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Abstract:  A small-scale pile has been developed in the laboratory to investigate the thermo-#$"

mechanical behavior of energy piles subjected to a significant number of thermal cycles. The !%"

model pile (20 mm external diameter), installed in dry sand, was initially loaded at its head to 0, !# "

20, 40 and 60% of its ultimate bearing capacity (500 N). At the end of each loading step, 30 !! "

heating/cooling cycles were applied to the pile. The long-term behavior of the pile was observed !&"

in terms of pile head settlement, axial force profile, soil and pile temperature, and stress in soil. !' "

The results evidence the irreversible settlement of the pile head induced by thermal cycles under !( "

constant load head. In addition, the incremental irreversible settlement, that accumulates after !) "

each thermal cycle, decreases when the number of cycles increases. The evolution of irreversible !* "

pile head settlement versus number of cycles can be reasonably predicted by an asymptotic !+ "

equation. !$ "

 &%"

Keywords: energy pile, physical model, long-term behavior, heating/cooling cycles, thermo-&#"

mechanical load   &!"
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1. Introduction !! "

Energy piles, or heat exchanger piles, have a dual function: (i) providing support for overhead !# "

structures as a conventional pile foundation; (ii ) and exchanging heat with the ground for the !$ "

purpose of heating and/or cooling the building. Energy piles have been used in some European !%"

countries during the last two decades. This technique has gained encouraging credit as an option !&"

to the use of renewable energy in modern cities and contributed to the reduction of CO2 !' "

emissions [1�±3]. However, the implementation of this technique is not homogeneous across !( "

countries due to the lack of design standards. #) "

 #*"

Many studies have been carried out to investigate the thermo-mechanical behavior of energy #+"

piles [2, 4�±30]. Some involved in situ full-scale experiments [2, 4, 11, 27, 31, 32] or laboratory #! "

small-scale experiments [7, 14, 18, 21, 22, 24, 25]. The results evidence the effect of pile ##"

temperature on the pile/soil interaction. Indeed, the temperature of energy piles can vary in the #$"

range of 5¡C to 40¡C and can thus induce stress changes along the pile and movement of the pile #%"

head. These phenomena are the consequences of the pile thermal dilation/contraction and the #&"

effect of temperature on the behavior of the pile/soil interface. The above mechanisms were #' "

considered in various numerical studies to predict the behavior of energy piles under thermo-#( "

mechanical loadings [2, 9, 10, 12, 17, 29, 30, 33�±38].  $) "

"$*"

In spite of various studies on the thermo-mechanical behavior of energy piles, few works have $+"

investigated their long-term behavior. Actually, to deal with this aspect, some studies $! "

investigated the mechanical behavior of energy piles under numerous thermal cycles, which $#"

represent the seasonal variations of the pile temperature. Suryatriyastuti et al. [9] studied the $$"
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behavior of free- and restraint-head piles in very loose sand using the pile-soil load transfer #$"

approach. The proposed t-z function comprised a cyclic hardening/softening mechanism, which #%"

allowed investigating the degradation of the soil/pile interface behavior under cyclic loading. #&"

This approach was then compared with a numerical simulation using the finite element method #' "

where the degradation of the soil-pile interface behavior under cyclic loading was considered. A $( "

simulation accounting for 12 thermal cycles shows: (i) a ratcheting of pile head settlement under $) "

constant working load; (ii ) and a decrease in pile head load for the restraint-head pile.  $*"

 $+"

Saggu & Chakraborty [12] investigated the behavior of a floating and end-bearing pile in loose $! "

and dense sands under various thermal cycles by using the finite element method and nonlinear $#"

transient analyses. The thermal load applied to the pile was in the same temperature range as in $$"

the experiments of Laloui et al. [2], with a temperature amplitude of 21�qC. The results show an $%"

important settlement of the pile after the first thermal cycle. The subsequent thermal cycles $&"

induce pile heave. This phenomenon can be clearly seen in the case of dense sand where the pile $' "

and the soil surface move upward together after 50 cycles. Actually, the pile and soil were %("

progressively heated during these 50 cycles. In addition, the pile shaft resistance in dense sand %)"

increases with the thermal cycles while this value does not change in loose sand. The authors %*"

explain this observation in the case of dense sand by the larger horizontal stress induced by soil %+"

thermal expansion which affects the mobilized pile shaft resistance. However, a parametric study %!"

shows a decreasing trend of the pile axial stress with thermal cycles. A similar result can be %#"

found in the numerical study of Olgun et al. [36] where pile head displacement and axial stress %$"

were investigated under three different climatic conditions for 30 years. After 30 annual thermal %%"

cycles, even if the pile was progressively cooled, its axial stress tends to increase. A decrease in %&"
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axial stress is observed during a heating process. This was explained by the difference in the #$"

thermal dilations of the pile and the soil, respectively. Ng et al. [39] studied the horizontal stress %&"

change of soil element close to the pile when the pile was subjected to 50 heating-cooling cycles. %'"

The results show that the horizontal stress along the pile decreases with thermal cycles, this %("

decrease being particularly affected by the thermal cycles amplitude and the pile diameter. %)"

Pasten & Santamarina [17] also used a modified one-dimensional load transfer model to predict %*"

the long-term response of shaft- and end-bearing piles subjected to thermal cycles. They show %!"

that the most plastic settlement of the pile took place during the first few cycles. More recently, %+"

Vieira & Maranha [35] investigated the behavior of a floating pile model in clay soil under %#"

different load levels and seasonal temperature during five years using the finite element method. %%"

The results indicate that when the pile works with a high factor of safety its displacement is %$"

reversible during the thermal cycles. However, a low factor of safety induces an increase in axial $&"

stresses while the rate of irreversible settlement reduces with the number of cycles.  $' "

 $( "

Beside the numerical studies mentioned above, few experimental studies have been performed to $) "

investigate the long-term behavior of energy piles. Ng et al. [24] used centrifuge modeling to $*"

study the thermo-mechanical behavior of energy piles constructed in lightly and heavily over-$! "

consolidated clays under five thermal cycles. The results show that the most irreversible $+"

settlement of the pile is observed in the first thermal cycle. In the following cycles, the settlement $#"

increases at a lower rate. After 5 cycles, the accumulated settlement is about 3.8%D (pile $%"

diameter) for a pile in the lightly over-consolidated clay, and 2.1%D for heavily over-$$"

consolidated clay. Another study using centrifuge modeling to investigate the long-term behavior '&&"

of energy pile under four thermal cycles can be found in [14]. An end-bearing pile, installed in '&' "
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unsaturated silt, worked under a constant head load and four thermal cycles (the temperature #$%"

ranging from 29¡C to 39�qC). The observed thermal axial stress-strain behavior of the pile is in #$&"

agreement with the results of in-situ experiments performed by Laloui et al. [2], Bourne Webb et #$' "

al. [4] and McCartney & Murphy [40]. The profiles of axial stress, displacement and strain of #$("

pile does not change significantly along the four thermal cycles.  #$! "

 #$)"

The objective of the present study is to investigate the long-term response of a small-scale #$*"

energy pile. The pile model (20 mm external diameter) was installed in dry sand. 30 thermal #$+"

cycles were applied while the pile head load was maintained at 0, 20, 40 and 60% of the pile ##$"

ultimate bearing capacity. The results in terms of pile head settlement and axial force profile, ###"

obtained during these thermo-mechanical loadings, are presented and discussed. Note that while ##%"

the long-term behavior of energy pile is usually considered under a high number of thermal ##&"

cycles (up to 50 cycles in the case of Ng et al. [39]) in numerical studies, it is usually limited to ##' "

few thermal cycles (up to 5 cycles in the case of Ng et al. [24]) in the experimental studies."##("

 ##! "

2. Experimental method ##)"

2.1 Experimental setup ##*"

A pile model (20-mm external diameter and 600-mm length) was installed in a dry sand sample ##+"

(548-mm inner diameter and 900-mm height) as shown in Fig. 1. The pile model is an aluminum #%$"

tube with an internal diameter of 18 mm and sealed at the bottom. The model pile surface was #%#"

coated with sand to mimic the roughness of a full-scale pile surface. The sand used in this study #%%"

(Fontainebleau sand) has the following physical properties: particle density �!s = 2.67 Mg/m3; #%&"
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maximal void ratio emax = 0.94; minimal void ratio emin = 0.54; and median grain size D50 = 0.23 #$%"

mm. #$&"

 #$' "

The installation process began with the compaction of two 100 mm-thick layers, then two layers #$! "

of 50 mm in thickness. The model pile was then installed at its position inside the soil container #$("

and fixed by a steel bar fixed to the top surface of the soil container. Finally, other sand layers of #$)"

100 mm were compacted around the pile. The soil was compacted manually, by using a wooden #*+"

tamper, at a dry unit weight of 15.1 kN/m3.  #*#"

 #*$"

During the compaction, three temperature sensors and two pressure gauges were installed as #** "

showed in Fig. 1. The two pressure gauges (P1 & P2) locate at 50 mm below the pile toe. P1 #*%"

measures the horizontal pressure and P2 measures the vertical pressure of soil. The three soil #*&"

temperature sensors (S5-S7) are placed at 300 mm below the soil surface and at three distances #*' "

from the pile axis, 20, 40 and 80 mm, respectively. In order to measure the pile axial strain, five #*! "

strain gauges (G1-G5) are distributed along the pile length. Three displacement transducers #*( "

(LVDT) are used to measure the pile head displacement, and a load cell records the pile head #*) "

load. The pile head load is controlled by the water level in a tank placed above the pile. A #%+"

metallic U-tube, connected to a temperature-controlled bath, is placed inside the pile tube for #%#"

heating and cooling the pile. The thermal conductivity of this latter is improved by filling the pile #%$"

tube with water. A temperature sensor (S1) is placed inside the pile to measure its temperature. #%*"

The soil container is thermally isolated to avoid heat exchange with the ambient air.  #%%"

 #%&"

2.2 Test program #%'"
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In this study, three tests have been performed. After each experiment, the pile model was #$%"

reinstalled according to the procedure described above. The first two tests T1 and T2 were #$! "

performed to investigate the behavior of the pile under mechanical loading and isothermal #$&"

conditions. The test procedure follows the French Standard [41]. In the preparation step, the pile #'( "

was first loaded to 50 N (10% of the pile resistance, which is 500 N, after Yavari et al. [21]) and #'# "

then unloaded to remove the disturbed settlement component due to soil compaction related to #') "

the pile installation process. After this step, the pile was loaded in steps of 50 N up to 250 N #'* "

(50% of the pile resistance), and then unloaded completely. Finally, the pile was loaded in steps #'$ "

of 50 N up to failure (corresponding, by convention, to a pile head settlement equal to 2 mm, i.e. #'' "

10% of the pile diameter). Each loading step was maintained for 60 min. #'+ "

  #'%"

For the test T3, after the preparation step, the pile temperature was fixed at 20¡C (similar to the #'! "

room temperature) for two days to ensure the homogeneity of the soil and pile temperature at the #'&"

initial state. After this phase, the pile was first heated from 20¡C to 21¡C for 4 h and then cooled #+("

to 19�qC for 4 h. Finally, the initial temperature of 20¡C was imposed to the pile for at least 16 h. #+#"

Thus the total duration of one thermal cycle equals to 24 h. 30 thermal cycles were applied #+)"

during this first stage. In the subsequent stage, an axial head load of 100 N (20% of the pile #+*"

resistance) was applied. 30 thermal cycles were then applied under this pile head load. The same #+$"

procedure was repeated at pile head loads of 200 N and 300 N (40% and 60%, respectively, of #+' "

the pile resistance). The thermo-mechanical loading path of the test T3 is summarized in Fig. 2.  #++"

 #+%"

3. Results #+!"
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Fig 3 shows the results obtained for the test T1. The pile head settlement is plotted against #$! "

elapsed time for each loading step. The pile head settles immediately after the application of the #%&"

axial load. Afterwards, the settlement increases with time but at a lower rate. In general, the #%#"

relationship between the pile head settlement and the logarithm of time can be fitted using a #%'"

linear function (for the last 30 min of each loading step). That function allows determining the #%("

creep rate as shown in equation (1).  #%)"

 �. = (S60 �± S30)/log(60/30)        (1) #%*"

where �D is the creep rate; S60 and S30 are the settlements of the pile head at 60 min and 30 min, #%$"

respectively. Fig. 4 shows the creep rate of all the three tests. It can be observed that the higher #%%"

the pile head load the higher the creep rate, and that a linear function fits satisfactorily the #%+"

relationship between these two quantities. The results of the three tests are quite similar showing #%!"

the good repeatability of the experimental procedure. Other results concerning the mechanical #+&"

behavior of the pile under mechanical loading are similar to that obtained by Yavari et al. [21] by #+#"

using the same experimental setup and by testing the same sand. For this reason, these results #+' "

(pile head settlement versus pile head load, pile axial stress profile, etc.) are not shown in the #+("

present paper. Only the results on creep rate are shown here because such results were not shown #+)"

in the work of Yavari et al. [21] and they are important when investigating the long-term #+*"

behavior of piles. #+$"

 #+%"

Fig. 5 shows the temperature measured at various locations together with the pile head settlement #++"

after the first heating-cooling cycle in the test T3 under a constant head load corresponding to #+!"

20% of the pile resistance. When the temperature of the pile is increased from 20¡C to 21¡C, the #!&"

soil temperature at 20 mm (S5), 40 mm (S6), and 80 mm (S7) from the center of the pile #!# "
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increases subsequently. But the temperature change at 80 mm remains very small. It seems that !$%#

the duration of 4 h for the heating phase is long enough for the soil temperature to reach !$&#

equilibrium. The same conclusion can be drawn for the subsequent cooling phase (pile !$' #

temperature is decreased to 19¡C) and the final heating phase (pile temperature is increased to its !$( #

initial value, 20¡C). The results on the pile head settlement show that heating does not induce !$) #

any significant movement but that cooling induces a settlement (the normalized settlement is the !$* #

ratio between the pile head settlement and the pile diameter). In addition, the pile head settlement !$+#

and the pile temperature stabilize at the same time.   !$$#

  %""#

In Fig. 6, the pile head settlement is plotted versus the pile temperature change during the first %"!#

heating-cooling cycle for the four axial loads. It can be observed that the pile behavior depends %"%#

on the mechanical load applied to it. The pile head heave associated to heating can only be %"&#

observed when the pile is free of load (Fig. 6a). In this case, the displacement of the pile head is %"'#

similar to �W�K�H�� �S�L�O�H�¶�V�� �W�K�H�U�P�D�O�� �H�[�S�D�Q�V�L�R�Q�� �F�X�U�Y�H���� �Z�K�L�F�K��corresponds to the temperature-induced %"(#

deformation of a pile restrained at its toe but free to move at its head. In the three other cases, the %")#

pile head does not move during the initial heating phase. The subsequent cooling phase induces a %"*#

settlement in all the four cases. The slope of the settlement is similar to the thermal expansion %"+#

curve. The final heating phase, when temperature increases back to the initial temperature, does %"$#

not induce any displacement in all the four cases. As a result, the first heating/cooling cycle %!"#

induces irreversible pile head settlement in all the four cases. In addition, the higher is the axial %!!#

load, the higher the irreversible settlement. This phenomenon is similar to that observed by %!%#

Kalantidou et al. [7] and Yavari et al. [21] on dry sand and Yavari et al. [18] on saturated clay. %!&#

 %!' #
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In Fig. 7, the irreversible pile head settlement and its ratio to the pile diameter (normalized #!$ "

settlement) are plotted versus the number of thermal cycles for all the four axial pile head loads. #!%"

When pile is free of load, the irreversible settlement is negligible. In the other cases, the higher is #!&"

the pile head load, the more important is the observed settlement. In addition, for a given pile #!' "

head load, the irreversible settlement increases with the number of thermal cycles, while tending #!( "

to stabilize for a high number of cycles. In addition, while the irreversible pile head settlement ##)"

tends to stabilize after around 20 cycles for low pile head load (up to 40% of pile resistance), ##! "

under higher pile head loads (60% of pile resistance), it continues to increase at a constant rate ###"

over the 30 applied thermal cycles. ##*"

 ##+"

For a deeper analysis of the pile head settlement with thermal cycles the irreversible pile head ##$"

settlement was calculated using the following equation (see Pasten & Santamarina [17]): ##%"

�Ü�5 L �Ü�5���Ç�Ö�\ �¶ �:�sF �‡�š�’�:F�Ú�ä�0�Ö�;�;       (2) ##&"

Here, �G1 is the irreversible pile head displacement; Nc is the number of cycles; �E is a model ##' "

parameter obtained by fitting the experimental data (one value per pile head load). The result in ##("

Fig. 7 shows that this equation can fit correctly all the experimental data. #*) "

 #*! "

Besides, irreversible settlement was also normalized with respect to the settlement obtained #*#"

during the first cycle as suggested by Suryatriyastuti et al. [9]. This ratio of pile settlement is #** "

plotted versus the number of cycles in Fig. 8 for all the four pile head loads. The results show #*+"

that this ratio increases quickly during the first ten cycles and then tends to stabilize at a high #*$"

number of cycle. Note that in the study of Suryatriyastuti et al. [9], at a pile head load of 33% of #*%"
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the pile resistance, 12 heating/cooling cycles induce a ratio of approximately 1.2. This value is "$%#

similar to the one found in the present work for the case of 40% of the pile resistance.  "$&#

 "$' #

The results on the axial force along the pile, measured by the strain gages and the pile head load "() #

sensor, are plotted in Fig. 9. The axial force Q is normalized with respect to the pile resistance "(! #

Qult = 500 N and the depth z is normalized with respect to the pile length H = 600 mm. At the "(" #

initial state, when no pile head load is applied, the axial force along the pile remains smaller than "($ #

5% of Qult. The subsequent thermal cycles do not significantly modify the axial force. When a "(( #

load of 20% of Qult is applied to the pile head, the axial force along the pile also increases. "(* #

Afterwards, the first heating phase leads to a slight increase of the axial force and the subsequent "(+ #

cooling phase leads to a slight decrease. After 30 cycles of heating/cooling, the axial force is "(%#

higher than the initial one (under mechanical load). Note that the axial force after the 30th heating "(& #

phase is also higher than that after the 30th cooling phase. The cases of loads corresponding to "(' #

40% and 60% of Qult lead to similar observations. "*) #

 "*! #

Fig. 10 shows the pile head load, the horizontal and vertical pressures in soil at 50 mm under the "*" #

pile toe as a function of the number of thermal cycles. The initial stress (10 kPa and 5 kPa for "*$ #

vertical and horizontal ones, respectively) corresponds to the weight of the soil specimen. The "*( #

coefficient of horizontal pressure at rest of 0.5 is in the usual range for dry sand [12, 21, 42]. "** #

These pressures increased significantly when the pile head load was increased but the thermal "*+ #

cycles did not influence these values.  "*%#

 "*&#
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In Fig. 11, the irreversible settlement of the pile head measured after 30 thermal cycles is plotted $%&#

versus the pile head load. In this figure, the pile head settlement, estimated from the creep rate $'( #

(shown in Fig. 4) and the duration of the thermal phase, is also plotted. The difference between $'! #

these two values can be attributed to the settlement related uniquely to the thermal cycles. It can $'$ #

be seen that the settlement related to thermal cycles is much larger than that related to creep. The $'" #

higher is the pile head load, the higher is the irreversible settlement. $') #

 $'%#

4. Discussion $'' #

In the present work, the temperature variation was imposed at  ±1¡C. This range is much smaller $'* #

than the temperature variation of the energy piles which can reach up to ±20¡C [2, 4, 11, 21, 25, $'+ #

27]. Actually, in this small-scale model, the dimension of the pile is 20 times smaller than a full -$'&#

scale pile of 0.4 m in diameter and 12 m length. As a consequence, the strain related to the $*( #

mechanical load is 20 times smaller than that at the full scale [2, 8, 11, 24]. For this reason, the $*! #

temperature variation was reduced 20 times in order to have a thermal dilation of the pile 20 $*$#

times smaller than that at the full scale. The thermo-mechanical behavior of the pile observed at $*" #

the small scale can then be used to predict the behavior of energy piles at the full scale. $*) #

 $*%#

The irreversible evolution of the pile head settlement with thermal cycles observed in the present $*' #

work (Fig. 7) is similar to that obtained by Ng et al. [24] on saturated clay using centrifuge $** #

modeling. These authors applied five thermal cycles and observed a ratcheting of pile head $*+#

settlement. A similar behavior can be found in the numerical study of Vieira & Maranha [35]. In $*&#

the present work, with 30 thermal cycles (which can represent 30 years of seasonal temperature $+(#

changes of energy piles), the results confirm that the increment of irreversible settlement per $+!#
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cycle is higher during the first cycles but becomes negligible after 20 cycles for the cases of axial $%$#

loads lower than 40% of the pile resistance (which corresponds to the service load of piles in real $%&#

cases). The irreversible settlement continues to increase after 20 cycles only when the pile head $%"#

load is high (60% of the pile resistance). $%'#

 $%(#

When comparing the results obtained in the present work to those obtained in the numerical $%)#

work of Pasten & Santamarina [17], common trends can be found, as shown in Fig. 7. The $%%#

parameter �E represents the shape of the curve. The results obtained do not show a clear trend in $%*#

the relationship between this parameter and the pile head load. A similar conclusion can be $*+#

drawn from the Fig. 8 where the irreversible pile head settlement is normalized with respect to its $*! #

value after the first thermal cycle. The mechanisms considered is the work of Suryatriyastuti et $*$#

al. [9]  can be used to explain the results obtained in the present work. These authors embedded a $*&#

strain hardening/softening mechanism at the pile-soil interface into the proposed t-z function to $*" #

consider cyclic degradation effects during the thermal cycles. The numerical investigation of Ng $*' #

et al. [39] also confirms the decrease in resistance of pile-soil interface versus the number of $*( #

thermal cycles. In addition, Vargas & McCarthy [43] show that thermal cycles induce thermal $*) #

volume change of grains, which can lead to compaction under constant stress. These authors $*%#

explain this structural rearrangement by the thermal effect generating an increase in the average $** #

contact forces between soil particles. In addition, Fityus [44] studied the behavior of a model &++#

footing on expansive clay under wetting/drying cycles and found a similar trend as far as the &+!#

accumulating irreversible settlement is concerned.  &+$#

 &+&#
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The study of Saggu & Chakraborty [12] shows an opposite trend compared with the present $%&#

experiment. Actually, the axial stress decreased after fifty cycles and the pile settlement was $%"#

observed only in the first thermal cycle. This phenomenon was explained by the stress transfer $%'#

into the surrounding soil, and the progressive heating of pile with thermal cycles.  $%(#

 $%)#

Figure 9 shows an increase of the axial force along the pile when the number of thermal cycles $%*#

increases. This behavior is similar to that predicted by numerical approaches ([9, 17, 35]). $!%#

Actually, in these studies, this behavior can be explained by the degradation of the pile-soil $!! #

interface resistance with the accumulating cycles. In a different case, Pasten & Santamarina [17] $!+#

show the axial force profile of pile during fifty cycles. The axial force along the pile was larger $!$#

in the heating phase than in the cooling phase. However, the axial force in the cooling phase was $!&#

similar to that at the initial state. $!" #

 $!' #

Fig. 11 shows that the thermal settlement response of pile head shows a trend similar to the result $!( #

from the study of Yavari et al. [18] and Vieira & Maranha [35]. Especially, all these studies have $!) #

investigated the thermal response of a pile when it works under different constant head loads. $!* #

The results showed that the long-term performance of energy piles induced significant $+%#

irreversible settlement and that the thermal settlement is greater at higher constant head loads. $+!#

 $++#

5. Conclusions $+$#

The long-term behavior of energy piles was investigated using a small-scale model. 30 $+&#

heating/cooling cycles were applied to the model pile under various constant pile head loads $+"#

varying from 0 to 60% of pile resistance. The following conclusions can be drawn:  $+' #
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- Thermal cycles under constant head load induces irreversible settlement of the pile head $%&#

- The irreversible settlement of the pile head is higher at a higher pile head load $%'#

- The first thermal cycle induces the highest irreversible pile head settlement. The $%(#

incremental irreversible settlement, accumulating after each thermal cycle, decreases $$)#

when the number of cycles increases. It becomes negligible at high number of thermal $$!#

cycles and/or low pile head load. The evolution of irreversible pile head settlement versus $$%#

the number of cycles can be reasonably predicted by an asymptotic equation. $$$#

- The axial force measurement along the pile increases progressively with the increase of $$*#

the number of thermal cycles. The axial force at the end of a heating phase is higher than $$+#

that at the end of the subsequent cooling phase.  $$"#

The results obtained in the present work could be helpful to predict the long-term settlement of a $$&#

building having all the foundation piles equipped with a heat exchanger system. A similar test $$' #

program should be conducted on full-scale piles, for further researches, in order to confirm $$(#

quantitatively these observations. In general, the results suggest that the stress/strain behavior of $*) #

energy piles would continue to evolve even several years after their installation. $*! #

 $*%#
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Fig. 1 Experiment setup $)* #
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Fig. 2 Thermo-mechanical loading path of the test T3. $%&#
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Fig. 3 Mechanical settlement of pile in test T1 #$' "
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Fig. 4 Creep behavior of pile for all the three tests. $%"#
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Fig. 5 Pile head settlement, soil and pile temperature versus elapsed time during the first thermal "$%#

cycle at 20% of pile resistance. "$&#
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#$%%#

Fig. 6 Pile head settlement versus temperature change during the first cycle at axial load of (a) $%&#

0%; (b) 20%; (c) 40%; (d) 60% of pile resistance. $%'#
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Fig. 7 Irreversible pile head settlement versus number of thermal cycles. $%'#
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Fig. 8 Ratio of pile settlement versus number of cycles.  $%&#
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Fig. 9 Axial force profile during thermal cycles  $"&#
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Fig. 10 Pile head load and total pressures in soil versus number of thermal cycles  $%%#
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Fig. 11 Pile head settlement after 30 cycles versus pile head load  $&"#


