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Abstract

We are interested in optimally controlling a discrete time dynamical system that
can be influenced by exogenous uncertainties. This is generally called a Stochas-
tic Optimal Control (SOC) problem and the Dynamic Programming (DP) prin-
ciple is one of the standard way of solving it. Unfortunately, DP faces the
so-called curse of dimensionality: the complexity of solving DP equations grows
exponentially with the dimension of the variable that is sufficient to take optimal
decisions (the so-called state variable). For a large class of SOC problems, which
includes important practical applications in energy management, we propose an
original way of obtaining near optimal controls. The algorithm we introduce
is based on Lagrangian relaxation, of which the application to decomposition
is well-known in the deterministic framework. However, its application to such
closed-loop problems is not straightforward and an additional statistical approx-
imation concerning the dual process is needed. The resulting methodology is
called Dual Approximate Dynamic Programming (DADP). We briefly present
DADP, give interpretations and enlighten the error induced by the approxima-
tion. The paper is mainly devoted to applying DADP to the management of
large hydro valleys. The modeling of such systems is presented, as well as the
practical implementation of the methodology. Numerical results are provided
on several valleys, and we compare our approach with the state of the art SDDP
method.
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1. Introduction

1.1. Large-scale systems and energy applications

Consider a controlled dynamical system over a discrete and finite time hori-
zon. This system may be influenced by exogenous noises that affect its behavior.
We suppose that, at every instant, the decision maker is able to observe the
noises and to keep these observations in memory. Since it is generally profitable
to take available observations into account when designing future decisions, we
are looking for strategies rather than simple decisions. Such strategies (or poli-
cies) are feedback functions that map every instant and every possible history
of the system to a decision to be made.

Figure 1: The Dordogne river.

The typical applications we have in mind are in the field of energy man-
agement. Consider a power producer that owns a certain number of power
units. Each unit has its own local characteristics such as physical constraints
that restrain the set of feasible decisions, and induces a production cost or a
revenue. The power producer has to control the power units so that an over-
all goal is met. A classical example is the so-called unit commitment problem
Takriti et al. (1996) where the producer has to satisfy a global power demand
at every instant. The power demand, as well as other parameters such as unit
breakdowns, are random. The producer is looking for strategies that make the
overall production cost minimal, over a given time horizon. Another applica-
tion, which is considered in this paper, is the management of a large-scale hydro
valley: here the power producer manages a cascade of dams, and maximizes the
revenue obtained by selling the energy produced by turbinating the water inside
the dams. Both natural inflows in water reservoirs and prices are random. In all
these problems, both the number of power units and the number of time steps
are usually large de Matos et al. (2015).
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1.2. Standard resolution methods

One classical approach when dealing with stochastic dynamic optimization
problems is to discretize the random inputs of the problem using a scenario
tree. Such an approach has been widely studied within the stochastic pro-
gramming community (Heitsch & Römisch (2009), Shapiro et al. (2009)), and
also used to model and solve energy problems Pflug & Pichler (2014). One
of the advantages of such a technique is that, as soon as the scenario tree is
drawn, the derived problem can be treated by classical mathematical program-
ming techniques. Thus, a number of decomposition methodologies have been
proposed (see for instance Rockafellar & Wets (1991), Carpentier et al. (1996),
Ruszczyński (1997), (Ruszczyński & Shapiro, 2003, Chap. 3)) and applied to
energy planning problems Bacaud et al. (2001). The way to combine the dis-
cretization of expectation together with the discretization of information in a
general setting has been presented in Heitsch et al. (2006), Carpentier et al.
(2015) and Pflug & Pichler (2014)). However, in a multi-stage setting, this
methodology suffers from the drawback that arises with scenario trees: as it
was pointed out by Shapiro (2006), the number of scenarios needed to achieve
a given accuracy grows exponentially with the number of time steps of the
problem.

The other natural approach to solve SOC problems is to rely on the dynamic
programming (DP) principle (see Bellman (1957), Puterman (1994), Bertsekas
(2000)). The core of the DP approach is the definition of a state variable that
is, roughly speaking, the variable that, in conjunction with the time variable,
is sufficient to take an optimal decision at every instant. It does not have the
drawback of the scenario trees concerning the number of time steps since strate-
gies are, in this context, depending on a state variable whose space dimension
does not grow with time1. However, DP suffers from another drawback which
is the so-called curse of dimensionality: the complexity of solving the DP equa-
tion grows exponentially with the state space dimension. Hence, solving the DP
equation by brute force is generally intractable when the state space dimension
goes beyond several units. In Vezolle et al. (2009), the authors were able to
solve DP on a 10 state variables energy management problem, using parallel
computation coupled with adequate data distribution, but the DP limits are
around 5 state variables in a straightforward use of the method.

Another popular idea is to represent the value functions (solutions of the
DP equation) as a linear combination of a priori chosen basis functions (see
Bellman & Dreyfus (1959) Bertsekas & Tsitsiklis (1996)). This approach, called
Approximate Dynamic Programming (ADP) has become very popular and the
reader is referred to Powell (2011) and Bertsekas (2012) for a precise description
of ADP. This approximation drastically reduces the complexity of solving the
DP equation. However, in order to be practically efficient, such an approach
requires some a priori information about the problem, in order to define a well

1In the case of power management, the state dimension is usually linked to the number of
power units.
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suited functional subspace. Indeed, there is no systematic means to choose
the basis functions and several choices have been proposed in the literature
Tsitsiklis & Van Roy (1996).

Last but not least is the popular DP-based method called Stochastic Dual
Dynamic Programming (SDDP). Starting with the seminal work Van Slyke & Wets
(1969), the SDDP method has been designed in Pereira & Pinto (1991). It has
been widely used in the energy management context and lately regained inter-
est in the Stochastic Programming community Philpott & Guan (2008), Shapiro
(2011). The idea is somehow to extend Kelley’s cutting plane method to the case
of multi-stage problems. Alternatively it can be seen as a multistage Benders
(or L-shaped) decomposition method with sampling. It consists in a succes-
sion of forward (simulation) and backward (Bellman function refining) passes
that ultimately aim at approaching the Bellman function by the supremum of
affine hyperplanes (cuts) generated during the backward passes. It provides
an efficient alternative to simply discretizing the state space to solve the DP
equation. In the convex case with finite support random variables, it has been
proven by Girardeau et al. (2015) that the method converges to optimality.

1.3. Decomposition approach

When dealing with large-scale optimization problems, the decomposition-
coordination approach aims at finding a solution to the original problem by
iteratively solving subproblems of smaller dimension. In the deterministic case,
several types of decomposition have been proposed (e.g. by prices, by quantities
or by interaction prediction) and unified in Cohen (1980) using a general frame-
work called Auxiliary Problem Principle. In the open-loop stochastic case, i.e.
when controls do not rely on any observation, it is proposed in Cohen & Culioli
(1990) to take advantage of both decomposition techniques and stochastic gra-
dient algorithms.

The natural extension of these techniques in the closed-loop stochastic case
(see Barty et al. (2009)) fails to provide decomposed state dependent strate-
gies. Indeed, the optimal strategy of a subproblem depends on the state of the
whole system, and not only on the local state. In other words, decomposition
approaches are meant to decompose the control space, namely the range of the
strategy, but the numerical complexity of the problems also arises because of
the dimensionality of the state space, that is to say the domain of the strategy.

We recently proposed a way to use price decomposition within the closed-
loop stochastic case. The coupling constraints, namely the constraints prevent-
ing the problem from being naturally decomposed, are dualized using a Lagrange
multiplier (price). At each iteration, the price decomposition algorithm solves
each subproblem using the current price, and then uses the solutions to update
it. In the stochastic context, the price is a random process whose dynamics is not
available, so the subproblems do not in general fall into the Markovian setting.
However, in a specific instance of this problem Strugarek (2006), the author ex-
hibited a dynamics for the optimal multiplier and showed that these dynamics
were independent with respect to the decision variables. Hence it was possible
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to come down to the Markovian framework and to use DP to solve the sub-
problems in this case. Following this idea, it is proposed in Barty et al. (2010b)
to choose a parameterized dynamics for these multipliers in such a way that
solving subproblems using DP becomes possible. While the approach, called
Dual Approximate Dynamic Programming (DADP), showed promising results
on numerical examples, it suffers from the fact that the induced restrained dual
space is non-convex, leading to some numerical instabilities. Moreover, it was
not possible to give convergence results for the algorithm.

The method has then been improved through a series of PhD theses (Girardeau
(2010), Alais (2013) and Leclère (2014)) both from the theoretical and from the
practical point of view. The methodology still relies on Lagrangian decomposi-
tion. In order to make the resolution of subproblems tractable, the core idea is
to replace the current Lagrange multiplier by its conditional expectation with
respect to some information process, at every iteration. This information pro-
cess has to be a priori chosen and adapted to the natural filtration. Assume
that the information process is driven by a dynamics: the state in each sub-
problem then consists of the original state augmented by the new state induced
by the information process, making the resolution of the subproblem tractable
by DP. The quality of the results produced by the algorithm highly depends on
the choice of this information variable. An interesting point is that approximat-
ing the multipliers by their conditional expectations has an interpretation in
terms of a relaxed optimization problem: this revisited DADP algorithm in fact
aims at solving an approximate primal problem where the almost-sure coupling
constraint has been replaced by its conditional expectation with respect to the
information variable. In other words, this methodology consists in solving a
relaxed primal problem, hence giving a lower bound of the true optimal cost.
Another consequence of this approximation is that the solutions obtained by
the DADP algorithm do not satisfy the initial almost-sure coupling constraint,
so we must rely on a heuristic procedure to produce a feasible solution to the
original problem.

1.4. Contents of the paper

The main contribution of the paper is to give a practical algorithm aiming at
solving large scale stochastic optimal control problems and providing closed-loop
strategies. The numerous approximations used in the algorithm, and especially
the one allowing for feasible strategies, make difficult to theoretically assess the
quality of the solution finally adopted. Nevertheless, numerical implementation
shows that the method is promising to solve large scale optimization problems
such as those encountered in the field of energy management.

The paper is organized as follows. In §2, we present the hydro valley man-
agement problem, the corresponding general SOC formulation and the DP prin-
ciple. We then concentrate on the spatial decomposition of such a problem and
the difficulties of using DP at the subproblem level. In §3, we present the DADP
method and give different interpretations. We then propose a way to recover an
admissible solution from the DADP results and we briefly discuss the theoreti-
cal and practical questions associated to the convergence and implementation of
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the method. Finally, in §4, we apply the DADP method to the management of
hydro valleys. Different examples, corresponding to either academic or realistic
valleys, are described. A comparison of the method with SDDP is outlined.

1.5. Notations

We will use the following notations, considering a probability space (Ω,A,P):

• bold letters for random variables, normal font for their realizations;

• X � Ft (resp. X � Y ) means that the random variable X is measurable
with respect to the σ-algebra Ft (resp. with respect to the σ-algebra
generated by Y , denoted by σ(Y ));

• x generally stands for the state, u for the control, w for an exogeneous
noise;

• Lt for a cost function at time t, K for a final cost function;

• Vt represent a Bellman’s value function at time t;

• Ji, jK is the set of integer between i and j;

• the notation X
i (resp. U i and Z

i) stands for the discrete time state pro-
cess (Xi

0, . . . ,X
i
T ) (resp. control processes (U

i
0, . . . ,U

i
T−1), (Z

i
0, . . . ,Z

i
T−1)).

2. Mathematical formulation

In this section, we present the modeling of a hydro valley and the associated
optimization framework.

2.1. Dams management problem

We consider a hydro valley constituted of N cascaded dams as represented
in Figure 2. The water turbinated at a dam produces energy which is sold on
electricity markets, and then enters the nearest downstream dam.2

We formulate the problem of maximizing the cascade revenue over a discrete
time horizon {0, 1, . . . , T }. The representative variables of dam i at time t are:
ui
t for the water turbinated, xi

t for the current water volume, ait for the natural
water inflow entering dam i, pit for the market value of the water of dam i. The
randomness is given by wi

t = (ait, p
i
t).

The modeling of a dam takes into account a possible overflow: the spilled
water does not produce electricity, but enters the next dam (see Figure 3).

2Note that the valley geometry may be more complicated than a pure cascade: see for
example the valleys represented at Figure 6.
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Figure 2: Operating scheme of a hydro valley with 3 dams.
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Figure 3: Dam behavior.

• The dam dynamics reads

xi
t+1 = xi

t − ui
t + ait + zit − sit = f i

t (x
i
t, u

i
t, w

i
t, z

i
t) ,

where sit is the volume of water spilled by overflow of the dam:

sit = max
{
0, xi

t − ui
t + ait + zit − xi

}
.

The constant value xi stands for the maximal capacity of dam i. The
outflow of dam i, that is, the sum of the turbinated water and of the
spilled water, is denoted by zi+1

t :

zi+1
t = ui

t + sit = git(x
i
t, u

i
t, w

i
t, z

i
t) .

Note that these dynamic equations are nonlinear because of the max oper-
ator in the definition of the spilled water volume. We assume the Hazard-
Decision information structure: the control ui

t applied at time t is chosen
once the noise wi

t at time t has been observed. It is thus possible to ensure
that the dam always remains above its minimal admissible volume xi by
limiting the control range:

ui ≤ ui
t ≤ min

{
ui, xi

t + ait + zit − xi
}
.
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Remark 1. As will be seen in §4, the typical time step length we use is the
month (with a time horizon of one year). It is thus reasonable to assume
the hazard-decision framework, the control applied for a given month being
in fact implemented each day taking into account the observed information
on a daily basis.

• The gain of the dam is the sum of different terms.

– Gain at each time t < T :

pitu
i
t − ǫ(ui

t)
2 ;

we denote by Li
t(x

i
t, u

i
t, w

i
t, z

i
t) the opposite of this gain (cost). The

quadratic terms ǫ(ui
t)

2 ensure the strong convexity of the cost func-
tion. These terms model the operating cost of the turbine and are
usually small.

– Final gain at time T :

−aimin{0, xi
T − x̂i}2 ;

we again denote by Ki
(
xi
T

)
the opposite of this gain. It corresponds

to a quadratic penalization around a target value x̂i representing the
desired water volume in the dam at the end of the time horizon.

Taking into account the opposite of the gains, we thus have to deal with
a minimization problem.

Thus the global optimization problem reads

min
(X,U ,Z)

E

( N∑

i=1

( T−1∑

t=0

Li
t

(
X

i
t,U

i
t,W

i
t,Z

i
t

)
+Ki

(
X

i
T

)))
, (1a)

s.t. X
i
0 given ,

X
i
t+1 = f i

t (X
i
t,U

i
t,W

i
t,Z

i
t) , i ∈ J1, NK , t ∈ J0, T − 1K , (1b)

U
i
t � σ(W 0, . . . ,W t) , i ∈ J1, NK , t ∈ J0, T − 1K , (1c)

Z
1
t = 0 ,

Z
i+1
t = git(X

i
t,U

i
t,W

i
t,Z

i
t) , i ∈ J1, NK , t ∈ J0, T − 1K . (1d)

Equations (1c) represent the so-called non-anticipativity constraints, that
is, the fact that each control U i

t, considered as a random variable, has to be
measurable with respect to the sigma-field σ(W 0, . . . ,W t) generated by the
noise sequence (W 0, . . . ,W t) up to time t.
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2.2. A more generic formulation

With a slight abuse of notation,3 the stochastic optimization problem for-
mulated at §2.1 reads

min
(Xi,Ui)i∈J1,NK

E

( N∑

i=1

( T−1∑

t=0

Li
t(X

i
t,U

i
t,W t) +Ki(X i

T )
))

, (2a)

s.t. X
i
t+1 = f i

t (X
i
t,U

i
t,W t) , X

i
0 given , (2b)

U
i
t � σ(W 0, . . . ,W t) , (2c)

N∑

i=1

Θi
t(X

i
t,U

i
t,W t) = 0 . (2d)

Constraints (2b) represent the dynamics and constraints (2c) are the non-
anticipativity constraints. The last constraints (2d) express the interactions
between the dams in a more general way than Equations (1d). They represent
an additive coupling with respect to the different production units, which is
termed the “spatial coupling of the problem”. Such a general modeling covers
other cases than the cascade problem, such that the unit commitment problem,
or the problem of exchanging energy on a smart grid.

2.3. Dynamic Programming like approaches

In the remainder of the paper, we assume that we are in the so-called white
noise setting.

Assumption 1. Noises W 0, . . . ,W T−1 are independent over time.

This assumption is of paramount importance in order to use Dynamic Pro-
gramming or related approaches such that Stochastic Dual Dynamic Program-
ming since in that case the controls given by DP or SDDP are the optimal ones
for Problem 2 (they are given as feedback functions depending on the state
variable). This assumption can be alleviated, in the case where it is possible to
identify a dynamics in the noise process (such as an ARMAmodel), and by incor-
porating this new dynamics in the state variables (see e.g. Maceira & Damazio
(2006) on this topic).

Under Assumption 1, Dynamic Programming (DP) applies to Problem (2)
(see e.g Bellman (1957); Puterman (1994); Bertsekas (2000) for the general
theory): there is no optimality loss to seek each controlU i

t at time t as a function
of both the state and the noise at time t.4 Then, thanks to the measurability
properties of the control the Bellman functions Vt are obtained by solving the

3which consists in denoting by U
i

t
the pair (U i

t
,Zi

t
)

4Remember that we have assumed the Hazard-Decision framework.
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Dynamic Programming equation backwards in time:

VT (xT ) =
N∑

i=1

Ki(xi
T ) , (3a)

Vt(xt) = E

(
min

u1,...,uN

N∑

i=1

Li
t(x

i,U i,W t) + Vt+1

(
ft(xt, ut,W t))

))
. (3b)

where xt = (x1
t , . . . , x

N
t ), ut = (u1

t , . . . , u
N
t ) and ft(xt, ut,W t) is the collection

of new states f i
t (x

1
t , u

i
t,W t).

The DP equation is agnostic to whether the state and control variables are
continuous or discrete, whether the constraints and the cost functions are convex
or not, etc. However, in order to exhaustively solve it we need to have discrete
state, and to be able to solve each equation to optimality. In practice, the
method is subject to the curse of dimensionality and cannot be used for large-
scale optimization problems. For example, applying DP to dams management
problems is practically untractable for more than five dams (see the results given
at §4.3).

Another way to compute the Bellman functions asociated to Problem (2) is to
use the Stochastic Dual Dynamic Programming (SDDP) method. The method
has been first described in Pereira & Pinto (1991), and its convergence has been
analysed in Philpott & Guan (2008) for the linear case and in Girardeau et al.
(2015) for the general convex case. SDDP recursively constructs an approxima-
tion of each Bellman function as the supremum of a number of affine functions,
thus exploiting the convexity of the Bellman functions (arising from the con-
vexity of the cost and constraint functions). SDDP has been used for a long
time for solving large-scale hydrothermal problems (see de Matos et al. (2015)
and the references therein) and allows to push the limits of DP in terms of state
dimension (see the results in §4.4).

2.4. Spatial coupling and approach by duality

A standard way to tackle large-scale optimization problems is to use La-
grange relaxation in order to split the original problem into a collection of
smaller subproblems by dualizing coupling constraints. As far as Problem (2)
is concerned, we have in mind to use DP for solving the subproblems and thus
want to dualize the spatial coupling constraints (2d) in order to formulate sub-
problems, each incorporating a single dam. The associated Lagrangian L is
accordingly

L
(
X,U ,Λ

)
= E

(
N∑

i=1

( T−1∑

t=0

Li
t(X

i
t,U

i
t,W t) +Ki(Xi

T )

+
T−1∑

t=0

Λt ·Θ
i
t(X

i
t,U

i
t,W t)

))
,
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where the multiplier Λt associated to Constraint (2d) is a random variable.
From the measurability of the variables Xi

t, U
i
t and W t, we can assume with-

out loss of optimality that the multipliers Λt are σ(W 0, . . . ,W t)-measurable
random variables.

In order to be able to apply duality theory to the problem (which is manda-
tory for algorithmic resolution), we make the two following assumptions.

Assumption 2. A saddle point of the Lagrangian L exists.

Assumption 3. Uzawa algorithm applies to compute a saddle-point of L.

Assumption 2 corresponds to a Constraint Qualification condition and en-
sures the existence of an optimal multiplier. Assumption 3 allows to use a gradi-
ent ascent algorithm to compute the optimal multiplier. An important question
in order to be able to satisfy these two assumptions is the choice of the spaces
where the various random variables of the problem are living in. Duality theory
and associated algorithms have been extensively studied in the framework of
Hilbert spaces Ekeland & Temam (1999), but the transition to the framework
of stochastic optimal control poses difficult challenges Rockafellar (1968, 1971),
which will be briefly presented in §3.4.5 One way to get rid of these difficulties
is to assume that the space Ω is finite.

When using the Uzawa algorithm to compute a saddle-point of the La-
grangian, the minimization step with respect to (X i,U i)i∈J1,NK splits in N

independent subproblems each depending on a single pair (Xi,U i), and there-
fore allows for a dam by dam decomposition. More precisely, the k-th iteration
of Uzawa algorithm consists of the two following steps.

1. Solve Subproblem i, i ∈ J1, NK, with fixed Λ(k):

min
Xi,Ui

E

( T−1∑

t=0

Li
t(X

i
t,U

i
t,W t) +Λ

(k)
t ·Θi

t(X
i
t,U

i
t,W t) +Ki(Xi

T )
)
,

s.t. X
i
t+1 = f i

t (X
i
t,U

i
t,W t) ,X

i
0 given (4a)

U
i
t � σ(W 0, . . . ,W t) , (4b)

whose solution is denoted
(
U

i,(k),Xi,(k)
)
.

2. Use a gradient step to update the multipliers Λt:

Λ
(k+1)
t = Λ

(k)
t + ρt

( N∑

i=1

Θi
t

(
X

i,(k)
t ,U

i,(k)
t ,W t

))
. (5)

Consider the resolution of Subproblem (4). This subproblem only involves
the “physical” state variable X

i
t and the control variable U i

t, a situation which

5Remember that the aim of the present paper is mainly to present numerical results. The
reader is referred to Leclère (2014) for these theoretical questions.
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seems favorable to DP. It also involves two exogeneous random processes, namely
W and Λ(k). The white noise Assumption 1 applies for the first process W ,
but not for the second one Λ(k), so that the state of the system cannot be

summarized by the physical stateXi
t ! Moreover if we just use the fact that Λ

(k)
t

is measurable with respect to the past noises, the state of the system must
incorporate all noises prior to time t, that is, (W 0, . . . ,W t). The state size
of the subproblem increases with time. Without some additional knowledge on
the process Λ(k), DP cannot be applied in a straightforward manner: something
has to be compressed in order to use Dynamic Programming.

3. Dual Approximate Dynamic Programming

For a very specific instance of Problem (2), Strugarek (2006) exhibited the
dynamics of the optimal multiplier. Hence it was possible to come down to
the Markovian framework and to use DP to solve the subproblems (4) with an
augmented space, namely the “physical” stateX i

t and the state associated to the
mutiplier’s dynamics. Following this idea for a general Problem (2), Barty et al.
(2010b) proposed to choose a parameterized dynamics for the multiplier: then
solving the subproblems using DP becomes possible, the parameters defining the
multiplier dynamics being updated at each iteration of the Uzawa algorithm.
This new approach, called Dual Approximate Dynamic Programming (DADP),
has then improved through a series of PhD theses (Girardeau (2010), Alais
(2013) and Leclère (2014)) both from the theoretical and from the practical
point of view. We give here a brief overview of the current DADP method.

3.1. DADP core idea and associated algorithm

In order to overcome the obstacle explained at §2.4 concerning the random

variables Λ
(k)
t , we choose a random variable Y t at each time t,6 each Y t being

measurable with respect to the noises up to time t
(
W 0, . . . ,W t

)
. We call

Y =
(
Y 0, . . . ,Y T−1

)
the information process associated to Problem (2).

3.1.1. Method foundation

The core idea of DADP is to replace the multiplier Λ
(k)
t by its conditional

expectation E(Λ
(k)
t | Y t) with respect to Y t. From an intuitive point of view,

the resulting optimization problem will be a good approximation of the original

one if Y t is close to the random variable Λ
(k)
t . Note that we require that the

information process is not influenced by controls because introducing a depen-
dency of the conditioning term with respect to the control would lead to very
serious difficulties for optimization.

Using this core idea, we replace Subproblem (4) by:

6Note that the information variables Y t may depend on the subproblem index i:
see Girardeau (2010) for further details.
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min
Xi,Ui

E

( T−1∑

t=0

(
Li
t(X

i
t,U

i
t,W t) +Ki(X i

T )
)

+ E(Λ
(k)
t | Y t) ·Θ

i
t(X

i
t,U

i
t,W t)

)
, (6a)

s.t. X
i
t+1 = f i

t (X
i
t,U

i
t,W t) , X

i
0 given , (6b)

U
i
t � σ(W 0, . . . ,W t) . (6c)

According to the Doob property (Dellacherie & Meyer, 1975, Chapter 1, p. 18),

the Y t-measurable random variable E(Λ
(k)
t | Y t) can be represented by a mea-

surable mapping µ
(k)
t , that is,

µ
(k)
t (Y t) = E

(
Λ

(k)
t

∣∣ Y t

)
, (7)

so that Subproblem (6) in fact involves the two fixed random processes W and
Y . If the process Y follows a non-controlled Markovian dynamics driven by the
noise process W , i.e. if there exists functions ht such that

Y t+1 = ht(Y t,W t) , (8)

then (Xi
t,Y t) is a valid state for the subproblem and DP applies.

3.1.2. DADP algorithm

Assume that the information process Y follows the dynamics (8).

• The first step of the DADP algorithm at iteration k consists in solving the

subproblems (6) with Λ
(k)
t fixed, that is, with µ

(k)
t (·) given. It is done by

solving the Bellman functions associated to each subproblem i, that is,

V i
T (x

i, y) = Ki(x) ,

V i
t (x

i, y) = E
(
Qk

t (x
i, y,W t)

)

where Qk
t (x

i, y, wt) is the value of

min
ui

Li
t(x

i, ui, wt) + µ
(k)
t (y) ·Θi

t(x
i, ui, wt) + V i

t+1

(
xi
t+1, y

i
t+1

)

s.t. xi
t+1 = f i

t (x
i, ui, wt) ,

yt+1 = ht(y, wt) .

Storing the argmin obtained during the Bellman resolution, we obtain the

optimal feedback laws γ
i,(k)
t as functions of both the state (xi, y) and the

noise w at time t. These functions allow to compute the optimal state and
control processes

(
U

i,(k),Xi,(k)
)
of subproblem i at iteration k.7 Starting

7Remember that the process Y follows the non-controlled Markovian dynamics (8) and
thus can be obtained once for all.
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from X
i,(k)
0 = X

i
0 the optimal control and state variables are obtained by

applying the optimal feedback laws from t = 0 up to T − 1:

U
i,(k)
t = γ

i,(k)
t (X

i,(k)
t ,Y t,W t) ,

X
i,(k)
t+1 = f i

t (X
i,(k)
t ,U

i,(k)
t ,W t) .

• The second step of the DADP algorithm consists in updating the multi-
plier process Λ(k). Instead of updating the multipliers themselves by the
standard gradient formula8

Λ
(k+1)
t = Λ

(k)
t + ρt

( N∑

i=1

Θi
t

(
X

i,(k)
t ,U

i,(k)
t ,W t

))
,

it is sufficient to deal with their conditional expectations w.r.t. Y t. Using
the optimal processesX i,(k) andU

i,(k) obtained at the previous step of the
algorithm for all subproblems, the conditional deviation from the coupling
constraint is obtained:

E

( N∑

i=1

Θi
t

(
X

i,(k)
t ,U

i,(k)
t ,W t

) ∣∣∣∣ Y t

)
.

By the Doob property, this conditional expectation can be represented by

a measurable mapping ∆
(k)
t :

∆
(k)
t (yt) = E

( N∑

i=1

Θi
t

(
X

i,(k)
t ,U

i,(k)
t ,W t

) ∣∣∣∣ Y t = yt

)
. (9)

Gathering the functional representations (7) and (9) of the conditional
multiplier and of the conditional deviation, the gradient update reduces
to the following functional expression:

µ
(k+1)
t (·) = µ

(k)
t (·) + ρt∆

(k)
t (·) . (10)

This last equation is equivalent to the multipliers conditional expectation
update:

E
(
Λ

(k+1)
t

∣∣ Y t

)
= E

(
Λ

(k)
t

∣∣ Y t

)

+ ρt E
( N∑

i=1

Θi
t

(
X

i,(k)
t ,U

i,(k)
t ,W t

) ∣∣∣ Y t

)
. (11)

DADP algorithm is depicted in Figure 4.

8More sophisticated formulas can be used in practice: see §4.3.1.
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E

( N∑
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(
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µ
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Figure 4: DADP flowchart.

3.2. DADP interpretations

The DADP method, as it has been presented up to now, consists in an
approximation of the optimal multiplier, that is, the multiplier Λt is replaced
by its conditional expectation E

(
Λt

∣∣ Y t

)
. Such an approximation is equiv-

alent to a decision-rule approach for the dual problem, obtained by imposing
measurability conditions to the dual variables Λt:

max
Λ

min
X,U

L
(
X,U ,Λ

)
 max

Λt�Y t

min
X,U

L
(
X ,U ,Λ

)
.

DADP may also be viewed as a relaxation of the constraints in the primal
problem. More precisely, we replace the almost sure coupling constraint (2a) by
a conditional expectation constraint, that is we consider the following relaxed
version of the initial problem (2):

min
(X,U)i∈J1,NK

E

( N∑

i=1

( T−1∑

t=0

Li
t(X

i
t,U

i
t,W t) +Ki(Xi

T )
))

, (12a)

subject to the dynamics constraints (2b), to the measurability constraints (2c)
and to the conditional coupling constraints:

E

( N∑

i=1

Θi
t(X

i
t,U

i
t,W t)

∣∣∣ Y t

)
= 0 . (12b)
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Proposition 1. Suppose the Lagrangian associated with Problem (12) has a
saddle point. Then the DADP algorithm can be interpreted as the Uzawa algo-
rithm applied to Problem (12).

Proof. Consider the duality term E
(
E(Λ

(k)
t | Y t) · Θ

i
t(X

i
t,U

i
t,W t)

)
which ap-

pears in the cost function of subproblem i in DADP. This term can be written

equivalently E
(
Λ

(k)
t ·E(Θi

t(X
i
t,U

i
t,W t) | Y t)

)
. which corresponds to the dual-

ization of the coupling constraint handled by Problem (12).

DADP thus consists in replacing an almost-sure constraint by its conditional
expectation w.r.t. the information variable Y t. From this interpretation, we
deduce that the optimal value provided by DADP is a guaranteed lower bound
of the optimal value of Problem (2).

3.3. Admissibility recovery

Instead of solving the original problem (2), DADP deals with the relaxed
problem (12) in which the almost-sure coupling constraint (2d) is replaced by
the less binding constraint (12b). As a consequence, a solution of Problem (12)
does not satisfy the set of constraints of Problem (2). An additional procedure
has to be devised in order to produce an (at last) admissible solution of (2).

Nevertheless, solving Problem (12) produces at each time t a set of N local
Bellman functions V i

t , each depending on the extended state (xi
t, yt). We use

these functions to produce a single Bellman function V̂t depending on the global
state

(
x1
t , . . . , x

N
t

)
which is used as an approximation of the “true” Bellman

function Vt of Problem (2). The heuristic rule leading to this approximated
Bellman function simply consists in summing the local Bellman functions:

V̂t

(
x1
t , . . . , x

N
t , yt

)
=

N∑

i=1

V i
t

(
xi
t, yt

)
.

The approximated Bellman functions V̂t allow us to devise an admissible feed-
back policy for Problem (2): for any value of the state

(
x1
t , . . . , x

N
t

)
, any value

of the information yt and any value of the noise wt at time t, the control value
is obtained by solving the following one-step DP problem

min
(u1

t ,...,u
N
t )

N∑

i=1

Li
t

(
xi
t, u

i
t, w

i
t

)
+ V̂t+1

(
x1
t+1, . . . , x

N
t+1, yt+1

)
,

s.t. xi
t+1 = f i

t

(
xi
t, u

i
t, w

i
t

)
, i ∈ J1, NK ,

yt+1 = ht

(
yit, w

i
t

)
,

N∑

i=1

Θi
t(x

i
t, u

i
t, wt) = 0 .

In this framework, DADP can be viewed as a tool allowing to compute approx-
imated Bellman functions for Problem (2). These functions are then used to
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compute control values satisfying all the constraints of the problem, that is, to
produce an online admissible feedback policy for Problem (2).

Applying this online feedback policy along a bunch of noises scenarios allows
to compute a Monte Carlo approximation of the cost, which is accordingly a
stochastic upper bound of the optimal value of Problem (2).

3.4. Theoretical and practical questions

The theoretical questions linked to DADP are adressed in Leclère (2014),
and the practical ones in Girardeau (2010)and Alais (2013).

3.4.1. Theoretical questions

In the DADP approach, we treat the coupling constraints of a stochastic op-
timization problem by duality methods and solve it using the Uzawa algorithm.
Uzawa algorithm is a dual method which is usually described in an Hilbert space
such as L2(Ω,A,P,Rn), but we cannot guarantee the existence of an optimal
multiplier in such a space. To overcome the difficulty, the approach consists in
extending the setting to the non-reflexive Banach space L∞(Ω,A,P,Rn), to give
conditions for the existence of an optimal multiplier in L1

(
Ω,A,P;Rn

)
(rather

than in the dual space of L∞) and to study the Uzawa algorithm convergence
in this space. The interested reader is referred to Leclère (2014) for more infor-
mation.

3.4.2. Practical questions

An important practical question is the choice of the information variables
Y t. We present here some possibilities.

1. Perfect memory: Y t =
(
W 0, . . . ,W t

)
.

From the measurability properties of Λ
(k)
t , we have E(Λ

(k)
t | Y t) = Λ

(k)
t ,

that is, there is no approximation! A valid state for each subproblem is
then

(
W 0, . . . ,W t

)
: the state is growing with time.

2. Minimal information: Y t = 0.9

Here Λ
(k)
t is approximated by its expectation E(Λ

(k)
t ). The information

variable does not deliver any online information, and a valid state for
subproblem i is Xi

t.

3. Dynamic information: Y t+1 = ht

(
Y t,W t+1

)
.

This choice corresponds to a number of possibilities, as mimicking the
state of another unit, or adding a hidden dynamics. A valid state for
subproblem i is

(
X

i
t,Y t

)
.

Finally, the question of accelerating the DADP algorithm by replacing the
standard Lagrangian by an augmented one, or by using more sophisticated
methods than the simple gradient ascent method in the multiplier update step,
have a great interest in order to improve the method. This point is developed
in §4.3.1.

9or equivalently Y t being any constant random variable
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4. Numerical experiments

In this section, we present numerical results obtained on a large selection
of hydro valleys. Some of these valleys (see Figure 6) correspond to academic
examples, in the sense that their characteristics (size of dams, range of controls,
inflows values) do not rely on existing valleys. These examples allow us to
quantify the performance of different optimization methods (DP, DADP and
two different flavors of SDDP) on problems of increasing size, from a valley
incorporating 4 dams, and thus solvable by DP, up to a valley with 30 dams,
and thus facing the curse of dimensionality (§4.3 and §4.4). We also present
two instances corresponding to more realistic hydro valleys, where the models
respect the orders of magnitude of the dam sizes of existing valleys (§4.5).

All the results presented here have been obtained using a 3.4GHz, 4 cores –
8 threads Intelr Xeonr E3 based computer.

4.1. Application of DADP to a hydro valley

We go back to the problem formulation (1) presented at §2.1. In order to
implement the DADP algorithm, we dualize the coupling constraints

Z
i+1
t − git(X

i
t,U

i
t,W

i
t,Z

i
t) = 0 , (13)

and we denote by Λi+1
t the associated multiplier (random variable).

When minimizing the dual problem at iteration k of the algorithm, the

product with a given multiplier by Λ
i+1,(k)
t

Λ
i+1,(k)
t ·

(
Z

i+1
t − git(X

i
t,U

i
t,W

i
t,Z

i
t)
)
,

is additive with respect to the dams, that is,

• the first term Λ
i+1,(k)
t ·Zi+1

t pertains to dam i+1 subproblem,

• whereas the second term Λ
i+1,(k)
t · git

(
X

i
t,U

i
t,W

i
t,Z

i
t

)
pertains to dam i

subproblem,

hence leading to a dam by dam decomposition for the dual problem maximiza-

tion in (X ,U ,Z) at Λ
i+1,(k)
t fixed.

4.1.1. DADP implementation

The DADP method consists in choosing a multiplier process Y and then re-
placing the coupling constraints by their conditional expectations with respect
to Y t. Here we adopt the choice Y t = 0 (minimal information), so that Con-
straints (13) are replaced in the approximated problem by their expectations:

E
(
Z

i+1
t − git(X

i
t,U

i
t,W

i
t,Z

i
t)
)
= 0 . (14)

The expression of Subproblem (6) attached to dam i reads
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Figure 5: Decomposition by dam.

max
U i,Zi,Xi

E

( T−1∑

t=0

(
Li
t

(
X

i
t,U

i
t,W

i
t,Z

i
t

)
+ E

(
Λ

i,(k)
t

)
·Zi

t (15a)

− E
(
Λ

i+1,(k)
t

)
· git
(
X

i
t,U

i
t,W

i
t,Z

i
t

))
+Ki

(
X

i
T

))
,

(15b)

s.t. X
i
t+1 = f i

t (X
i
t,U

i
t,W t) , X

i
0 given (15c)

U
i
t � σ(W 0, . . . ,W t) . (15d)

Because of the crude relaxation due to a constant Y
i
t, the multipliers Λ

i,(k)
t

appear only in the subproblems by means of their expectations E
(
Λ

i,(k)
t

)
, so

that all subproblems involve a 1-dimensional state variable, that is, the dam
stock X

i
t, and hence are easily solvable by Dynamic Programming.

We denote by
(
U

i,(k),Zi,(k),Xi,(k)
)
the optimal solution of each subprob-

lem i, and by V
i,(k)
t (xi)the Bellman function obtained for each dam i at time t.

With the choice of constant information variables Y i
t, the coordination up-

date step (11) reduces to

E
(
Λ

i,(k+1)
t

)
= E

(
Λ

i,(k)
t

)
+ρtE

(
Z

i+1,(k)
t −git

(
X

i,(k)
t ,U

i,(k)
t ,W i

t,Z
i,(k)
t

))
, (16)

that is, a collection of deterministic equations involving the expectation of (13)
which is easily computable by a Monte Carlo approach.

Assume that DADP converges, leading to optimal Bellman functions V
i,∞
t

and to optimal solutions
(
U

i,∞,Zi,∞,Xi,∞
)
. We know that the initial almost-

sure coupling constraints are not satisfied. To recover admissibility, the heuristic
rule proposed at §3.3 consists in forming the global approximated Bellman V ∞

t

functions as

V ∞
t

(
x1, . . . , xN

)
=

N∑

i=1

V
i,∞
t

(
xi
)
,
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and then computing, at any time t and for any pair (xt, wt), a control satisfying
all the constraints of Problem (1) by solving the following one-step DP problem:

max
(u1,...,uN )

N∑

i=1

Li
t

(
xi, ui, wi

t, z
i
)
+ V ∞

t+1

(
x1
t+1, . . . , x

N
t+1

)
,

s.t. xi
t+1 = f i

t

(
xi, ui, wi

t, z
i
)

∀i ,

zi+1 = git(x
i, ui, wi

t, z
i) ∀i .

4.1.2. Complete process

To summarize, the whole process for implementing DADP is as follows.

• Optimization stage

– Apply the DADP algorithm, and obtain at convergence the local
Bellman functions V i,∞

t .

– Form the approximated global Bellman functions V ∞
t .

• Simulation stage

– Draw a large number of noise scenarios (Monte Carlo sampling).

– Compute the control values along each scenario by solving the one-
step DP problems involving the Bellman functions V ∞

t ’s, thus sat-
isfying all the constraints of Problem (1) as explained in §3.3; these
computations produce for each scenario a state and control trajecto-
ries, as well as a payoff.

– Evaluate the quality of the solution: trajectories variability, payoff
distribution and associated mean. . .

4.2. SDDP implementations

As will be explained in §4.3, the controls of the original problem are discrete,
which is a priori a difficulty for SDDP implemetation.

We describe here the two implementations of SDDP that we use for numer-
ical comparisons, that is, a classical version of SDDP in which the integrity
constraints on the control variables are relaxed (continuous controls) in order
to use standard quadratic programming, and a homemade discrete version of
SDDP described later on.

4.2.1. Continuous version of SDDP

The continuous implementation SDDPc of SDDP relaxes the integrity con-
straints upon the control U , and assume that for all time t and all dam i

xi
t ∈ [xi, xi] ui

t ∈ [ui, ui] . (17)

Furthermore, SDDPc considers that the spillage is a control variable, so as to
render the dynamic linear. As the dynamic is linear and costs convex, we
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are in the standard framework of Stochastic Dual Dynamic Programming and
the resolution converges asymptotically to the optimal solution of the relaxed
problem Girardeau et al. (2015).

The whole process of SDDPc is as follows.

• Optimization stage. The implementation of SDDPc corresponds to the
one described in Shapiro (2011), that is, the so-called DOASA imple-
mentation. Lower approximations of the Bellman functions Vt are built
iteratively. At iteration k, the procedure consists of two passes.

– During the forward pass, we first sample a scenario of noise. We then
simulate a stock trajectory by using the current approximation of the
Bellman functions. This is done by successively solving one-step DP
problem to determine the next stock value. Each of these one-step
DP problems is in fact a continuous quadratic programming (QP)
problem.

– In the backward pass, duality theory allows to find subgradient of
lower approximations of the Bellman functions. This subgradients
are used to construct valid cut, that is hyperplanes that are lower
that the Bellman functions. Those cuts are then added to the current
approximations of Bellman functions.

• Simulation stage. The simulation stage is identical to the one described
at §4.1.2: the controls are computed with a one-step DP problem using
the approximation of the Bellman functions obtained by SDDPc.

The continuous version SDDPc is implemented in Julia, with the package
StochDynamicProgramming10 built on top of the JuMP package used as a mod-
eller Dunning et al. (2015). The QP problems are solved using CPLEX 12.5.
Every 5 iterations, redundant cuts are removed thanks to the limited memory
level-1 heuristic described in Guigues (2017). Indeed, without cuts removal, the
resolution of each QP becomes too slow as the number of cuts increase along
iterations. The algorithm is stopped after a fixed number of iterations and the
gap is estimated with Monte-Carlo as described in Shapiro (2011).

4.2.2. Discrete version of SDDP

In the discrete version of SDDPd, the controls U are discrete variables which
have the same constraints as in the original problem formulation. Some other
works mixing SDDP and binary variables are described in Zou et al. (2016) The
whole process of SDDPd is as follows.

• Optimization stage. The implementation of SDDPd corresponds to the
one described for SDDPc that is, approximations of the Bellman functions
Vt by a set of cuts which are built iteratively. At iteration k, the procedure
consists of two passes.

10See the github link https://github.com/JuliaOpt/StochDynamicProgramming.jl.
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– During the forward pass, we first sample a scenario of noise. We then
simulate a stock trajectory by using the current approximation of
the Bellman functions. This is done by successively solving one-step
DP problem to determine the next stock. Each of these one-step DP
problems is solved by enumerating all possible values of the discrete
control. In order to take advantage of the threading facilities, we may
treat multiple noise scenarios in parallel (8 scenarios in practice).

– In the backward pass, the approximations of the Bellman functions
are refined along the trajectories computed during the forward pass.
For each new added state point we first solve a one-step DP problem
to obtain a new Bellman value. Then we solve a family of one step DP
problem using as state points the neighbors on the grid of the current
state point. We are thus able to approximate a new cut at the current
state point by approximating derivatives of the Bellman function by
finite differences (we use centered finite differences for regular states
and forward, backward differences for states at domain boundary).

• Simulation stage. The simulation stage is identical to the one described
at §4.1.2: the controls are computed with a one-step DP problem using
the approximation of the Bellman functions obtained by SDDPd.

The algorithm is stopped after a fixed number of iterations (25 in our experi-
ments). The number of added points at forward step as already explained was
set to 8. During the iterations some cuts were dropped by only keeping the last
100 cuts obtained for each Bellman function.

4.3. Results obtained for academic valleys

We model a first collection of hydro valleys including from 4 to 12 dams,
with arborescent geometries (see Figure 6).

The optimization problem is stated on a time horizon of one year, with a
monthly time step (T = 12). All the dams have more or less the same maximal
volume. The maximal amount of turbinated water for each dam varies with the
location of the dam in the valley (more capacity for a downstream dam than
for an upstream dam), as well as the random inflows in a dam (more inflow for
an upstream dam than for a downstream dam). We assume discrete probability
laws with finite supports for the inflows,11 and we also assume that the available
turbine controls are discrete, so that each dam is in fact modeled using a discrete
Markov chain. These valleys do not correspond to realistic valleys, in the sense
that a true valley incorporates dams with very heterogeneous sizes.

4.3.1. DADP convergence

Let us first detail the gradient method used for the update of the multipliers
involved by DADP. Thanks to the choice of constant information variables, the

11Market prices are assumed to be deterministic.
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Figure 6: Some academic examples of hydro valleys.

gradient expression involved in the update formula (16) is an expectation:

E

(
Z

i+1,(k)
t − git

(
X

i,(k)
t ,U

i,(k)
t ,W i

t,Z
i,(k)
t

))
.

This expectation can be approximated by a Monte Carlo approach. We draw
a collection of scenarios12 of {W t} and then compute at iteration k of DADP

the optimal solutions
{
X

i,(k)
t ,U

i,(k)
t ,Z

i,(k)
t

}
of Subproblem (15) along each sce-

nario. We thus obtain realizations of
(
Z

i+1,(k)
t − git(X

i,(k)
t ,U

i,(k)
t ,W i

t,Z
i,(k)
t )

)
,

whose arithmetic mean gives the (approximated) gradient component at time t

for the coupling at dam i+1 . This gradient can be used either in the standard
steepest descent method such as in (16), or in a more sophisticated algorithm
such as the conjugate gradient or the quasi-Newton method. We use in our
numerical experiments a solver (limited memory BFGS) of the MODULOPT
library from INRIA Gilbert & Jonsson (2007). For all the valleys we studied,
the convergence was fast (around 100 iterations regardless of the problem size).
Figure 7 represents the evolution of the multipliers of dam connections for the
4-Dams valley along the iterations of the algorithm.

4.3.2. Methods comparison

We solve Problem (1) for the first collection of academic valleys by 4 different
methods:

1. the standard Dynamic Programming method (DP), if possible,

12Note that this collection of scenarios has nothing to do with the one used during the
simulation stage of the complete process described at §4.1.2.
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Figure 7: 4-Dams multipliers: dam1↔dam2 (left) — dam2↔dam3 (right)

2. the continuous version of SDDP (SDDPc) presented at §4.2.1,

3. the discrete version of SDDP (SDDPd) presented at §4.2.2,

4. the DADP method (DADP).

All these methods produce Bellman functions (optimization stage described
at §4.1.2), whose quality is evaluated by the simulation stage of §4.1.2. The
obtained results are given in Table 1. The lines “CPU time” correspond to
the time (in minute) needed to compute the Bellman functions (optimization
stage), whereas the lines “value” indicate the cost obtained by Monte Carlo on
the initial model (simulation stage, performed using a 100,000 scenarios sample,
except for the 12-Dams valley for which a smaller sample set was used for com-
putational time constraint). The comparisons between the different cost values
for the same valley are thus relevant. For the two methods SDDPc and DADP,
we also give the upper bound corresponding to the Bellman value obtained at
the end of the optimization stage.

Valley 4-Dams 6-Dams 8-Dams 10-Dams 12-Dams

DP CPU time 1600 ’ ∼ 10 8 ’ ∼ ∞ ∼ ∞ ∼ ∞

DP value 3743 N.A. N.A. N.A. N.A.

SDDPd CPU time 2 ’ 320 ’ 2250 ’ 133500 ’ ∼ ∞

SDDPd value 3737 7011 11750 16920 N.A.

SDDPc CPU time 6 ’ 10 ’ 13 ’ 50 ’ 97 ’
SDDPc value 3742 7027 11830 17070 ∼ 17000
SDDPc upper bound 3754 7050 11960 17260 19490

DADP CPU time 7 ’ 12 ’ 18 ’ 24 ’ 22 ’
DADP value 3667 6816 11570 16760 ∼ 17000
DADP dual value 3996 7522 12450 17930 20480

Gap DADP/SDDPc −2.0% −3.0% −2.2% −1.8% ?

Table 1: Results obtained by DP, SDDPd, SDDPc and DADP

We first note that a direct use of DP is only possible for the 4-Dams valley:
it corresponds to the well-known curse of dimensionality inherent to DP. The
value given by DP is the true optimal cost value for the 4-Dams valley and can
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be used as the reference value. If we go on to the SDDPd method, we observe
that it gives rather good results. The simulation cost obtained for the 4-Dams
valley is very close to the one obtained by DP, which grounds the quality of
the SDDPd method. But the method suffers from a curse of dimensionality
associated to the control, in the sense that each optimization problem inside
SDDPd has to enumerate all possible values of the discrete control, which be-
comes prohibitive for large valleys (number of possible controls for a single dam
power number of dams). This explains why the method fails on the 12-Dams
valley. Moreover, the SDDPd method does not provide any upper bound: the
cuts are indeed computed by finite differences, so that we cannot guarantee that
the cuts approximation is a lower approximation of the Bellman functions. The
SDDPc method, although relying on the integrity constraints relaxation in the
optimization stage (hence a not so tight upper bound), gives excellent results
for the 4-Dams valley: we thus elect SDDPc as the reference method in order
to evaluate the DADP method. Note that the CPU time remains reasonable,
the optimization problems inside SDDPc corresponding to a continuous linear-
quadratic formulation (here solved using the CPLEX commercial solver).13

We now turn to the DADP method. We first notice that the upper bound
given by the method is rather bad (as a consequence of solving a problem with
relaxed coupling constraints in the optimization stage), but the values obtained
in the simulation stage are correct compared to the ones given by SDDPc (as
indicated by the last line of Table 1). The most noticeable point is that the CPU
time needed for the optimization stage seems to grow more slowly for DADP
than for SDDPc. This aspect will be highlighted in §4.4.

Let us finally materialize more finely the difference in the results between
SDDPc and DADP. Beyond average values given in Table 1, Figure 8 repre-
sents the payoff empirical probability laws (optimal cost over the time horizon),
obtained by the simulation stage using 100,000 scenarios, for both SDDPc and
DADP. We observe that, although the expectations are fairly close, the shapes
of the two distributions differ significantly.

4.4. Challenging the curse of dimensionality

The experiments made in §4.3 seem to indicate that DADP is less sensitive
to the size of the valley than the SDDPc method. In order to validate this ob-
servation, we design a new collection of academic hydro valleys incorporating
from 14 up to 30 dams. It is of course no more possible to perform the simula-
tion stage for these instances: the combinatorics induced by the set of possible
values of the controls is too large to allow to simulate the valley behavior along
a large set of scenarios. We thus limit ourselves to the computation of the Bell-

13Note however that all the methods we are comparing face the curse of dimensionality
associated to the combinatorics of the control during the simulation stage, as the controls
associated to the whole valley have to be enumerated at each time t along each scenario. This
is the reason why the value obtained for the 12-Dams valley have been computed using 1000
scenarios (100, 000 for the others valleys) and hence not so accurate.
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Figure 8: 4-Dams payoff distributions: SDDPc (left) — DADP (right)

man functions (optimization stage). The corresponding results are reported in
Table 2.

Valley 14-Dams 18-Dams 20-Dams 25-Dams 30-Dams

SDDPc CPU time 210 ’ 585 ’ 970 ’ 1560 ’ 2750 ’
DADP CPU time 40 ’ 50 ’ 75 ’ 140 ’ 150 ’

Table 2: SDDPc and DADP comparison for large academic valleys

It appears that the CPU time required for the DADP method grows linearly
with the number of dams, while the growth rate of SDDPc is more or less
exponential. Figure 9 shows how the CPU time varies for the four methods.
As expected, DP is only implementable for small instances, say up to 5 dams.
SDDPd allows to go a step further, but is limited by the combinatorial nature
of the discrete controls we are considering. Finally, the limits of SDDPc and
DADP have not really be reached, but DADP displays a linear rate allowing to
tackle instances of even greater size.

4.5. Results for two realistic valleys

We finally model two hydro valleys corresponding to existing systems in
France, namely the Vicdessos valley and the Dordogne river (see Figure 10).

The optimization problem is posed again on a time horizon of one year, with
a monthly time step. What mainly differ here from the academic examples used
at §4.3 are the characteristics of the dams. For example, the Dordogne river
valley encompasses large dams (as “Bort” whose capacity is say 400) and small
dams (as “Mareges” the capacity of which is equal to 35, that is, ten times
smaller). This heterogeneity induces numerical difficulties, as the fact to have
at disposal a wide range of possible controls for the small downstream reservoirs,
or the need to use a fine discretization for the state grid in DP-like methods.
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We again assume discrete probability laws with finite support for the inflows,
and we also assume that the available turbine controls are discrete.

The comparison results of SDDPc and DADP are given in Table 3. As for the

Valley Vicdessos Dordogne

SDDPd CPU time 90 ’ 86000 ’
SDDPd value 2234 21910
SDDPd upper bound 2195 21370

SDDPc CPU time 9 ’ 17 ’
SDDPc value 2244 22150
SDDPc upper bound 2258 22310

DADP CPU time 9 ’ 210 ’
DADP value 2238 21650
DADP dual value 2286 22990

Gap DADP/SDDPc −0.3% −2.2%

Table 3: Results obtained by SDDPc, SDDPd and DADP

academic examples, SDDPc displays the best results and is therefore used as the
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reference. The large number of possible discrete controls heavily penalizes the
SDDPd methods. We also observe that this large combinatorics is a difficulty
even for DADP, although the resolution is done dam by dam. Finally, the gap
between SDDPc and DADP remains limited.

5. Conclusion

In this article, we have depicted a method called DADP which allows to
tackle large-scale stochastic optimal control problems in discrete time, such as
the ones found in the field of energy management. We have mainly presented
the practical aspects of the method, without deepening in the theoretical issues
arising in the foundations of the method. A lot of numerical experiments have
been presented on hydro valley problems (“chained models”), which comple-
ments the ones already made on unit commitment problems (“flower models”)
Barty et al. (2010b,a). The main conclusions are that DADP, on the one hand
converges fast, and on the other hand gives near-optimal results even when using
a “crude” relaxation (here a constant information process Y ). More precisely,
DADP allows to deal with optimization problems that are out of the scope of
standard Dynamic Programming, and beats SDDP for very large hydro valleys
in terms of CPU time. We thus hope to be able to implement DADP for very
large stochastic optimal control problems such as the ones encountered in smart
management of urban districts, involving hundreds of houses and thus hundred
of dynamic variables.
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The main perspectives that we see beyond this study are to extend it in
two directions. The first direction consists in implementing the DADP method
for general spatial structures (not only “flower models” or “chain model”, but
“smart-grid models” involving a planar graph). The second direction is to im-
plement more sophisticated decomposition methods than price decomposition.
On the one hand we want to make use of decomposition schemes such that re-
source allocation or interaction prediction principle Cohen (1978). On the other
hand we want to use augmented Lagrangian based methods such as alternating
direction method of multiplier (ADMM) and proximal decomposition algorithm
(PDA) for decomposition in order to obtain the nice convergence properties of
this kind of methods (see Lenoir & Mahey (2017) for a survey).

Finally, let us mention that a theoretical work has begun in order to provide
foundations of the method Leclère (2014); Leclere (2013) it includes conditions
for existence of a multiplier in the L1 space when the optimization problem is
posed in L∞ and conditions for convergence of the Uzawa algorithm in L∞. A
lot of work remains to be done on these questions, mainly to relax the continuity
assumption in order to be able to deal with extended functions, and to obtain
more general assumptions ensuring the convergence of Uzawa algorithm.
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Thèse de doctorat Université Paris-Est.
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