≥ y(ω) , ∀ω ∈ Ω . (3b)

A risk measure F is said to be coherent (see Artzner et al. [2])
if it satisfies four natural properties: monotonicity ( if X ≥ Y
then F[X] ≥ F[Y]), concavity (F is concave), translation-
equivariance (F[X + c] = F[X] + c with c ∈ R) and positive
homogeneity (F[λX] = λF[X], with λ ≥ 0). By convex du-
ality theory (see Shapiro et al. [14]), a lower-semicontinuous
coherent risk measure can be written F

[
Z
]

= minQ∈Q EQ
[
Z
]
,

where Q is a closed, convex, non-empty set of probability dis-
tributions over Ω. If Q is a polyhedron defined by K extreme
points (Qk)k∈[[1;K]], then the risk measure is denoted F̌ and said
to be polyhedral, with F̌[Z ] = minQ1,...,QK EQk

[
Z
]
.

Problem RaSp(F̌) can be written as follows

RaSp(F̌) :
max
θ,x,xr ,y

θ (4a)

s.t. θ ≤ EQk

[
Wsp

]
, ∀k ∈ [[1; K]] , (4b)

x + xr(ω) ≥ y(ω) , ∀ω ∈ Ω . (4c)

In what follows we assume that all risk measures are coherent.

2.1.3. Remark on non linearity of risk averse objective function
By linearity of expectation we have EP[Wsp] = EP[Wp] +

EP[Wc] hence the criterion of the social planner is natural,
which is not the case anymore with risk-aversion. The social
planner criterion could be either F[Wsp] or F[Wp] + F[Wc].
Furthermore, by concavity and positive homogeneity, we have
F[Wp + Wc] ≥ F[Wp] + F[Wc].

2.2. Equilibrium problem

We now define a competitive partial equilibrium for our
model. This competitive equilibrium can be risk neutral or risk
averse. Definitions come from general equilibrium theory (See
Arrow and Debreu [1] or Uzawa [15]).

2.2.1. Risk neutral equilibrium
Given a probability P on Ω, a risk-neutral equilibrium

RnEq(P) is a set of prices
{
π(ω) , ω ∈ Ω

}
such that there exists

a solution to the system

RnEq(P) :

max
x,xr

EP

[
Wp + π

(
x + xr

)]
, (5a)

max
y

EP
[
Wc − πy

]
, (5b)

0 ≤ x + xr(ω) − y(ω) ⊥ π(ω) ≥ 0 , ∀ω ∈ Ω . (5c)

Here, the producer maximizes its expected profit (5a), the
consumer maximizes its expected utility (5b) and the market
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clears with (5c) (which means that either prices are null or sup-
ply equals demand). As the consumer has no first stage de-
cision, she can optimize each scenario independently and so
problem (5b) can be replaced by

max
y(ω)

Wc(ω) − π(ω)y(ω) , ∀ω ∈ Ω .

2.2.2. Risk averse equilibrium
Given two risk measures Fp and Fc over Ω, a risk-averse

equilibrium RaEq(Fp,Fc) is a set of prices
{
π(ω) : ω ∈ Ω

}
such

that there exists a solution to the following system

RaEq(Fp,Fc) :

max
x,xr

Fp

[
Wp + π

(
x + xr

)]
, (6a)

max
y

Fc
[
Wc − πy

]
, (6b)

0 ≤ x + xr(ω) − y(ω) ⊥ π(ω) ≥ 0 , ∀ω ∈ Ω . (6c)

Since the coherent risk measure Fc of the consumer is mono-
tonic, and noting that she has no first-stage decision, she can
optimize scenario per scenario. Thus, she is insensitive to risk
as any monotonic risk measure will lead to the same action (al-
though not the same welfare). Since Fp is also monotonic, we
can endow both agents with the same risk measure. In that case,
we denote problem (6) by RaEq(F).

We now consider polyhedral risk measure F̌, using formula-
tion (4), the equilibrium problem (6) reads

RaEq(F̌) :
max
θ,x,xr

θ (7a)

s.t. θ ≤ EQk

[
Wp + π(x + xr)

]
, ∀k ∈ [[1; K]] ,

max
y(ω)

Wc(ω) − πy(ω) , ∀ω ∈ Ω , (7b)

0 ≤ x + xr(ω) − y(ω) ⊥ π(ω) ≥ 0 , ∀ω ∈ Ω . (7c)

2.3. Trading risk with Arrow-Debreu securities
Until now, we have considered equilibrium problems in an

incomplete market. Following the path of Philpott et al. [10],
we complete the market using Arrow-Debreu securities.

Definition 1. An Arrow-Debreu security for node ω ∈ Ω is a
contract that charges a price µ(ω) in the first stage, to receive a
payment of 1 in scenario ω.

The consumer now has a first-stage decision which is the
number of contracts she buys, so the choice of the consumer
risk measure Fc has now consequences. For convenience, this
risk measure Fc is chosen to be the same as that of the producer
Fp and will be denoted by F. Unless stated otherwise, from now
on we use polyhedral risk measures.

Denote a(ω) (resp. b(ω)) the number of Arrow-Debreu secu-
rities bought by the producer (resp. the consumer). We denote
by µ(ω) the price of the Arrow-Debreu securities associated
with scenario ω. In this case the producer pays

∑
ω∈Ω µ(ω)a(ω)

in the first stage, in order to receive a(ω) in scenario ω. As
a(ω) + b(ω) represents excess demand, requiring that supply

is greater than demand consists in requiring a(ω) + b(ω) ≤ 0.
Prices {π(ω),µ(ω)}ω∈Ω form a risk-trading equilibrium if there
exists a solution to:

RaEq-AD(F̌) :

max
θ,x,xr ,a

θ −
∑
ω∈Ω

µ(ω)a(ω) (8a)

s.t. θ ≤ EQk

[
Wp + π(x + xr) + a

]
, ∀k ∈ [[1; K]] , (8b)

max
φ,y,b

φ −
∑
ω∈Ω

µ(ω)b(ω) (8c)

s.t. φ ≤ EQk

[
Wc − πy + b

]
, ∀k ∈ [[1; K]] , (8d)

0 ≤ x + xr(ω) − y(ω) ⊥ π(ω) ≥ 0 , ∀ω ∈ Ω , (8e)
0 ≤ −a(ω) − b(ω) ⊥ µ(ω) ≥ 0 , ∀ω ∈ Ω . (8f)

3. Some equivalences between social planner problems and
equilibrium problems

We recall a trivial equivalence between problem RnSp(P)
and problem RnEq(P) before showing an equivalence between
problem RaSp(F̌) and problem RaEq-AD(F̌).

3.1. Equivalence in the risk neutral case

Proposition 1. Let P be a probability measure over Ω. The ele-
ments x

]

, x]

r and y]

are optimal solutions to RnSp(P) if and only
if there exist equilibrium prices π

]

for RnEq(P) with associated
optimal decisions x

]

, x]

r and y]

.

Proof. As the producer and the consumer optimize over differ-
ent uncoupled variables, it is equivalent to optimize their ob-
jectives separately or jointly. Problem (5) is thus equivalent to

max
x,xr ,y

EP
[
Wp + π(x + xr)

]
+ EP

[
Wc − πy

]
,

0 ≤ x + xr(ω) − y(ω) ⊥ π(ω) ≥ 0 , ∀ω ∈ Ω ,

which by linearity of the expectation is equivalent to

max
x,xr ,y

EP
[
Wsp + π(x + xr − y)

]
,

0 ≤ x + xr(ω) − y(ω) ⊥ π(ω) ≥ 0 , ∀ω ∈ Ω .

This is equivalent to the optimality conditions for problem (2a).
Convexity and linearity of constraints ends the proof. �

Corollary 2. If both the producer’s and the consumer’s crite-
rion are strictly concave and if P charges all ω, then RnSp(P)
admits a unique solution and RnEq(P) admits a unique equilib-
rium.

Proof. The probability distribution P charges all ω. Then by
strict concavity, RnSp(P) has a unique solution. If RnEq(P) has
two different solutions (x1, x1

r , y1) and (x2, x2
r , y2) with π1 and

π2 respectively then, by Proposition 1, x1 = x2, x1
r = x2

r , and
y1 = y2. Since (5b) implies π1(ω) = V(ω)−r(ω)y1(ω), we have
π1 = π2 which gives the result. �
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3.2. Equivalence in the risk-averse case
The following proposition is an extension of Theorem 7

of Ralph and Smeers [12], to a model with producers and con-
sumers, in the special case of a finite number of scenarios with
polyhedral risk measures.

Proposition 3. Let π and µ be equilibrium prices such that(
x
]

, x]

r, y
]

, a,b, θ, ϕ
)

solves RaEq-AD(F̌). Then
(i) µ is a probability measure, and x

]

, x]

r, y
]

solves the risk-
neutral social planning problem when evaluated using proba-
bility µ, RnSp(µ).

(ii) x
]

, x]

r, y
]

solves the risk-averse social planning problem,
RaEq-AD(F̌) with worst case measure µ.

Proof. (i) Each agent problem is convex with linear con-
straints. Hence the optimal solution satisfies for each problem
the Karush-Kuhn-Tucker (KKT) conditions. The Lagrangian of
the producer problem reads

Lp = θ −
∑
ω∈Ω

µ(ω)a(ω) +
∑

k

λk

(
EQk

[
Wp + π(x + xr) + a

]
− θ

)
,

where λk is the multiplier associated to constraint (8b). Then,
the KKT conditions imply that

∑
k λk = 1, and µ =

∑
k λkQk. In

particular, µ is a probability measure in Q. Furthermore (x
]

, x]

r)
maximizes

∑
ω∈Ω µ(ω)

(
Wp(ω) − π(ω)(x + xr(ω))

)
which is the

risk-neutral producer objective evaluated with measure µ.
Similarly, looking at the consumer problem with multiplier

σk associated to constraint (8d), we obtain
∑

k σk = 1 and
µ =

∑
k σkQk. Hence, the consumer maximizes her risk-neutral

objective under the same probability µ as the producer.
Since by hypothesis the solutions satisfy (8e) we have that(

x
]

, x]

r(ω), y]

(ω)
)

solves RnSp(µ).
(ii) Observe that complementary slackness gives

λk

(
EQk

[
W]

p + π
(
x
]

+ x]

r
)

+ ā)
]
− θ̄

)
= 0 ,

σk

(
EQk

[
W]

c − πy]

+ b̄
]
− ϕ̄

)
= 0 ,

where W]

p and W]

c are defined by (1) in terms of x
]

, x]

r and y]

.
Summing over k, and leveraging (8f) gives

θ̄ + ϕ̄ = Eµ [W
]

p + π
(
x
]

+ x
]

r
)

+ ā] + Eµ [W
]

c − πȳ + b̄] ,

= Eµ [W
]

p + W
]

c] . (11)

However as

θ̄ + ϕ̄ = min
Q∈Q

EQ[W
]

p + π
(
x
]

+ x
]

r
)

+ ā]

+ min
Q′∈Q

EQ′ [W
]

c − πy
]

+ b̄] ,

≤ min
Q∈Q

EQ[W
]

p + W
]

c + ā + b̄] ,

≤ min
Q∈Q

EQ[W
]

p + W
]

c] . (12)

Combining (11) and (12) and observing that µ ∈ Q, we have

Eµ [W
]

p + W
]

c] = min
Q∈Q

EQ[W
]

p + W
]

c]. (13)

To complete the proof, consider any feasible x, xr(ω), y(ω). By
part (i) and µ ∈ Q, we have

Eµ [W
]

p + W
]

c] ≥ Eµ [Wp + Wc] ≥ min
Q∈Q

EQ[Wp + Wc] ,

where Wp and Wc are defined by (1). Thus (13) gives

min
Q∈Q

EQ[W
]

p + W
]

c] ≥ min
Q∈Q

EQ[Wp + Wc] .

This shows that(
x
]

, x
]

r, y
])
∈ arg max

x,xr ,y
min
Q∈Q

EQ[Wp + Wc] ,

as required. �

Remark 1. Note that an equilibrium of RaEq-AD(F̌) consists
of a price vector π, giving one price per scenario, and a proba-
bility µ that is seen by both the producer and the consumer as a
worst-case probability for the welfare plus trade evaluation. ♦

Remark 2. In Section 4 we give an example of three risked
equilibrium without Arrow-Debreu securities, each corre-
sponding to a risk-neutral equilibrium with different measure
µ(ω). However if Arrow-Debreu securities are included then
two of these equilibria are no longer equilibria in a risk-averse
setting. The risk-averse consumer, who without Arrow-Debreu
securities had no mechanism to alter his outcomes will trade
these securities to improve their risk-adjusted payoff. ♦

Remark 3. Consider a set of prices π that gives a risked equi-
librium in which agent i has payoff W

i
(π) and risked payoff

Fi
[
W

i
(π)

]
. Suppose that there exists a probability measure Q∗

such that Fi
[
W

i
(π)

]
= EQ∗

[
W

i
(π)

]
. Observe that this does not

imply that choosing actions x to maximize EQ∗ [Wi
(π)] will give

maxx Fi
[
W

i
(π)

]
. This is because x∗ solves

max
x

Fi
[
W

i
(π)

]
= max

x
min
Q∈Q

EQ
[
W

i
(π)

]
,

and not
max

x
EQ∗

[
fi(x,π)

]
,

since Q∗ depends on x. ♦

Remark 4. Proposition 3 is easily extended to the case where
the agents have different risk measures Fp and Fc with non-
disjoint risk set. In this case, (12) becomes

θ̄ + ϕ̄ = min
Qp∈Qp

EQp [π
(
x
]

+ x
]

r
)

+ W
]

p + ā]

+ min
Qc∈Qc

EQc [W
]

c − πy
]

+ b̄] ,

≤ min
Q∈Qp∩Qc

EQ[W
]

c + W
]

p] , (14)

and the social planner uses a risk measure with Q = Qp ∩ Qc.
♦

The following proposition (Theorem 11 Philpott et al. [10])
stands as a reverse statement for Proposition 3.

4



Proposition 4. Let the elements x
]

, x]

r and y]

r be optimal solu-
tions to RaSp(F̌), with associated worst case probability mea-
sure µ. Then there exists prices π such that the couple (π,µ)
forms a risk trading equilibrium for RaEq-AD(F̌) with associ-
ated optimal solutions (x

]

, x]

r, y
]

).

Combining Proposition 3 and Proposition 4, we are able to
state the following result of uniqueness of equilibrium.

Corollary 5. If both the producer’s and consumer’s crite-
rion are strictly concave, and if each of the extreme points
Qk charges all ω, then RaSp(F̌) admits a unique solution
(x

]

, x]

r, y
]

). Furthermore RaEq-AD(F̌) admits unique optimal
decisions (x

]

, x]

r, y
]

). If, in addition, solving RaSp(F̌) admit
a unique worst case probability measure µ, then equilibrium
prices (π,µ) are unique.

Proof. As each of the extreme points Qk charges all ω, the risk
averse social planner problem is strictly convex with linear con-
straints. Thus there exists a unique solution (x

]

, x]

r, y
]

) attained
for a worst case probability µ. Applying Proposition 4, we
know that there exists π such that (π,µ) forms a risk trading
equilibrium. Suppose now that there exists two risk-trading
equilibria (π1,µ1, x1, x1

r , y1) and (π2,µ2, x2, x2
r , y2). Then, by

Proposition 3, they both solve RaSp(F̌) which admits a unique
solution. Consequently, we have x

]

= x1 = x2, x]

r = x1
r = x2

r

and y]

= y1 = y2.
If in addition, µ1 = µ2, then by Corollary 2, we deduce that

π1 = π2 which ends the proof. �

We have shown a first equivalence between RnSp(P) and
RnEq(P) and a second one between RaSp(F̌) and RaEq-AD(F̌).
These equivalences lead to uniqueness of equilibrium if there is
uniqueness of the solution of the social planner. A natural ques-
tion arises: if RaSp(F̌) has a unique solution, is there a unique
equilibrium for RaEq(F̌)? The next section provides a simple
counterexample.

4. Multiple risk averse equilibrium

In this section, we present a toy problem where RaSp(F̌) has
a unique optimum but there are three different equilibria for
RaEq(F̌). They are first found numerically using classical meth-
ods (PATH solver and a tâtonnement algorithm), then derived
analytically. An interesting point is that the equilibrium found
by PATH is unstable.

Let Ω = {1, 2} and Q = conv
{
( 1

4 ,
3
4 ), ( 3

4 ,
1
4 )

}
. For simplicity

of notation index by i ∈ {1, 2} the realization of each random
variable. We choose the following parameters: V1 = 4, V2 = 48

5 ,
c = 23

2 , c1 = 1, c2 = 7
2 , r1 = 2, r2 = 10.

4.1. Multiple equilibrium

4.1.1. PATH solver
First we look for equilibrium using GAMS with the solver

PATH in the EMP framework (SeeBrook et al. [3], Ferris et al.
[7] and Ferris and Munson [8]). We have run GAMS from dif-
ferent starting points defined by a grid 100×100 over the square

[1.220; 1.255]× [2.05; 2.18]. We always find an equilibrium de-
fined by

π = (π1, π2) = (1.23578; 2.10953) ,

leading to risked adjusted welfare (2.134; 0.821) for producer
and consumer respectively.

4.1.2. Walras tâtonnement
We now compute the equilibrium using a tâtonnement algo-

rithm (See Uzawa [15]).

Data: MAX-ITER, (π0
1, π

0
2), τ

1 for k from 0 to MAX-ITER do
2 Compute an optimal decision for each player given

a price :
3 x, x1, x2 ∈ arg max F

[
Wp + π(x + xr)

]
;

4 y1, y2 ∈ arg max F[Wc − πy];
5 Update the price :
6 π1 = π1 − τmax

{
0; y1 − (x + x1)

}
;

7 π2 = π2 − τmax
{
0; y2 − (x + x2)

}
;

8 end
9 return (π1, π2)

Algorithm 1: Walras tâtonnement

Running algorithm 1 starting from (1.25; 2.06), respectively
from (1.22; 2.18), with 100 iterations and a step size of 0.1, we
find two new equilibria:

π = (1.2256; 2.0698) and π = (1.2478; 2.1564) ,

leading to risked-adjusted welfare for producer and consumer
respectively (2.152; 0.798) and (2.113; 0.845). Notice that nei-
ther equilibrium dominates the other.

An alternative tatônnement method called FastMarket (see
Facchinei and Kanzow [6]) finds the same equilibrium.

4.2. Analytical results
We now compute the three equilibrium analytically. Details

of the computation are in AppendixA.
Consider two probabilities (p, 1 − p) and ( p̄, 1 − p̄) Given

prices 0 < π1 < π2, we solve the producer (resp. consumer)
optimization problem. Optimal decisions are derived in Ap-
pendixA.1.4 and summed up in Table 1 where xc is given by

xc(π) =
1

2(π1 − π2)

π2
2

c2
−
π2

1

c1

 .
We see that there are three regimes, depending only on the

prices (π1, π2), of optimal first stage solutions. Case a) (resp.
case c)), corresponds to a set of prices such that Ep̄[Wp] <
Ep[Wp] (resp. Ep̄[Wp] > Ep[Wp]), and the optimal decision
corresponds to an optimal risk-neutral decision with respect to
one of the two extreme points of Q. On the other hand, case b)
corresponds to a set of prices such that the expected welfare is
equivalent for all probability in Q, i.e. Ep̄[Wp] = Ep[Wp]. In
Figure 1, the red area corresponds to case a), the blue to case
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condition x] x]i y]i
case a) xc ≤

Ep̄

[
π
]

c
Ep̄

[
π
]

c
πi
ci

Vi−πi
ri

case b) Ep̄

[
π
]

c ≤ xc ≤
Ep

[
π
]

c xc
πi
ci

Vi−πi
ri

case c)
Ep

[
π
]

c ≤ xc
Ep

[
π
]

c
πi
ci

Vi−πi
ri

Table 1: Optimal control for producer and consumer problems

b) and the red to case c), separated by black lines of equations
Ep̄[π]

c = xc(π) and
Ep[π]

c = xc(π) respectively.
We are now looking for prices (π1, π2) such that the comple-

mentarity constraints are satisfied. For strictly positive prices,
these constraints can be summed up as

zi(π) = x
]

(π) + x
]

i (π) − y
]

i (π) = 0 , i ∈ {1, 2}.

Accordingly we define excess supply functions zl
i for case

l ∈ {a, b, c}, and i ∈ {1, 2}. The red, blue and green lines corre-
sponds to manifolds of null excess supply function for scenario
i, that is of prices such that zl

i(π1, π2) = 0. When the lines
cross we have z1

l = z2
l = 0, and thus we have candidate equilib-

rium. If the lines cross in the area of the same color we have an
equilibrium. This is the case with the parameters chosen, and
equilibrium can be derived in exact arithmetic.

We end with a few remarks derived from this example.

Remark 5. The PATH solver finds the blue equilibrium, Algo-
rithm 1 finds the green and the red equilibrium as illustrated by
Figure 2. Interestingly it can be shown that the blue equilib-
rium is unstable in the sense that the dynamical system driven
by π′ = z(π) is not locally stable (see [13]) around the blue
equilibrium (see AppendixB). ♦

Remark 6. No equilibrium dominates another: if going from
one equilibrium to another increases the (risk-adjusted) welfare
of one agent, then it decreases the (risk-adjusted) welfare of the
other. ♦

Remark 7. Using the analytical results we check that there
exists a set of non-zero Lebesgue measure of parameters
V1,V2, c, c1, c2, r1, and r2 (albeit small), that have three distinct
equilibria with the same properties. ♦

Remark 8. We can show that the blue equilibrium is a convex
combination of red and green equilibrium, illustrated on Fig-
ure 1 by the dashed blue line. ♦
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AppendixA. Analytical results

We first analyses the best responses of the producer and the
consumer given a price π. Then, we deduce conditions on the
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Figure 2: Representation of vector field π′ = z(π)

price and find equilibrium prices.

AppendixA.1. Parametric solution with respect to π

Assume without loss of generality that 0 < π1 < π2.

AppendixA.1.1. Statement of consumer’s problem
The consumer solves one problem per scenario ωi, i = 1, 2.

Let V1, V2, r1 and r2 be strictly positive constants. The con-
sumer problem for ωi is

min
yi

πiyi − Viyi +
1
2

riy2
i .

AppendixA.1.2. Statement of producer’s problem
The risk aversion of the producer is represented by a coherent

risk measure F with risk set Q. Then the producer problem
reads

min
x≥0,xr≥0

F
[
C(x) + Cr(xr) − π(x + xr)

]
.

Note that in the case of two outcomes the probability P mea-
sure can be defined by P(ω1), which we denote p. Hence the
probability set P can be described by an interval [p, p̄].

Then the producer problem reads

min
x≥0,x1≥0,x2≥0

1
2

cx2 + max
p∈[p, p̄]

{
p
(c1x2

1

2
− π1(x + x1)

)
+ (1 − p)

(c2x2
2

2
− π2(x + x2)

)}
(A.1)

AppendixA.1.3. Statement of complementary constraints
The complementary constraint states that a feasible solution

is a solution where production is greater than demand for each
scenario ω ∈ Ω. Moreover, we want equality between produc-
tion and demand at equilibrium. These constraints are written

0 ≤ (x + xr(ω)) − y(ω) ⊥ π(ω) ≥ 0 . (A.2)

AppendixA.1.4. Analytic solution of the producer’s problem
Focusing on the second stage problem of (A.1) we have

Q(π)(x) = max
p∈[p, p̄]

p min
x1≥0

{c1x2
1

2
− π1(x + x1)

}
+ (1 − p) min

x2≥0

{c2x2
2

2
− π2(x + x2)

}
.

Note that for i ∈ {1, 2} ci > 0, hence we have x
]

i = πi
ci

which
in turn gives

Q(π)(x) = max
p∈[p, p̄]

−p
( π2

1

2c1
+ π1x

)
− (1 − p)

( π2
2

2c2
+ π2x

)
(A.4)

= max
p∈[p, p̄]

p
(( π2

2

2c2
−
π2

1

2c1

)
+

(
π2 − π1

)
x
)
−

( π2
2

2c2
+ π2x

)
.

Defining

xc(π) =
−1

π2 − π1

( π2
2

2c2
−
π2

1

2c1

)
, (A.5)

we see that the worst case probability is given by

p
]

(π) =


p̄ if x > xc(π) ,
p if x < xc(π) ,
any p ∈ [p, p̄] if x = xc(π) ,

and thus Equation (A.4) yields

Q(π)(x) =

−Ep̄

[
π2

2cr
+ πx

]
if x ≥ xc(π) ,

−Ep

[
π2

2cr
+ πx

]
if x < xc(π) .

Now the first stage problem (Problem (A.1)) reads

min
x≥0

1
2

cx2 − Ep̄

[ π2

2cr
+ πx

]
1x≥xc − Ep

[ π2

2cr
+ πx

]
1x<xc .

We have

min
x≥xc

1
2

cx2+Q(π)(x) =

−
1
2c E p̄

[
π
]2
− Ep̄

[
π2

2cr

]
if xc ≤

Ep̄

[
π
]

c ,

1
2 cx2

c − E p̄

[
π2

2cr
+ πxc

]
if Ep̄

[
π
]

c ≤ xc ,
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condition x] x]i y]i
case a) xc ≤

Ep̄

[
π
]

c
Ep̄

[
π
]

c
πi
ci

Vi−πi
ri

case b) Ep̄

[
π
]

c ≤ xc ≤
Ep

[
π
]

c xc
πi
ci

Vi−πi
ri

case c)
Ep

[
π
]

c ≤ xc
Ep

[
π
]

c
πi
ci

Vi−πi
ri

Table A.2: Optimal control for producer and consumer problems

attained at E p̄

[
π
]

c and xc respectively.
If xc > 0 we also have

min
0≤x≤xc

1
2

cx2+Q(π)(x) =


1
2 cx2

c − Ep̄

[
π2

2cr
+ πxc

]
if xc ≤

Ep

[
π
]

c ,

− 1
2c Ep

[
π
]2
− Ep

[
π2

2cr

]
if

Ep

[
π
]

c ≤ xc ,

attained at xc and
Ep

[
π
]

c respectively. If xc ≤ 0 the solution
given earlier holds.

Recall that Ep
[
π
]
≤ Ep

[
π
]
, thus the optimal solution can be

summed up in Table A.2

AppendixA.2. Finding price equilibrium

Looking at Table A.2 we see that there are three regimes,
depending only on the prices (π1, π2) of optimal first stage so-
lutions. We are now looking for prices (π1, π2) such that the
complementarity constraint (A.2) is satisfied. For strictly posi-
tive prices, this constraint can be summed up as

zi(π) = x
]

(π) + x
]

1(π) − y
]

i (π) = 0, i ∈ {1, 2}. (A.6)

To go further we are going to split cases by defining the aux-
iliary excess demand function

za
i (π) =

E p̄
[
π
]

c
+
πi

ci
−

Vi − πi

ri
,

zb
i (π) = xc(π) +

πi

ci
−

Vi − πi

ri
,

zc
i (π) =

Ep
[
π
]

c
+
πi

ci
−

Vi − πi

ri
,

such that we have

z = za1cxc(π)≤Ep̄

[
π
] + zb1

Ep̄

[
π
]
≤cxc(π)≤Ep

[
π
] + zc1

Ep

[
π
]
≤cxc(π) .

AppendixA.2.1. Case a and c
The set of prices such that za

i (π) = 0 are lines given by

π2 =
cc1V1 −

(
c1r1 p̄ + c(r1 + c1)

)
π1

c1r1(1 − p̄)
,

π2 =
cc2V2 − c2r2 p̄

c2r2(1 − p̄) + c(r2 + c2)
,

and the equilibrium can be found by solving the linear sys-
tem. Case c is similar, subtituting p̄ by p.

AppendixA.2.2. Case b
The set of prices such that zb

i (π) = 0 are an ellipsoid and an
hyperbola given by

1
π1 − π2

( π2
2

2c2
−
π2

1

2c1

)
+
π1

c1
−

V1 − π1

r1
= 0 ,

1
π1 − π2

( π2
2

2c2
−
π2

1

2c1

)
+
π2

c2
−

V2 − π2

r2
= 0 ,

whose affine equations read

π2
2

2c2
−

( 1
c1

+
1
r1

)
π1π2 +

( 1
r1

+
1

2c1

)
π2

1 + (π2 − π1)
V1

r1
= 0 ,( 1

r2
+

1
2c2

)
π2

2 −
( 1
c2

+
1
r2

)
π1π2 +

1
2c1

π2
1 − (π2 − π1)

V2

r2
= 0 .

AppendixB. Unstability of equilibrium

Definition 2. Let π(t) be the general solution of the differential
equation

π′ = z(π) , (B.1)

such that π(0) = π
0

An equilibrium π
]

such that z(π) = 0 is said
to be locally stable if for all ε > 0, there exists δ > 0 such that

‖π
0
− π

]

‖ < δ⇒ ‖π(t) − π
]

‖ < ε , ∀t > 0 . (B.2)

Using classical results from the field of Ordinary Differential
Equations (see Mattheij and Molenaar [9]), the local stability
can be determined from studying the linearization of the system
around the equilibrium point.

Proposition 6. Let π
]

be an equilibrium point. Let A be the
Jacobian matrix of z(π) at point π

]

. Then π
]

is stable if and
only both real parts of eigenvalues of A are strictly positive.

Computing matrix A and its eigenvalues in exact arithmetic
(using Maxima), we find that the blue equilibrium is unstable
and that green and red equilibria are stable.
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