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Abstract: Infiltration column is usually used to investigate the hydro-mechanical processes in 1 

unsaturated expansive clay. In this test, the moisture transfer is often monitored along the 2 

column during water infiltration using suction or water content probes. Nevertheless, the 3 

lateral swelling pressure developed is rarely considered. This paper describes an infiltration 4 

column for studying the lateral swell behavior of expansive clay. The column consists of a 5 

rigid cell ensuring the constant-volume condition and a hydraulic system enabling the water 6 

intake of the hosted sample. It is equipped with three types of sensors: pressure sensors, force 7 

transducer and displacement transducer to respectively monitor the radial and axial swelling 8 

pressure of the sample at different positions and to check whether any axial displacement is 9 

taking place. A detailed description of the different parts of the cell is first presented. 10 

Secondly, analysis on the results of a test on a compacted bentonite/sand mixture allows the 11 

pertinence of such device to be evaluated.  12 

 13 
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constant volume conditions. 15 
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Introduction 1 

Hydro-mechanical processes in unsaturated expansive clay need to be considered when 2 

studying the damage to buildings, structures and roads caused by ground movement related to 3 

moisture transfer (Basma et al. 1996; Tang et al. 2009a). In addition, compacted expansive 4 

clays are increasingly used for engineered barriers for environmental protection (Gens 2010). 5 

Infiltration column is usually used in laboratory to investigate the moisture transfer in 6 

compacted expansive clay where soil suction (or moisture content) is monitored along the 7 

column (Cui et al. 2008; Tang et al. 2009b; Wang et al. 2013a). However, it is well known 8 

that wetting unsaturated expansive clay under constant-volume condition induces swelling 9 

pressure. In the laboratory, where the compacted clay sample is confined in a rigid cell during 10 

saturation, the swelling pressure is usually measured in the axial direction of the cell (Pusch 11 

1982; Komine and Ogata 1994; Agus and Schanz 2005; Wang et al. 2012). Few works exist 12 

monitoring the lateral swelling pressure of compacted expansive clay (Cho et al. 2000; Lee et 13 

al. 2012).  14 

 15 

The above-mentioned laboratory works on swelling pressure of expansive clay consist 16 

however only elementary tests. Large-scale in situ experiments were also performed to 17 

monitor the moisture transfer and the coupled hydro-mechanical behavior of compacted 18 

expansive clay (Chijimatsu et al. 2001; Alonso et al. 2005; Barnichon et al. 2012; Wang et al. 19 

2013b). In these experiments, the swelling pressure developed during wetting was measured 20 

at various locations using total pressure transducers embedded in the soil. Nevertheless, 21 

performing in situ experiments remains complexes. For this reason, various mock-up tests 22 

have been done to study the hydro-mechanical behavior of expansive soil (Martin and Barcala 23 

2005; Pacovsky et al. 2007). These tests still require large size sample and the installation of 24 

total pressure transducers are similar to that of in situ experiments. 25 
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 1 

When using small-scale mock-up test to study the hydro-mechanical behavior of compacted 2 

expansive clay, column-type testing device is usually used (Schanz et al. 2013; Wang et al. 3 

2013a). In these works, the swelling pressure was measured in the axial direction of the 4 

column. As a consequence, the development of lateral swelling pressure during infiltration 5 

could not be observed.      6 

 7 

In the present work, an infiltration column equipped with radial swelling pressure transducers, 8 

installed at various locations along the column, is presented. The results of an experiment on a 9 

bentonite/sand mixture allow evaluating the pertinence of the device to investigate the hydro-10 

mechanical processes when wetting compacted expansive clay under constant-volume 11 

condition. 12 

 13 

Soil studied 14 

The soil studied is a mixture of bentonite/sand with a dry mass fraction of 70/30. The 15 

bentonite is MX80 from Wyoming, USA, having a liquid limit of 575%, a plastic limit of 16 

53% and a particle density of 2.77 Mg/m3. This bentonite is known to have a high water 17 

intake capacity with a specific surface as large as 710 m2/g. The sand (pure quartz) used in the 18 

mixture has a particle density of 2.65 Mg/m3. It was sieved at 2 mm prior to being mixed with 19 

bentonite grains that were previously equilibrated with a water content (w) of 13%. The grain 20 

size distribution curves of the bentonite and sand grains were determined by dry sieving and 21 

are presented in Figure 1. The figure shows that the size of bentonite grains was similar to that 22 

of sand grains. Once the bentonite was deflocculated in water, the particle size distribution 23 

bentonite determined by the hydrometer method show that it contains mainly fine particles 24 
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(80% smaller than 0.001 mm). 1 

  2 

The present study is part of the SEALEX project where in situ experiments were conducted to 3 

study the performance of compacted bentonite seals (Barnichon et al. 2012). In the SEALEX 4 

in situ experiments, the water used to saturate the compacted soil has similar chemical 5 

composition as the pore water of claystone considered as the host rock in the French program 6 

of geological radioactive waste disposal. This water was also used in this study and its 7 

chemical composition is shown in Table 1.  8 

 9 

Experimental set-up  10 

The experimental set-up is presented in Figure 2 and consists of several parts: i) the 11 

mechanical part that hosts the soil sample; ii) the hydraulic part that enables the saturation of 12 

the sample; iii) the monitoring part with all the sensors (total pressure, force transducer, 13 

displacement indicator) and the data logger system.  14 

For the mechanical part, a stainless steel cell was designed to mechanically ensure the 15 

constant-volume condition of the experiment. It consists of a hollow cylinder of 11 mm 16 

thickness fixed to a thick base. In the axial direction, a piston is placed on the top of the soil 17 

specimen and is blocked by a screw that is fixed to a stiff structure (Figure 3). This stiff 18 

structure consists of two stainless steel disks respectively placed on the two sides of the 19 

cylinder, connected by three metallic rods.  The cell was designed to withstand high pressure 20 

up to 18 MPa. The force due to axial soil swelling is directly transmitted to the screw, and 21 

then to the stiff structure (disks and rods).  22 

 23 

For the hydraulic part, the base of the cell, on which the cylinder was mounted, is equipped 24 



 6 

with water inlet and outlet (Figure 2). The water inlet is connected to a burette and then to a 1 

water tank. The graduated burette shows the volume of water entering the cell, and it is 2 

regularly supplied with water from the water tank.  3 

 4 

To monitor the lateral swelling pressure, six total pressure sensors (PS) were installed at 5 

different positions as shown in Figure 4. They are labeled according to their distance to the 6 

bottom of the sample; for instance PS20, PS40, PS60, PS80, PS100 and PS120 situated at 20, 7 

40, 60, 80, 100 and 120 mm respectively from bottom of the sample. Due to the small size of 8 

the soil specimen (60 mm in diameter), miniature pressure sensors are used here. A force 9 

transducer is placed under the cell base to measure the axial swelling pressure of the specimen 10 

(Figure 3). A digital displacement transducer is installed to measure the displacement of the 11 

piston. The displacement of the piston is measured mainly to verify the constant-volume 12 

condition.  13 

 14 

Test procedure 15 

The bentonite/sand mixture was statically compacted in the column. The target dimensions of 16 

the sample are 120 mm in height and 60 mm in diameter. The target dry density of the sample 17 

is 1.67 Mg/m3 (similar to that studied by Wang et al. 2013a). In order to obtain a 18 

homogeneous sample, it was compacted in 3 layers of 40 mm height each. The sample was 19 

directly compacted in the cell after closing the holes of sensors in the cell’s wall by screwing 20 

solid plugs having the same shape of the pressure sensors. The inner wall of the cylinder was 21 

coated with grease in order to minimize the friction between the soil and the cell.  The details 22 

of the three layers forming the sample after compaction are presented in Figure 5; where ρd is 23 

the dry density of the compacted layer and ρdb is the bentonite dry density in the compacted 24 
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layer. The bentonite dry density (ρdb) was determined based on the density of the compacted 1 

mixture (ρm), the specific gravity of sand (Gss), the water content of the mixture (wm)  and the 2 

bentonite content in dry mass (B) as follows (Wang et al., 2013c):  3 
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The obtained sample height was 118.2 mm (the target was 120 mm) and the mean density 5 

obtained was  1.69 Mg/m3, close to the target density (1.67 Mg/m3). The hydraulic 6 

conductivity at saturated state of this material is very low (10-13 m/s) and more details about 7 

the hydraulic conductivity at unsaturated state can be found in Wang et al. (2013a). 8 

 9 

After the compaction of the specimen, the cell was placed on the tray of the force transducer 10 

and then the two stainless steel plates were fixed with three rods. The central screw was 11 

adjusted to touch the piston and to apply an initial pressure of 100 kPa. This pressure was 12 

expected to allow a good contact between the cell, the piston and the sample. The radial 13 

sensors were then screwed to the cell wall and adjusted so that an initial pressure of 100 kPa 14 

was also applied to ensure a good contact between the sensor and the sample.  15 

 16 

Water infiltration was then performed from the bottom side of the specimen. The evolutions 17 

of axial and radial swelling pressures were recorded during hydration as well as the axial 18 

displacement of the piston. The injected water was monitored continuously by noting the 19 

water level in the burette every day. 20 

 21 

Results  22 

Figure 6 shows the piston axial displacement during the experiment. The results of the test 23 



 8 

performed by Wang et al. (2013b) are also presented in this figure. For the present study, the 1 

displacement increased over time and reached 0.32 mm, 0.27% of the sample height.  2 

 3 

The swelling pressure versus elapsed time is presented in Figure 7. Initial values are close to 4 

0.1 MPa except for the sensor PS80 that started from a higher value (0.6 MPa). Actually, it 5 

was difficult to adjust the position of the sensor to have an exact initial pressure value of 0.1 6 

MPa. On the whole, the swelling pressure increased over time except for the one 7 

corresponding to the sensor PS120. Actually, this sensor was not in contact with the sample 8 

having a height of 118.2 mm. For the other sensors, the rate of increase was different 9 

depending on their positions. A higher rate was found for the sensors that were closer to the 10 

wetting source, the highest rate being logically observed for sensor PS20 that was the closest 11 

to the bottom. The curve corresponding to this sensor exhibits a first quick increase, reaching 12 

a peak value followed by a slight decrease and then a very slow increase to stabilize at around 13 

3.5 MPa. The swelling pressure evolution measured by the sensor PS40 was similar to that of 14 

PS20. The curves relative to sensors PS60 and PS80 increased at similar initial rates in the 15 

beginning and reached a peak at around 5.0 MPa. The values at the end of the test were 16 

respectively 4.4 MPa and 4.3 MPa. At 100 mm height, a lower increase rate was observed; a 17 

peak was reached at 4.2 MPa followed by a continuous decrease with a final value of 3.6 18 

MPa. The axial swelling pressure curve presented the lowest initial increase rate; it reached a 19 

peak at around 5 MPa followed by a decrease.  20 

 21 

The volume of injected water that was monitored manually is presented versus time in Figure 22 

8 together with the results reported by Wang et al. (2013b) in a similar test with the same 23 

sample dimensions and density. A quick increase is observed at the beginning followed by an 24 

increase at a lower rate. The theoretical total volume, 75 mL, corresponds to the fully 25 



 9 

saturated state of the sample was calculated as the volume of the total air-void in the sample at 1 

the initial state. This latter is the difference between the volume of the sample and that of the 2 

of bentonite and sand grains. It can be calculated using the following equation: 3 

𝑉!"# !"#$ = 𝑉!"#$%& − 𝑉!"# !"#$%#&!" + 𝑉!"#$

=  𝑉!"#$%& − (
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Where Gsb and Gss are the specific gravities of bentonite and sand respectively. 4 

 5 

Discussion 6 

The aim of the work is to study the water infiltration and the lateral swelling behavior of 7 

compacted expansive clay under constant-volume condition. Nevertheless, the results show 8 

that a small axial swelling strain can be observed (Figure 6). The maximal axial displacement 9 

equals 0.32 mm (0.27% of the sample height) can be considered negligible. This value is 10 

slightly higher than that observed by Wang et al. (2013b) where a similar system was used. 11 

Actually, axial swelling pressure reached in the present work (5 MPa) is higher than that 12 

observed by Wang et al. (2013b), 1.8 MPa.  13 

 14 

The final values of swelling pressure measured are in the range of 3.5 MPa to 4.5 MPa 15 

(Figure 7), for a mean value dry density of 1.69 Mg/m3. This range is also compatible with 16 

those obtained by other authors on the same material (Karnland et al. 2008; Wang et al. 17 

2013c). As far as the kinetics of swelling pressure, and more specifically the increase rate, is 18 

concerned, it was observed that the initial increase was quicker when the measure was closer 19 

to the wetting face. The axial swelling pressure measured by the force transducer then 20 

corresponds to that at the farthest position from the wetting source; thus, its initial increase 21 
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rate was found, as expected, to be the lowest. In fact, during the infiltration test, the material 1 

progressively absorbed water and it took more time to reach the upper layers. This is similar 2 

to most infiltration tests where the recorded data is the relative humidity (Wang et al. 2013a). 3 

The kinetics of relative humidity was found to be similar to the swelling pressure kinetics 4 

observed in the present work.  5 

 6 

Saba et al. (2014a) investigated the anisotropy on the swelling pressure of the same material 7 

and found that the axial swelling pressure is slightly higher than the lateral one. In the present 8 

work, the final value of axial swelling pressure is also higher than the final values of radial 9 

ones. Even if, at the beginning of the experiment, the radial stress exceeds the axial stress. But 10 

this can be explained by the fact that the axial swelling pressure corresponds to the farthest 11 

position from the wetting source.  12 

 13 

The volume of water injected after 180 days, 50mL, was still much lower than the value 14 

estimated to saturate the specimen, 75 mL, see Figure 8. In the work of Wang et al. (2013b), 15 

70 mL of water was injected after 180 days. Actually, in the work of Wang et al. (2013b), an 16 

annular void exists at the beginning of the test which allow a quick injection of water at the 17 

start of the test (more than 50 mL injected after the first hour). In addition, the volume of 18 

water infiltrated at 20 days from Wang et al. (2013b) is 60 ml while in this work it is 20 ml. 19 

With less water the mixture would be expected to have lower axial swelling pressure (then 20 

lower axial displacement of the piston). However it is contrary to the presented test results 21 

(Figure 6). Actually, the presence of the annular void that exists at the beginning of the test 22 

performed by Wang et al. (2013b) induced a significant decrease of swelling pressure after 12 23 

days of infiltration. That annular void did not exist in the present work. 24 
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 1 

In the present work, the results obtained from only one experimental are presented. Due to the 2 

long duration of the experiment (180 days), it was not easy to repeat it to evaluate the 3 

duplicability of method. However, the reliability of the data can be appreciated by its 4 

agreement with existing data as discussed above. In addition, the results shown in the present 5 

paper have been equally analyzed with other infiltration tests (Saba et al. 2014b), which 6 

confirm the pertinence of the experimental device used.   7 

  8 

Conclusion 9 

The development of an infiltration column for studying the lateral swell behavior of expansive 10 

clay is reported. The results of an experiment performed on compacted bentonite/sand mixture 11 

are shown. When the bottom of the column was flooded with water, lateral swelling pressure 12 

developed progressively along the column. The rate of the increase of swelling pressure was 13 

higher for the sensor situated closer to the wetting front. The kinetic of swelling pressure 14 

change versus elapsed time at various location was similar to that obtained in an infiltration 15 

test with measurement of relative humidity. The final values of lateral swelling pressure, after 16 

180 days of flooding, were close to that reported in literature.  In addition, these values were 17 

slightly lower than the axial one, which was also in agreement with the anisotropy of the 18 

material that was uni-axially compacted. The results obtained confirm the pertinence of the 19 

device to study the mechanical behavior of expansive clay subjected to water infiltration 20 

under constant volume condition.  21 

 22 
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 1 
Table 1. Chemical composition of synthetic water (Wang et al., 2012). 2 

Component NaHCO3 Na2SO4 NaCl KCl CaCl2.2H2O MgCl2.6H2O SrCl2.6H2O 

Mass/Volum

e of solution 

(g/L) 

0.28 2.216 0.615 0.075 1.082 1.356 0.053 



 

 

 

 

Figure 1. Grain size distribution curves.  

 
 



 

 

 

Figure 2. Outline of the experimental set-up. 



 

 

 

Figure 3. 3D view of the column. 

 



 

 

 

Figure 4. Cross section of the column with the positions of the pressure sensors (PS). 

 



 

 

 

 

Figure 5. Dimensions and final dry densities of the layers of the compacted soil specimen 

 

 

Figure 6. Piston's axial displacement versus time. 
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Figure 7. Swelling pressure versus time. 

 

Figure 8. Volume of injected water versus time. 

 


