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Abstract—The integration of multiple and technologically
heterogeneous sensors (infrared, color, etc) in vision systems tends
to democratize. Thus, the advanced driver assistance, 3-D vision,
inspection systems or military equipment benefit from this multi-
modal perception allowing to improve the resulting quality and
robustness; or simply enabling the new applications. According
to the applicative context, the parameters of each sensor can
dynamically vary as well as the number of ’active sensors’ used at
the moment. This makes the design of computing resources very
arduous task in the context of latency critical application. The
proposed solution is based on the self-awareness of such vision
system. We propose an original on-chip monitor, completed by an
observation and command network-on-chip allowing the system
resources supervision and their on-the-fly adaptation. We present
the evaluation of the proposed monitoring solution through FPGA
implementation. We estimate the cost of the proposed solution in
the terms of surface occupation and latency. We show that the
proposed solution guarantees a processing of 1080p resolution
frames at more than 60 fps.

Keywords—on-chip monitoring, self-aware, auto-adaptive archi-
tecture, router, vision, multi-stream, FPGA.

I. INTRODUCTION

More and more embedded vision systems involve multiple,
and often heterogeneous, image sensors such as color, infrared
or low-light sensor. This trend is motivated by the need to
improve the robustness of the applications or by the new
industrial usage. To illustrate, we can cite the frequent case
of color and infrared image fusion from day and night vision
cameras, frequently used in surveillance and security context
[1]–[3]. Another example is the fusion of low-light and infra-
red images enabling color night vision system [4]. Also, the
ADAS1 and UAV2 systems benefit from such multi-modal
approaches increasing the capabilities of such systems [5], [6].

Also, the modern multi-sensor vision systems (Fig. 1)
have to provide numerous functionalities as photo capture,
face detection, image fusion, depth estimation [3] or moving
object tracking [7]. These applications impose the different
performance requirements in terms of frame rate, frame res-
olution or processing latency. It means that according to
the applicative context, the parameters of each sensor can
dynamically vary. In addition, the number of ’active sensors’
used at the moment can dynamically change with respect to
the luminosity conditions or the applicative requirements. This
makes the design of computing resources very arduous task,

1Advanced driver assistance systems
2Unmanned Aerial Vehicles
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Fig. 1: Multi-sensor embedded vision system.

especially in the context of latency critical application.
The complexity of the computationally efficient hardware

design for multi-sensor systems is illustrated by the numerous
publications dealing with some individual key problems of
this challenge. Thus in [8] the authors develop and implement
an FPGA-based scalable and resource-efficient multi-camera
IP core for image reconstruction, however, the performance
decreases with the number of sensors. In [9] the authors focus
on the minimization the cost of multi-modal sensing systems,
they make the information delivered by sensors available for
use by different applications. A runtime reconfigurable SoC is
proposed in [10] but it remains limited only to two sensors at
the time. In [11] we introduce an auto-adaptable architecture
for multi-sensor vision system, but the control and command
part is not developed.

Generally speaking, the existing multi-sensor hardware
propositions suppose to know the working parameters in
advance and the computing system is designed for some given
trade-off or even for the worst-case configuration. It results
into the multiplication of processing chains specific to each
sensor (Fig. 2). If we take into account that not all the sensors
are used at the same time, such solutions become very costly
and inefficient. For these reasons, we propose to consider
dynamically adaptive architecture, based on self-awareness
principle [12] and allowing on-the-fly reorganization of the
computing capabilities of the architecture.

However, the dynamic reorganization of a heterogeneous
multi-stream architecture could raise the latency and the data
management issues. To reduce the impact on the processing
latency and to add the support of multi-stream data manage-
ment, we introduce an original on-chip system monitor. Its role
is to observe the system and to decide in the real-time when
to perform the required runtime adaptations of ressources.

In the past, some interesting monitoring approaches have



been proposed with the similar objectives. For instance, in [13],
authors present a Multiprocessor System-on-Chip monitoring
solution for frequency scaling. Another monitoring method for
Partial and Dynamic Reconfiguration application is presented
in [14]. In [15], authors propose a network on chip monitoring
based on programmable probes. However, these solutions
are not directly applicable to the heterogeneous multi-stream
architectures. We demonstrate it in [16], where we present a
first dedicated monitoring for on-the-fly pixel frequency fine-
tuning for multi-sensor systems. Nevertheless, the scalability
of this previous solution was limited.

In this paper, we propose a highly scalable on-chip moni-
toring system for runtime adaptation of heterogeneous multi-
stream architecture. This solution is based on a network on
chip, dedicated to collect system observation and to route
adaptation command.

The paper is organized as follows. Section II presents
the specific challenge of heterogeneous multi-stream vision
system design. Then, the proposed Monitoring solution is
presented in Section III. Performance evaluation on hardware
implementation is given in Section IV while Section V draws
the conclusion of the paper.

II. MULTI-STREAM VISION SYSTEM DESIGN
CHALLENGE

We consider a vision system with multiple and heteroge-
neous image sensors. These sensors differ from their frame
rate, frame size (resolution) or type (color, infrared, low-
light). In standard approach each data stream has a restoration,
enhancement and output processing stage before getting dis-
played (Fig. 2). The restoration stage is sensor specific, i.e. a
color image stream needs white balance processing while an
infrared stream needs heavier contrast enhancement.

In general, linear pipeline implementation of Processing
Element (PE) is adopted for lowest latency processing per-
formance. Notice that every latency critical application are
inevitably integrated as an optimized pipeline, with several
programable features. To illustrate, we can cite corner detecton
[17] or mathematical morphology co-processor published in
[18]. Such single processing pipeline works at a different pixel
frequency and has its own frame rate and frame size. These
parameters are tailored according to the characteristics of the
sensor (Fig. 2).

Such static and fully pipelined architecture does not allow
any runtime modification of these parameters. Nevertheless, we
have to consider a multi-context application and the dynamic
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Fig. 2: Pipelined static multi-stream architecture
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Fig. 3: Different use-cases and required performances

variation of the sensor parameters. Figure 3 allows to compare
the different set of parameters and the associated performance
requirements we need to support.

In Video mode, the context requires the highest frame
rate and the lowest latency that the architecture can provide.
Whereas, in Photo mode, the resolution is the crucial parame-
ter. This mode expects the highest resolution and image quality
at expense of a low frame rate. Finally, a third use-case with a
low battery context is illustrated. In this case, the vision system
can provide a quite good frame rate and resolution performance
but with the lowest power consumption. This use-case occurs
when the end-user is in the end of his operation with the lowest
level of the battery.

To resume, we wish to optimize resource utilization while
enabling runtime context variation. Hence, we need a dynami-
cally adaptive architecture with the capability to reorganize its
structure/data stream management according to the use-case
requirements. The proposed monitoring system is designed to
perform on-the-fly adaptation of such heterogeneous multi-
stream systems. The attention is paid to the streams man-
agement and synchronisation during the adaptations. It also
guarantees the data coherency. Notice that the proposed on-
chip monitoring solution withstands multi-pipeline architecture
with multiple clocking domains.

III. ON-CHIP MONITORING SYSTEM

In our proposition, the Monitor is used to collect runtime
status of the architecture (processing resources and hardware
controllers). The runtime status is called Observations (Fig. 4).

When a dynamic context switching operation is requested,
the Monitor compares the observed system status with the
required performances and it adapts the concerning part of the
architecture through adaptation Commands. According to the
considered adaptation, the Monitor may have to load configu-
ration data from Configuration memory. Adaptation commands
may target processing pipelines or hardware controllers of the
architecture. Also, the Monitor supports the partial dynamic
reconfiguration, the Monitor only needs to check bitstream
memory address in the Configuration memory.

The Monitor communicates with processing pipelines
thanks to dedicated network on chip. It allows to collect the
observation data (OBS) and to send the adaptation commands
(CMD). Each processing element (PE) of is bound to a router.
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The PEs on the extremities of a pipeline (the first and last)
are bound to a specific RM router (Monitoring router) while
internal PEs are bound to a RS router (Simple router).

RM is the interface router between processing pipelines
and the Monitor. Each RM router is connected to the Monitor
through a CMD channel and an OBS channel (Fig. 5). Ob-
servation data reach the Monitor through OBS channel while
the Monitor sends commands to the pipelines through CMD
channel. OBS and CMD channels of RM routers are enough
to reach all the PEs of a pipeline. A RS router of a PE
conveys its observation data to its right side neighbour router
until reaching the ending RM router. This later conveys the
observation data to the Monitor. In the same way, an adaptation
command toward an internal PE is sent to the beginning RM

router of the concerning pipeline. This RM router forwards
the command to its right side neighbour router until reaching
the target PE.

Number of PEs and pipelines in figure 5 are given only
as an example to put ideas down. For reasons of clarity, only
Restoration and Enhancement processing stages are presented
in this figure. But, the concept remains valid for Output pro-
cessing stage too. In figure 5, we can see that the ending RM

routers have not their CMD channel. Actually, as mentioned
before, the beginning RM router is enough to convey CMD
data to all the PEs of the pipeline. However, the CMD channel
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Fig. 5: Network on chip for monitoring of multi-sensor vision
system

of the ending RM routers can be activated in case of a high
latency-critical application. Some pipelines may have less PEs
than others (ie : pipeline in line number 2). In this case, they
will have less RS routers but still two boundary RM routers.

To reduce the implementation cost, we adopt the princi-
ple proposed in [11] where the adaptation commands were
encapsulated into the data stream header. We complete it by
adding also the Observations into the header packets (Fig. 6).
We propose to use a common communication interface and
protocol between PEs, routers and the Monitor. This interface
is quite similar to ALTERA Avalon Streaming Interface or
XILINX AXI4-Stream interface. This communication protocol
is depicted in figure 6.

Clk

Start

Stop

Valid

Data

Ready

D0 D1 D2 D3HDR

Packet
producer/
transmitter

Packet
consumer/
receiver

Start
Stop

Valid
Data
Ready

Fig. 6: Communication interface and protocol

A Start and Stop signals indicate respectively the beginning
and the ending of a data packet. Between Start and Stop
signals, there are a given number of data phits (payload). A
Valid signal indicates the validity of the value presented in
Data. The value of Data while Start is high represents the
packet header. The header has a size of one phit. Ready signal
is used as back pressure signal to prevent data loss. By the way,
using a back pressure signal reduces buffer memory footprint.

TYPE SOURCE ID TARGET ID DATA ID DATA SIZE

St Ssi Sti Sdi Sds

Header Payload
Packet

PIPE PE PIPE PE

HDR D0 D2D1 D3 Dk

Fig. 7: Packet header description

Packet header details are given in figure 7. The packet
header has five fields : Type, Source ID, Target ID, Data ID and
Data size. Type indicates whether the packet is a pixel (PIX),
an observation (OBS) or command (CMD) packet. Source and
Target IDs give information respectively about the producing
and the targeting component of the packet. An OBS packet
has necessarily the Monitor’s ID as Target ID. Meanwhile, as
a CMD packet comes necessarily from the Monitor, its Source
ID is the Monitor’s one. Data ID is used to distinguish several
OBS or CMD data respectively from or toward a same PE.
Finally, Data size gives the number of data phits.

We added a fourth type of packet : frame synchronization
packet (SYN). In traditional architecture, frame synchroniza-
tion signal are distributed by a single wire. Here, we rather
use a SYN packet from the Frame Synchronization Controller
to synchronize PEs of a pipeline.
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Figure 8 depicts the internal structure of RM router. RS

router has a similar structure without CMD and OBS channels.
Three dedicated header decoders are used to decode the header
of packets entering from Stream input channel, CMD input
channel and PE output interface. Header information, Start and
Stop signals are used to synchronize and control the set of
multiplexers of a router. CMD and OBS channels work in
Monitor clock domain whereas Stream channels work in video
clock domain.

RM or RS router has exclusively one of the following set
of configurations SCFG = {CFG1, CFG2, CFG3, CFG4,
CFG5, CFG6} (Fig. 9). Two more monitoring purpose rout-
ing are possible in parallel with one of the previous configura-
tions : FWDCMD and FWDOBS . There are used to forward
CMD or OBS packet toward upper or lower pipeline without
altering the processing of the current pipeline. Configurations
CFG5, CFG6, FWDCMD and FWDOBS are specific to
RM router.

CFG1 CFG2 CFG3

CFG4 CFG5 CFG6

FWDCMD

FWDOBS

Exclusive set of 
configurations

Monitoring 
configurations

Fig. 9: Set of routers configurations

Packet routing mechanism of RM is described in figure 10.
At the initialization of the system, a RM router is in default
CFG1 configuration. When a new packet reaches the RM

router (Start signal rising), the packet header is decoded by the
RM router. Then, the router’s configuration will depend on the
Type of the packet. If the type is PIX, the router is configured
as CFG1. In case of SYN packet, the router takes CFG1

configuration and launches Frame Synchronization signal.
If it is an OBS packet, the router checks whether the OBS

Output channel is already busy. As long as the OBS Output
channel is busy, the Ready signal is set to low to keep the
OBS packet. Once the OBS Output channel is free again, the
router takes FWDOBS configuration. In case of CMD packet,
the router checks whether the CMD Output channel is already
busy. If the CMD Output channel is free, the configuration will
depend on Target ID. According to the Target ID, the router
will be configured in CFG1, CFG2 or CFG3. Whatever is
the Type, a packet routing process ends when Stop signal rises.

For multi-stream Processing Element, such as color-
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Fig. 10: RM routing mechanism

infrared streams fusion, a Packet Serializer is used to buffer
and interlace both streams. One whole frame line of the first
pipeline is forwarded to the multi-stream PE before forwarding
the next line of the second pipeline. As the Packet Serializer
has to deal with twice the bandwidth of a single router, its
frequency is at least twice the frequency of a router.

IV. HARDWARE PROTOTYPING AND EVALUATION

The presented monitoring solution has been implemented
in an ALTERA Cyclone V FPGA (5CGXFC7D6F). Perfor-
mance of this solution has been evaluated through two major
scenarios presented in the following paragraphs.

A. Use-case 1: Runtime frame characteristics modification

Context : The application requires the sensor frame rate or
resolution modification.

Observation : The monitor verifies the present sensor
characteristics.

Adaptation : If necessary, the monitor takes the decision
and intiates an on-the-fly pixel clock frequency adaptation.

Controller : Frame synchronisation manager for PLL re-
configuration in FPGA (ALTERA).

When the outdoor context changes (environment type or
luminosity condition), the Monitor should choose the appro-
priate sensor among the available sensors of the vision systems.
According to the operational context, it could even be a couple
of sensors (ie : color-infrared image fusion, multi-focal image
fusion). Consequently, characteristics of the input stream,
especially the frame rate and the resolution, would change on-
the-fly. In the same way, when the Region-of-Interest (ROI) is
rescaled, the resolution of the processed stream could change.

Instead of scaling the architecture’s Processing Element
with the highest worst-case frequency, we propose to dy-
namically rescale the pixel clock frequency according to the
runtime context requirements. According to the frame rate and
resolution of the stream (observation data from the sensor), the
Monitor computes the minimal required pixel clock frequency
of a given pipeline of the architecture. Then, the Monitor fine-
tunes the current clock frequency if its value does not fit with
the required one. Some early results have been presented in a
previous work [16].
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Fig. 11: Use-case 1 : stream frame rate and resolution adapta-
tion

The adaptation of the clock frequency consists in re-
configuring the PLL corresponding to the concerned clock
(ALTERA reconfigurable PLL). The Monitor also adapts the
Frame Synchronization signal’s period. Before any frequency
value adaptation, the Monitor sends command to the concerned
pipeline to freeze the interface of the PEs.

1 Observation of the characteristics of the sensor from the
sensor board.

2 Freezing command toward PEs of the concerned pipeline
in case of any characteristic modification.

3 Freezing operation success information from PEs.
4 New required frequency computation and frequency adap-

tation command toward the Clock Manager (then PLL
Reconfiguration).

5 Frame resolution modification command toward the
Memory Controller.

6 Frame period time modification command toward the
Frame Synchronization Manager.

7 End of freezing command toward PEs of the concerned
pipeline (once all adaptation are completed).

8 End of freezing operation success information from PEs.

Notice that this concept is suitable for recent adaptive frame
rate and resolution sensor technology.

B. Use-case 2: Runtime sensor type switching

Context : New sensor connected to the system, switching
between sensor types used in the application.

Observation : Processing pipeline characteristics, sensor
specific informations.

Adaptation : The monitor initiates coarse-grain dynamic
re-allocation of computation resources.

Controller : Partial and Dynamic Reconfiguration host of
FPGA (ALTERA).

This use-case illustrates the context of sensor type switch-
ing while the frame rate and resolution values remain un-
changed. When the outdoor luminosity condition changes, the
type of the sensor ought to be adapted. For instance, the vision
system shifts to the infrared sensor for night vision when it
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Fig. 12: Use-case 2 : stream type modification

is getting night. Sensor-specific pre-processing depends on the
type of the sensor. In a static architecture, when one of the
vision system’s sensor is not used, its pre-processing resources
are not re-usable for another active sensor. In our dynamically
adaptive architecture, we propose to deploy sensor-specific pre-
processing in reconfigurable resources. In case of sensor type
switching, these resources would be re-allocated for the new
active sensor.

1 Observation of the characteristics of the sensor from the
sensor board.

2 Freezing command toward PEs of the concerned pipeline
in case of any characteristic modification.

3 Freezing operation success information from PEs.
4 Decision of the new required image pre-processing and

PE adaptation request to the Partial Reconfiguration Host.
5 End of freezing command toward PEs of the concerned

pipeline (once reconfiguration is completed).
6 End of freezing operation success information from PEs.

For evaluation purpose, we simulated luminosity condition
switching scenarios (day, evening, night). When the luminosity
condition changes, the Monitor check the current active sen-
sors. If the required sensor is not active, it shifts the sensor
and adapts the sensor-specific image pre-processing pipeline.
The pipeline adaptation consists in Partial and Dynamic Re-
configuration of FPGA.

As the prototype is implemented in Altera Cyclone V
FPGA, the Monitor sends reconfiguration request to the Altera
PR Core (cyclonev prblock) through a PR Host. The PR
Core returns back a PR success or failure feedback to the
Monitor. Once again, before any partial reconfiguration, the
Monitor sends command to the concerned pipeline to freeze
the interface of the PEs.

V. LATENCY COST EVALUATION

The proposed solution have been described in HDL and
evaluated with a HDL simulator (ModelSim). Sensor pixel
streams have been simulated thanks to image vector input files.
Several values of frequency, frame rate and resolution have
been tested.

Any packet crosses a RM or RS router with a minimal
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latency of 2 cycles. These minimal 2 cycles can increase up to
8 cycles in case of contention in the router. In figure 13, latency
performance of typical pipelines are presented. We evaluated
the latencies in case of 1 to 6 pipelines. For each case, the
worst-case routing path latency has been reported. The blue
curve presents contention-free scenario whereas the orange one
presents the highest contention scenario. In case of a single
pipeline, there is no contention. For 3 pipelines-based multi-
stream architecture, we have a worst-case latency of 20 cycles.
That is to say, a CMD packet from the Monitor takes at most
20 cycles to reach the farthest PE. In the same way, an OBS
packet from the farthest PE takes at most 20 cycles to reach
the Monitor. Besides, in addition to the interlacing operation
latency, the Packet Serializer adds an extra two cycles latency.

A. Synthesis results

Our synthesis results are based on Altera Cyclone V FPGA
(5CGXFC7D6F) implementation with a 32 bits data size. The
header fields sizes of this implementation are given in table I.
Area overhead of the presented monitoring solution is given
in table II.

Field St Ssi Sti Sdi Sds

Size (bits) 2 8 8 10 4

TABLE I: Header implementation in 32 bits data

The area utilization of the monitoring solution has been
compared to a typical multi-stream reference design. This
reference design needs 13 RM , 4 RS and 1 Packet Serializer.
Area overhead comparison is given between brackets. In this
reference design, the proposed monitoring solution has less
than 7% of overall area overhead.

Component ALUT Register Memory (bit)

RS 6 144 0
RM 248 408 512

Packet Serializer 39 42 40 960
Monitor 151 164 0

In reference design (%) 3 438 (6.7%) 6 086 (2.9%) 41 584 (0.9%)

TABLE II: Monitoring solution area overhead

The memory footprint of the Packet Serializer can be
improved by reducing the interlacing granularity. Otherwise,
as RM and RS routers have a relative low area overhead,
the solution is easily scalable for architectures with more than
4 pipelines. In case of 64 bits data, we got the following
synthesis results. RM (ALUT:289, Regs:620, Mem:1024) and
RS (ALUT:10, Regs:280, Mem:0).

Nb. of pipeline 1 2 3 4 6

Clk Monitor 218 196 177 157 123
Clk Video 237 223 210 198 193

TABLE III: Frequency performance (MHz)

Frequency performance of the proposed solution is pre-
sented in table III. Typical multi-stream architectures have 3
or 4 pipelines. Results in table III show a maximum affordable
frequency of 157 MHz for monitoring clock (Clk Monitor)
and 198 MHz for pipeline clock (Clk Video) in case of 4
pipelines. Within this performance, we can deal with 1080p
resolution up to 60 frame per second.

VI. CONCLUSION

In this paper, we introduced an original on-chip monitoring
solution for dynamically adaptive multi-stream vision architec-
ture. This solution is based on a dedicated network on chip for
monitoring observation and adaptation. It supports architec-
ture with numerous heterogeneous pixel streams and multiple
clocking domains. Evaluations on FPGA implementation show
fair latency performance with a relatively low area overhead.
Future works will focus on the extension of the proposed
network on chip for pixel stream datapath flexibility.
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