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Abstract This paper presents a constitutive model for describing some important
features of the behavior of natural stiff clay evidenced experimentally such as the
limited elastic zone, the presence of strain-hardening and softening, and the smooth
transition from elastic behavior to a plastic one. The model, namely ACC-2, is an
adapted Modified Cam Clay model with two yield surfaces: similarly to Bounding
Surface Plasticity theory, an additional yield surface –namely Inner yield surface–
was adopted to account for the plastic behavior inside the conventional yield sur-
face. A progressive plastic hardening mechanism was introduced with a combined
volumetric-deviatoric hardening law associated with the Inner yield surface, enabling
the plastic modulus to vary smoothly during loading paths. The main feature of the
proposed model is that its constitutive equations can be simply formulated based on
the consistency condition for the Inner yield surface, so that it can be efficiently im-
plemented in a finite element code using a stress integration scheme similar to that of
the Modified Cam Clay model. Furthermore, it is proved to be an appropriate model
for natural stiff clay: the simulations of a set of tests along different mechanical load-
ing paths on natural Boom Clay show good agreement with the experimental results.

Keywords natural stiff clay; two-surface model; elasto-plasticity; stress integration;
validation

1 INTRODUCTION

In comparison with over-consolidated reconstituted clays, natural stiff clays (e.g.
Boom Clay, London Clay) exhibit more complex behavior such as a narrow elas-
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tic zone, a smooth transition from elastic behaviour to a plastic one (progressive
stiffness degradation with strain) and a complex strain hardening/softening behavior
[12, 22, 29]. These features must be taken into account when developing constitutive
models for this kind of clays.

Most elasto-plastic constitutive models for soils including the Modified Cam Clay
model (MCC) [26] are based on the concept of Critical State [28]. MCC is now
widely used for its good description of the main features of soft clay behavior but is
not capable of well describing the observed behavior of natural stiff clays [15, 35].
This may be because the conventional yield surface defined in the MCC cannot well
capture the yield behavior of natural stiff clay along different loading paths. Note that
in this study the terms ’yield surface’ and ’yield stress’ usually defined in critical state
models are referred to as ’conventional yield surface’ and ’conventional yield stress’
respectively in order to avoid any confusion. Within such a conventional elasto-plastic
framework, a number of approaches have been proposed to determine a representative
yield stress. Conventional yield points are usually determined based on the sharp
slope change in stress vs strain plots such as mean effective stress (p′) vs volumetric
strain (εv), deviator stress (q) vs shear strain (εs), or stress work (

∫
p′dεv +

∫
qdεs)

vs stress, etc. [6, 24, 33, 34]. As pointed out by Wood [38], the conventional yield
stress can be commonly defined as the intersection point of two linear extrapolations
representing the pre-yield and post-yield portions of stress–strain curves.

In the present work, the conventional yield stress is identified from both p′ − εv
and q− εs curves along each stress path. Taking a standard drained triaxial shear test
starting from an isotropic effective stress of 4 MPa on natural Boom Clay at Mol [3]
for example, Figure 1 presents the conventional yield point determination. It can be
noted that for this test identical conventional yield stresses with p′ = 4.83 MPa and
q = 2.50 MPa are determined from both log p′−εv and q−εs planes. When there is a
slight difference between the values determined from the two planes, mean values are
determined and considered as the conventional yield stress. The conventional yield
points obtained from the triaxial tests and isotropic tests reported in the literature
[3, 5, 11, 21] are plotted in Figure 2. The conventional yield curve predicted by the
MCC and the corresponding critical state line are also drawn with the parameters
(the critical state stress ratio M being 0.67 and initial preconsolidation pressure p′c0
being 6 MPa) determined by a classical method proposed by Wood [19]. Inspection
of Figure 2 shows that significant difference exists between the MCC surface and the
experimental data, showing that the MCC surface is not appropriate for describing the
conventional yield behavior of natural Boom Clay along non-isotropic stress paths.

In addition, unrealistic volumetric strains are predicted when an associated flow
rule is adopted in MCC: an unrealistic stress-dilatancy relation is obtained for natural
stiff clays as will be shown in Section 5. Thereby, to better describe the volumetric
strain for natural stiff clays, it is necessary to apply a non-associated flow rule de-
riving from a plastic potential allowing a wide variety of stress-dilatancy relations.
Although efforts have been made to develop such a potential (the plastic potential
of MCC being a special case) by e.g. Lagioia et al. [20] or McDowell et al. [23],
progress is still required especially for natural stiff clays.

Besides these issues related to the shape of the yield surface and the non-standard
behaviour of natural stiff clays, it must be added that conventional critical state mod-
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Fig. 1 Conventional yield stress determination from a drained triaxial shear test (p′0 = 4.0 MPa).

els such as MCC are based on a simple elasto-plastic framework, so that they predict
a sharp elastic-plastic transition, which departs from smooth elastic-plastic transi-
tions observed experimentally. In order to overcome this difficulty, Dafalias et al.
[7, 8, 9, 10] introduced the well-known bounding surface model. It is now widely
used for describing the smooth transition from elastic to plastic regimes as well as the
softening behavior. Within this framework, plastic strains do appear inside the con-
ventional yield surface. It should be noted that the plastic modulus is not obtained by
imposing the consistency condition to the associated surface, but is interpolated as
a function of the distance between the current stress point and the bounding surface.
Lying within the framework of the bounding surface plasticity theory, the concept of
sub-loading surface was proposed by Hashiguchi et al. [13, 14] and recently extended
by Asaoka et al. [1, 2] based on Cam Clay model. Similar concepts were extended
to account for unsaturated states by Pereira et al. [25]. In these models, an additional
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Fig. 2 Conventional yield surface of natural Boom clay: experimental determination and proposed model.

evolution law is introduced to describe soil’s structure degradation process from over-
consolidated states to normally consolidated states. The plastic strain is taken as an
internal variable allowing to describe the softening behavior. Yao et al. [39] proposed
a unified hardening model (UH model) which can describe the softening behavior of
clays by adopting a unified hardening parameter H defined by dH =

Mf
4−η4

M4−η4 dε
p
v ,

with Mf being the potential failure stress ratio and η being the stress ratio q/p′. It
is worth noting that such a hardening law implies that the stress state η = M is a
discontinuity point during the hardening process. This might induce numerical diffi-
culties and thus requires a particular treatment, which is difficult to interpret from a
physical point of view.

In this study, an adapted Cam Clay model with two-surface-plasticity (ACC-2)
is developed. An extra yield surface (called Inner yield surface) aiming at predicting
plastic strain even at small strain levels is introduced to well describe soil behavior
inside the existing MCC surface (called Yield surface). Basically, ACC-2 has a struc-
ture similar to that of bounding surface models. ACC-2 considers the Inner yield sur-
face as a true yield surface in the sense of conventional elasto-plasticity, incorporat-
ing a progressive plastic hardening mechanism. Instead of defining an interpolation
function based on the distance to the –outer– Yield surface for the plastic hardening
modulus, a specific hardening law associated with the Inner yield surface is defined,
enabling the Inner surface to approach without touching the Yield surface and also
the plastic modulus to vary smoothly along a plastic loading path. Thereby, the con-
stitutive equations can be simply derived using the consistency condition applied to
the Inner yield surface. Hence, in the numerical implementation, all the features of
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stress integration schemes for conventional elasto-plastic models can be applied to
ACC-2 with only minor modifications.

In this paper, the Two-surface model ACC-2 was firstly presented. Emphasis is
put on the development of a new yield surface and a new plastic potential as well as
a combined volumetric-deviatoric hardening law for softening behavior description.
Then, the constitutive equations were given and the procedure for parameters deter-
mination was described. Finally, the model was validated by simulating a set of tests
on natural Boom Clay along different loading paths.

2 Model description

For the sake of simplicity, it is assumed that the soil behavior is isotropic. This hy-
pothesis will clearly limit the proposed constitutive model in the case of soils with a
strong anisotropy including intrinsic and/or evolving anisotropy. However, the exten-
sion of this model to an anisotropic elasto-plastic model is straightforward by incor-
porating new plastic mechanisms such as an inclined yield surface and a rotational
component of hardening law as developed by Wheeler et al. [36, 37].

2.1 Elastic behavior

The constitutive model is developed and formulated in the triaxial stress space (p′−q).
The mean effective stress p′ = p − u and the deviator stress q are defined using the
effective stress tensor σ′ij = σij − u δij , i, j = {1, 2, 3} as follows (using Einstein’s
notation repeated indices mean summation):

p′ =
1

3
σ′ijδij ; q =

√
3

2

√
sijsij (1)

with u, the pore water pressure; δij , Kronecker’s symbol; and sij = σ′ij − p′δij ,
the deviator stress tensor. By considering compressive stresses as positive, the mean
effective stress p′ and deviator stress q in the triaxial stress space can be simplify
defined as follows:

p′ =
1

3
(σ′1 + 2σ′3) ; q = σ1 − σ3 (2)

where σ′1 and σ′3 are the axial and lateral effective stresses, respectively.
As in MCC model, the elastic volumetric strain increment is given by:

dεev =
κ

v0

dp′

p′
(3)

giving the elastic bulk modulus:

K =
v0
κ
p′ (4)
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Fig. 3 Schematic representation of the isotropic compression behavior of natural stiff clay.

where κ is the elastic slope in (ln p′, v) space and v is the specific volume (v0 being
its initial value at the reference state). The shear strain increment writes as follows:

dεes =
dq

3G
(5)

With an assumed constant Poisson’s ratio ν, shear modulus G can be deduced as:

G =
3 (1− 2ν)

2 (1 + ν)
K (6)

Even though this choice for the shear modulus (Equation 6) helps in simulating ex-
perimental results, it is worth noting that it is not thermodynamically consistent since
the Maxwell symmetry relations are not satisfied in this case [18, 41].

2.2 Plastic behavior

2.2.1 Two yield surfaces for a progressive yielding

The isotropic hardening law of MCC is based on the assumption of a bilinear com-
pression curve in (ln p′ − v) plane whereas experimental observations (see Figure 3)
have shown that such bilinear relationship is not suitable for describing the smooth
transition from the elastic regime to the plastic one as in the case of natural stiff clays
(e.g. natural Boom Clay [3]). In this section, an isotropic hardening law that incorpo-
rates the plastic mechanism for progressive stiffness degradation is introduced.
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The isotropic compression curve of natural stiff clays can be divided into three
stages after Smith et al. [31]. The first stage corresponds to the ’true’ elastic region
where the strains are fully recoverable. In general, the size of this region is very small.
It has not been represented in Figure 3. In the second stage (O-B), ’true’ yield begins
to occur since plastic strain is produced. The tangent stiffness is reduced gradually
with increasing strain, leading to a smooth compression curve. This behavior is usu-
ally termed as ’smooth elasto-plastic transition behavior’ (e.g. [7]). In the third stage,
large-scale changes in soil particles arrangement occur. The compression behavior
in this stage is commonly represented by a normal consolidation line (NCL) with a
slope λ as in MCC model.

Any given yield stress state on the compression curve (point A in Figure 3) can
be linked to a reference yield state on the NCL (point A′ in Figure 3) by a positive
scalar r, which is defined as the ratio of the current yield stress to the reference yield
stress along an elastic line with slope κ :

r =
p′c
p′c

(7)

where p′c is the actual loading yield stress and p′c is the conventional yield stress on
the normal consolidation line.

From this definition, comes straightforwardly the definition of p′c and r (or equiv-
alently, p′c and p′c) as hardening variables that give the size of two distinct yield
surfaces (see Figure 4): the conventional yield surface –namely Yield surface– rep-
resenting the normal consolidation behavior and the Inner yield surface describing
the yielding behavior inside the Yield surface. The Yield surface has to be identified
as described previously (see Figures 1 and 2). It should be pointed out that the In-
ner yield surface is defined as a yield limit as in the conventional elasto-plasticity.
It has a clear physical meaning since the plastic deformation begins when the stress
state reaches it and its evolution verifies the standard Kuhn-Tucker condition. In this
regard, the proposed model is similar to the so-called bubble models –but without
kinematic hardening–, these models lying also in a framework taking its inspiration
from the bounding surface plasticity. Interested readers are referred to the work of
Rouainia and Wood [27], among others.

The yield stress on the Inner yield surface in the triaxial stress state is denoted by
(p′, q) while (p′, q) is the corresponding conventional yield stress on the Yield surface
(see Figure 4). Since the Inner yield surface is homologous to the Yield surface with
respect to the origin in (p′ − q) space, therefore:

p′

p′
=
q

q
=
p′c
p′c

= r (8)

To achieve a wide variety of yield surface shapes, a generalized yield surface
proposed by McDowell [23] is used for the Yield surface (fY ):

fY ≡ q2 +
Mf

2

1− kf

(
p′

p′c

)2/kf

p′2c −
Mf

2p′
2

1− kf
= 0 (if kf 6= 1) (9)

and
fY ≡ q −Mfp

′
√

2 ln(p′c/p
′) = 0 (if kf = 1) (10)



8 P.Y. Hong et al.

p'p'c0p'c0

q

Yield  surface

Inner  yield  surface

( p' ,  q )

( p', q ) 

Fig. 4 Yield surfaces of ACC-2 model.

where Mf defines the stress ratio at the apex of the yield surface, kf is a parameter
used to specify the shape of the yield surface. For the sake of brevity but without
losing generality, it is assumed that kf does not equal 1 in the following.

Substituting Equation (9) into Equation (8) gives the mathematical equation of
the Inner yield surface (fI ):

fI ≡ r2fY (11)

and therefore:

fI ≡ q2 +
Mf

2

1− kf

(
p′

rp′c

)2/kf

(rp′c)
2 − Mf

2p′
2

1− kf
= 0 (12)

The Inner yield surface has a similar shape and a size r times that of the Yield surface,
with 0 ≤ r ≤ 1.

2.2.2 Plastic potentials

The expression of the plastic potentials takes the same form as the yield surfaces.
The plastic potentials associated with the Inner yield surface and the Yield surface
respectively read:

gI(p
′, q, β) ≡ q2 +

Mg
2

1− kg

(
p′

rβ

)2/kg

(rβ)
2 − Mg

2p′
2

1− kg
= 0 (13)

gY (p′, q, β) ≡ q2 +
Mg

2

1− kg

(
p′

β

)2/kg

β2 − Mg
2p′

2

1− kg
= 0 (14)

giving the flow rule in the case of triaxial compression:

dεpv
dεps

=
Mg

2 − η2

kgη
(15)
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where η is the stress ratio q/p′, Mg is the critical state slope defining the stress ra-
tio at failure when there is no further volumetric strain increment, kg is a constant
parameter used to control the flow rule (the ratio between plastic volumetric strain
increment and plastic shear strain increment), β is the size parameter. This latter can
be determined using Equation (13) at any given stress state (p′, q) as done by Yu
[40]. kg = 2 is the case of MCC with an associated flow rule. For brevity, it is also
assumed that kg is not equal to 1.

In the general case, a non-associated flow rule is considered. If kf = kg and
Mf = Mg , an associated flow rule is recovered. In the former case (i.e. Mf 6= Mg),
the intersection point between the critical state line and the yield surface is not the
apex of the yield surface (as opposed to MCC).

2.2.3 Hardening laws

The two hardening variables p′c and r control the size of the Yield surface and the In-
ner yield surface, respectively. The evolution of p′c depends on the plastic volumetric
strain, as in MCC model, and is described by:

dp′c =
v0

λ− κ
p′cdε

p
v (16)

This equation assumes that the evolution of the Yield surface is induced by volumetric
hardening only. Reversely, contribution of the plastic shear strain to plastic hardening
is accounted for in the evolution of the Inner yield surface through the evolution law
of r, given in incremental form as follows:

dr =
v0

λ− κ
s(1− r)dεpd (17)

where s is a material constant. Since 0 ≤ r ≤ 1, Equation (17) shows that r increases
monotonically with plastic strain unless its initial value r0 equals unity, in which case
r = r0 = 1 at all times. (1 − r) measures the relative distance between the current
yield stress and the reference yield stress. This measure appears in the definition of
the plastic modulus, as it is the case for the bounding surface plasticity developed by
Dafalias et al. [7, 8, 9, 10].

In Equation (17), a generalized plastic strain is used. It is defined as follows:

dεpd = dεpv +Addε
p
s (18)

where Ad is a parameter which controls the contribution of shear plastic strain. The
combined volumetric-deviatoric hardening law given in Equation (17) enables the
point representing the stress state to cross the critical state line.

Two distinct situations are encountered depending on the value of r0:

1. 0 ≤ r0 < 1: The Inner yield surface is completely inside the Yield surface. When
the stress state reaches the Inner yield surface, plastic strain begins and the Inner
yield surface and the Yield surface evolve simultaneously according to Equation
(16) and Equation (17), respectively. The Inner yield surface moves towards the
outer yield surface but without touching it according to the hardening law. The
approaching rate depends on the parameter s.
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2. r0 = 1: The Inner yield surface and the Yield surface coincide. Both the surfaces
evolve at the same rate since dr = 0 when r = r0 = 1 according to Equation
(17). It is as if the Inner surface was cancelled.

When unloading from the Inner yield surface occurs, purely elastic behavior is as-
sumed as in the conventional elasto-plasticity theory and the stress state moves back
inside the Inner yield surface according to the standard Kuhn-Tucker condition. Upon
reloading, purely elastic behavior still occurs before the stress state reaches the Inner
yield surface again. Obviously, closed hysteresis loops observed experimentally dur-
ing an unloading-reloading process cannot be predicted in such a framework; how-
ever, this is out of the scope of the present study.

2.2.4 Plastic modulus

The prediction of the soil behavior along a certain loading path is reflected by the
evolution of the plastic modulus:

h =
2Mf

2

kf
p(2/kf )(rp̄′c)

(2−2/kf ) v0
λ− κ

[
∂g

∂p′
+ s(1/r − 1)

(
∂g

∂p′
+Ad

∂g

∂q

)]
(19)

If r0 = 1, MCC model and its corresponding plastic modulus are recovered. Figure
6 illustrates the evolution of the plastic modulus h in the case 0 ≤ r0 < 1 during a
drained conventional triaxial compression test (assuming strain control). The initial
effective stress state is represented by point I, which could correspond for instance
to the in-situ mean effective stress. When the stress increases below point J (i.e. η <
Mg), h > 0 holds as seen in Equation 19 indicating that hardening happens. In this
stage, the positive (compressive) plastic volumetric strain and shear strain increments
lead to the expansion of both the Yield surface and the Inner yield surface.

When the stress state reaches point J (η = Mg ), the presence of shear hardening

part (
∂g

∂q
> 0) leads to h > 0 even when the effective stress reaches the critical state

line with
∂g

∂p′
= 0, and hardening thus continues with the effective stress increase

across the critical state line. At this state, the Yield surface does not change and the
Inner yield surface tends to expand due to the positive shear plastic strain increment.

After point J and before reaching point K, plastic modulus h decreases while
remaining positive with the increases of r and η. In this stage, the plastic volumetric
strain increment switches from compression to dilation leading to the shrinkage of
the Yield surface. The Inner yield surface continues to expand due to the contribution
of the shear plastic strain.

When point K is reached, the plastic modulus h becomes null. This point is the
transition point from hardening to softening. At this stage, the stress ratio reaches a
maximum value and the Inner yield surface has the biggest size.

After point K (peak of deviator stress), the plastic modulus becomes negative
with the increase of r. The stress state moves downwards as soil’s shear resistance
decreases. Both the Yield surface and the Inner yield surface shrink. The critical
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Fig. 5 Variation of stress–strain curves with material constant s.

state (point L) is reached asymptotically with r tending to 1 and the increments of
hardening variables (dr and dp′c) tending to 0.

Accounting for the contribution of r, the evolution of plastic modulus and thus
the shape of stress-strain curve can be controlled by the material constant s as shown
in Figure 5 , which presents the stress–strain curves predicted by the model for a
standard drained triaxial compression test from an initial isotropic stress state with
p′ = 1 MPa. In the simulations, s varies between 4 and 1000. Ad = 1 is considered
and the other model parameters can be found in Table 1. The figure also shows that
if large values are used for s (e.g. s = 1000 ), the model gives results similar to
conventional elastic-plastic model.

2.3 Incremental stress-strain relation

Plastic strain is generated if the Inner yield surface is activated. The plastic strain
increment is computed from the plastic potential using the flow rule:

dεp = dλ
∂gI
∂σ′

(20)

where dλ is the plastic multiplier, and gI is the plastic potential corresponding to the
(activated) Inner yield surface.

Gathering hardening variables p′c and r in a single vector denotedX and defined
by:

X = {X1, X2}t = {p′c, r}
t (21)
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the hardening law can be written in the following general form:

dX = dλB (22)

where:
B = {B1, B2}t (23)

B1 =
∂p′c
∂εpv

∂gI
∂p′

(24)

B2 =
∂r

∂εpd

(
∂gI
∂p′

+Ad
∂gI
∂q

)
(25)

The consistency condition applied to the Inner surface leads to:(
∂fI
∂σ′

)t
: dσ′ − hdλ = 0 (26)

with h being the hardening modulus:

h = −
(
∂fI
∂p′c

B1 +
∂fI
∂r

B2

)
(27)

The differential stress-strain equations can finally be obtained:

dσ′ = Depdε
dX = Repdε

(28)
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where:

Dep = De −
Deb(a)

t
De

(a)
t
Deb+ h

(29)

Rep = (Rep1,Rep2)
t (30)

Rep1 =
B1(a)

t
De

(a)
t
Deb+ h

(31)

Rep2 =
B2(a)

t
De

(a)
t
Deb+ h

(32)

andDe is the elastic stiffness matrix, a =
∂fI
∂σ′

, b =
∂gI
∂σ′

.

3 Stress integration algorithm

The explicit stress integration scheme with an adaptive time-stepping scheme (see
Sloan et al. [30]) is used here to solve the above stress-strain relations. It is worth
noting that consideration of the Inner yield surface (fI ) is sufficient even though two
yield surfaces co-exist. Thus, the implementation of ACC-2 is similar to that of MCC.
This is because:

1. The Inner yield surface is treated as a ’true’ yield surface in the sense of conven-
tional plasticity. All the features of the stress integration schemes (e.g. loading
criterion) for the classic elasto-plastic models can be applied to the Inner yield
surface.

2. In the general case 0 ≤ r0 < 1, the definition of the hardening laws ensures that
the effective stress never reaches the Yield surface.

3. If r0 = 1, the Inner yield surface and the Yield surface coincide at any stress state
and the same constitutive relations are determined from the consistency condition
for any of the two yield surfaces. Thereby, only one yield surface requires to be
solved.

For a plastic loading process, the increments of stress and hardening parameters
can be calculated using an Euler solution and a modified Euler solution. The error is
calculated by taking the difference between the two solutions. The size of the incre-
ment can be adapted automatically by maintaining the local integration error below a
specified tolerance. Since two hardening variables are associated with the Inner yield
surface, the error measure R with respect to the hardening variables is evaluated as
follows:

R =

√
(p′c1 − p′c2)

2

(p′c2)
2 +

(r1 − r2)
2

(r2)
2 (33)

where subscripts 1 and 2 denote values obtained by Euler solution and modified Euler
solution, respectively. A detailed presentation of the integration algorithm can be
found in the original work by Sloan et al. or in extensions of it (e.g. [16]).
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4 Determination of parameters

The proposed model ACC-2 have 11 parameters (λ, κ, ν, p′c0, kf , Mf , kg , Mg , s,
r0, Ad ). The procedure for determining these parameters is described below.

1. λ, κ, p′c0, ν, Mg are common parameters of MCC and can be determined in a
common fashion. λ is the slope of normal consolidation compression line and
κ is the slope of swelling line of the isotropic compression curve in ln p′ − v
plane. Note that p′c0 in ACC-2 denotes conventional isotropic preconsolidation
pressure which defines the initial size of the Yield surface. These three parameters
(λ, κ and p′c0) can be determined by an isotropic compression test as indicated in
Figure 3. Poisson’s ratio ν can be determined from a triaxial test by considering
the elastic behaviour (at a low strain level around 0.5%) in the ε1 − εv plane:
ν = (1 − εv/ε1)/2. Mg is the critical state stress ratio and it can be determined
by the effective stress ratio at the critical state along different loading paths.

2. Mf and kf are parameters affecting the shape of the yield surface which can be
calibrated by fitting the conventional yield surface shape to the conventional yield
points in different radial directions in p′ − q plane (see Figure 2).

3. kg is used to describe the plastic flow rule and can be determined by the values of
dεpv/dε

p
s obtained from drained triaxial shear tests.

4. r0 specifies the size of Inner yield surface associated with the first occurrence
of plastic strains. For natural stiff clay, the initial size of the Inner yield surface
is defined by the initial in-situ mean effective stress. It is worth noting that in
that case r0 corresponds to the inverse of the overconsolidation ratio (OCR), as
classically defined.

5. Parameter s determines the hardening rate of Inner yield surface in approaching
the Yield surface. It influences the variation rate of the plastic modulus. This
parameter can be calibrated from an isotropic compression test.

6. Ad controls how plastic shear strain affects the hardening process. It can be ob-
tained by fitting the experimental results, especially the ones showing softening.

5 Prediction and validation

In this section, the performance of ACC-2 is assessed by predicting the behavior of
natural Boom Clay based on experimental data available in the literature. Boom clay
(160 to 270 m deep) under the Mol-Dessel nuclear site is considered as a possible host
formation in the Belgian program on geological disposal for nuclear waste disposal.
The samples are taken at a depth of 223 m from the underground research facility of
Mol. At this depth, the total vertical stress is around 4.5 MPa and the pore pressure is
equal to 2.2 MPa, defining an effective stress of 2.3 MPa [4]. Based on in-situ stress
estimations [17], the initial ratio of the horizontal effective stress to the vertical one is
about 0.8. The in situ effective stress state can thus reasonably be approximated by an
isotropic stress state, to be used as the initial effective stress state when performing
laboratory tests.

A number of experimental results show that the saturation process used during
the sample preparation plays an important role in the mechanical response of nat-
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Table 1 ACC-2 parameters for natural Boom Clay.

λ κ ν p′c0 Mf kf
(MPa)

0.18 0.02 0.3 6 0.67 0.7
Mg kg r0 s Ad

0.67 0.90 0.33 8 0.1

Table 2 Summary of the isotropic and oedometric tests reported in the literature.

Test Reference Void ratio after saturation Effective stress path (MPa)
Iso-1 Baldi et al. [3] 0.677 2→ 4→ 2→ 8→ 2→ 5
Iso-2 Le [21] 0.590 2.5→ 10→ 2.5
Iso-3 Deng et al. [11] 0.610 2.3→ 20→ 7
Oed-1 Baldi et al. [3] 0.733 2→ 10

ural Boom Clay. Significant swelling occurs while saturating specimens under low
effective stresses (referred to as Process I) [3, 5, 21, 32]. The microstructure changes
induced by this swelling are at the origin of experimental artefacts, such as an un-
derestimated preconsolidation pressure (e.g. 0.37 MPa, that is lower than the in-situ
effective stress [32]). Realizing that swelling may alter the mechanical behavior of
natural Boom Clay, Baldi et al. [3] improved the saturation process and reduced this
relatively high swelling by loading the sample to the in-situ effective stress state
(around 2.3 MPa) under drained conditions prior to injection of water for saturation
(referred to as Process II). Therefore, only the data obtained from experiments fol-
lowing Process II are representative of the behavior of natural Boom Clay, and will
be considered in this study. The results that are taken into account include those from
isotropic compression tests and drained triaxial shear tests, carried out in different
laboratories.

All the simulations are performed starting from a common point (p′0 = 2 MPa, e0
= 0.61). For comparison purposes, the predictions by MCC are also presented. The
model parameters of ACC-2 for natural Boom Clay are presented in Table 1, includ-
ing the five common parameters of MCC as described in Section 4. The parameters λ,
κ, p′c0, s were determined using isotropic compression tests (Iso-1, Iso-2 and Iso-3);
kg , Ad, ν were calibrated using the experimental curve (εv − ε1) of two drained tri-
axial shear tests (CD-1 and CD-2 as seen afterwards); Mf , kf and Mg were derived
from the conventional yield stresses and the critical stress ratio of the four drained
triaxial shear tests (CD-1, CD-2, CD-3 and CD-4), respectively. The oedometer test
(Oed-1) and the drained triaxial test (CD-5) were excluded from the parameter deter-
mination process.

5.1 Isotropic test

Various isotropic compression tests on natural Boom Clay have been performed,
some of which are considered in this work and summarized in Table 2. After comple-
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Fig. 7 Numerical simulations of isotropic tests.

tion of the saturation process, one (or more) isotropic compression-decompression
cycles were applied to the specimen under drained conditions as described in the
aforementioned table. For all of these tests, volumetric strains were obtained from
the volume of drained-out water.

Figure 7 compares the simulations of isotropic tests by both MCC and ACC-2. It
is worth noting that the experimental data presents some scatter. As a matter of fact,
the simulations cannot satisfy all the tests. Keeping this in mind, it can be noticed
that ACC-2 captures satisfactorily the general trend shown by the clay during both
loading and unloading processes (neglecting the hysteretic behavior). At low stress
levels (p′ < 10 MPa), the curve predicted by ACC-2 is as smooth as the experi-
mental curves, which is not the case for MCC. At high stress levels (p′ > 10 MPa),
both ACC-2 and MCC predict the same response. For the unloading process from
p′ = 4 MPa, it appears that MCC cannot predict the irrecoverable strain observed
experimentally, since purely elastic strains are assumed in this range of stress. On the
opposite, ACC-2 can predict such irrecoverable strains.

5.2 Oedometer test

Oedometer test (Oed-1) performed by Baldi et al. (see Table 2 [3] was simulated.
The specimen was saturated under a vertical effective stress of 2 MPa. The vertical
effective stress was then increased to 10 MPa.

Figure 8 shows the corresponding predictions by MCC and ACC-2. It can be
observed clearly that the curve simulated using ACC-2 agrees well with the experi-
mental curve, and better than the one obtained with MCC. This shows the relevance
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Fig. 8 Numerical simulations of oedometer test.

Table 3 Summary of the drained triaxial tests reported in the literature.

Test Reference Initial Mean effective stress Void ratio Shear rate Axial strain before
water after saturation after (µm/min) unloading-reloading

content (%) / before shearing (MPa) saturation cycle
CD-1 Baldi et al. [3] 25.8 2.0 / 2.0 0.705 1.00 0.6% and 2.8%
CD-2 Le [21] 19.6 2.5 / 2.5 0.590 1.00 –
CD-3 Baldi et al. [3] 25.8 2.0 / 3.0 0.717 1.00 0.6% and 2.1%
CD-4 Le [21] 20.0 2.5 / 3.5 0.560 0.90 –
CD-5 Baldi et al. [3] 25.7 2.0 / 4.0 0.712 1.00 0.6% and 3.8%

of ACC-2 in simulating a compression test under K0 condition. The curve predicted
by ACC-2 highlights again the capability of ACC-2 in simulating smooth stress-strain
behavior as observed experimentally.

In this test, a K0 value of 0.755 is predicted by ACC-2, whereas K0 = 0.856
is predicted by MCC in the normally consolidated state. This difference is mainly
attributed to the fact that a non-associated flow rule is assumed in ACC-2 while an
associated flow rule is used in MCC. ACC-2 and MCC predict the same value of K0

in the case that kg = 2 with an associated flow rule. In addition, the predicted values
of these two models are close to the K0 value of 0.8 determined by Horseman et al.
[17] based on in situ stress conditions.

5.3 Drained triaxial test

The drained triaxial compression tests (CD) considered in this study are summarized
in Table 3 [3, 21]. After saturation following Process II, the effective stress path
consists of an isotropic consolidation (except for tests CD-1 and CD-2) followed by
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Fig. 9 Numerical simulations of drained triaxial shear test CD-1 (p′0=2.0 MPa).

a triaxial shear stage. In some of these tests, unloading-reloading cycles were applied
during the shearing stage (see Table 3.

These tests have been simulated using ACC-2 and MCC, starting after the sat-
uration stage. Figures 9 to 13 compare the obtained predictions, for the shear stage
only. The results are presented in terms of variations of deviator stress and volumetric
strain versus axial strain.

For test CD-1, though underpredicting the conventional yield stress as does MCC,
ACC-2 gives smoother simulation results and agrees better with the experimental re-
sults as shown in Figure 9. Further, both MCC and ACC-2 predict the shear dilatancy
behavior on the volumetric strain-axial strain curve but the latter one gives better re-
sults for volumetric strain. The reason is that the soil response shows a marked soften-
ing behaviour (at about 4.5−6.8%) that MCC and ACC-2 models cannot predict sat-
isfactorily. In the case of ACC-2, this is because the value of Ad has been determined
based on the complete set of tests, in order to predict the whole softening/hardening
behavior along different loading paths. Regarding the unloading-reloading cycles,
ACC-2 can predict the observed irrecoverable strain for both cycles, either from a
small strain (ε1 = 0.6%) or from larger strain (ε1 = 2.8%). Reversely, MCC only
predicts such behavior for the cycle starting from the largest axial strain. Disregard-
ing the hysteretic behavior during these cycles, it can be observed that both models
capture well the unloading-reloading slope of the stress-strain curve.

Figure 10 indicates that the predictions of test CD-2 test by ACC-2 are consis-
tently better than those by MCC for both the deviator stress–axial strain and volu-
metric strain–axial strain relationships. This suggests that ACC-2 can capture well
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Fig. 10 Numerical simulations of drained triaxial shear test CD-2 (p′0=2.5 MPa).

the smooth elasto-plastic transition of the deviator stress–axial strain curve. Again,
the predictions of volume change are greatly improved by ACC-2 as compared to
MCC.

For test CD-3, the predictions by ACC-2 agree well with the experimental results
with a smooth elasto-plastic transition observed for the deviator stress–axial strain
curve as shown in Figure 11. These results show that the conventional yield point in
terms of deviator stress is well captured by ACC-2, in agreement with the choice of
the new yield surface. Even though the volumetric strain prediction by ACC-2 does
not fully agree with the experimental results, comparison with the prediction by MCC
shows that ACC-2 can better predict the volume change of natural Boom clay.

As shown in Figure 12, a small difference appears between the predicted results of
ACC-2 and the experimental observations for test CD-4. However, the general trend
of the smooth stress strain curve can be captured by ACC-2. Moreover, the volumetric
strain prediction is greatly improved by ACC-2 in comparison to MCC.

For test CD-5, it appears that the predictions by ACC-2 agree quite well with
the experimental results for the deviator stress–axial strain relationship as shown in
Figure 13. For the volumetric strain, ACC-2 gives relatively larger values at small
axial strain levels but relatively smaller values at larger axial strain levels.

In summary, compared to MCC, ACC-2 provides better predictions for natural
Boom Clay under drained triaxial loading conditions. It has been found that ACC-2
is good at conventional yield shear stresses prediction with the adoption of a new ex-
pression for the yield surface. The smooth elasto-plastic transition and realistic shear
dilatancy can be well predicted by ACC-2. This shows that the plastic mechanism that
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Fig. 11 Numerical simulations of drained triaxial shear test CD-3 (p′0=3.0 MPa).

Fig. 12 Numerical simulations of drained triaxial shear test CD-4 (p′0=3.5 MPa).
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Fig. 13 Numerical simulations of drained triaxial shear test CD-5 (p′0=4.0 MPa).

allows flexible plastic modulus variation with the stress state inside the conventional
yield surface is suitable for describing the natural Boom Clay behavior. In addition,
the volumetric strain is better described by ACC-2. It should be pointed out that
ACC-2 model can significantly improve the prediction of tests with monotonic load-
ing, but still cannot predict the hysteresis loop observed during unloading/reloading
cycles. This is because it predicts only an elastic strain rate in the unloading process.
A better prediction of unloading/reloading behavior could be obtained by assuming
an additional plastic mechanism in the unloading/reloading process.

5.4 Undrained triaxial test

To investigate the performance of the model in predicting the undrained behavior
of soils, a series of triaxial shear tests are simulated. Two conventional undrained
triaxial compression tests (CU-1 and CU-2) from different starting stress states and
a conventional undrained triaxial extension test (CUE-1) are considered. In CU-1,
the sample is first isotropically consolidated up to a mean effective stress of 10 MPa
and then sheared from this stress state in undrained condition. In CU-2 and CUE-
1, the samples are first consolidated under K0 condition up to a vertical effective
stress of 10 MPa (which corresponds to test Oed-1 presented in Section 5.2),then they
are sheared to failure in undrained compression and undrained extension conditions,
respectively. In this study, the slope of the critical state line in extension (q < 0) and
in compression are assumed equal (q > 0).
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Fig. 14 Numerical simulations of undrained triaxial shear test CU-1.

Figure 14 compares the undrained effective stress paths and the stress-strain curves
of CU-1 predicted by ACC-2 and MCC. After the isotropic consolidation process,
the samples are in the normally consolidated state (point A in Figure 14(a)) for both
ACC-2 and MCC. At this point, variable r = 1, and the Yield surface and Inner Yield
Surface coincide for ACC-2. As shown in Figure 14(a), the effective stress paths
predicted by ACC-2 and MCC follow approximately their respective yield surface
until the critical state line (CSL) is reached. Even though the critical state line has
the same slope for both models, ACC-2 predicts an undrained shear strength differ-
ent from MCC, since different yield surfaces are considered. No softening behavior
is observed since the clays are in the normally consolidated state. The stress–strain
curves (q−ε1 plot in Figure 14(b)) predicted by ACC-2 and MCC also develop simi-
larly, even though ACC-2 predicts higher deviator stresses. In both cases, the deviator
stress first varies quickly with the axial strain before increasing more gradually as the
effective stress path comes closer to the CSL, where it reaches a plateau.
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Fig. 15 Numerical simulations of undrained triaxial shear test CU-2.

Simulation of test CU-2 is shown in Figure 15. It can be observed that different
stresses at the start of the undrained shear stage are obtained, resulting from different
predictions in the preceding K0 consolidation process as shown in Section 5.2: p′ =
8.4 MPa, q = 2.5 MPa for ACC-2 (point C in Figure 15(a)) and p′ = 9.1 MPa,
q = 1.4 MPa for MCC (point C′ in Figure 15(a)). Previous comments on test CU-1
mainly apply to the predictions of the shear stage of test CU-2 by the two models.

Figure 16 shows the simulation results for the triaxial extension test CUE-1. As
shown in Figure 16(a), the effective stress paths predicted by MCC and ACC-2 are
vertical before the corresponding yield surfaces is reached in the extension side. After
reaching the yield surface, the effective stress paths follow approximately the yield
surfaces until they reach the CSL. In q − ε1 plot (see Figure 16(b)), the axial strains
develop in the extension direction. In the initial stage, the deviator stress varies lin-
early with the axial strain since purely elastic behavior is predicted by both models.
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Fig. 16 Numerical simulations of undrained triaxial shear test CUE-1.

5.5 Critical state line

Critical state is defined in ACC-2 as it is in MCC. Critical state is reached with an
effective stress ratio η = ±Mg . At these states, plastic shearing could continue indef-
initely without volume and effective stress changes. To investigate the critical state
predicted by ACC-2, drained and undrained tests under triaxial compression and ex-
tension on normally consolidated and overconsolidated samples are considered. The
tests include the previous triaxial tests (CD-1, CD-2, CD-3, CD-4, CD-5, CU-1, CU-
2, and CUE-1) and two additional drained triaxial extension tests (CDE-1 and CDE-
2). In CDE-1 and CDE-2, the samples were sheared under triaxial extension condi-
tions after an isotropic loading up to 2 MPa and 4 MPa, respectively.

All the critical states from the simulations are plotted in the effective stress plane
p′−q (Figure 17(a)) and the compression plane (p′−e) (Figure 17(b)). It can be seen
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Fig. 17 CSL of triaxial compression and extension in (a): p′ − q plane and (b): log p′ − e plane.

that the critical states lie on the lines of η = ±Mg in the p′ − q plane and can be
described by a unique CSL in the log p′ − e plane, irrespective of the consolidation
history, stress path (compression or extension), and drainage condition.

6 Conclusion

A constitutive model with two surfaces –ACC-2– is developed for describing some
important features of the behavior of natural stiff clays. The model ACC-2 uses
new general expressions of the yield and plastic potential, with Modified CamClay
–MCC– yield surface being a special case. To account for the plastic behavior in-
side the conventional yield surface, a new plastic mechanism is proposed based on
an additional yield surface, namely Inner yield surface. A hardening law associated
with the Inner yield surface is introduced, enabling the plastic modulus to vary flex-
ibly when the stress approaches the Yield surface. This hardening law ensures that
the Inner yield surface approaches but never crosses the conventional Yield surface.
Both volumetric and deviatoric plastic strains are accounted for in the hardening law
so that the model can describe the softening behavior. The constitutive equation of
the model can be simply formulated based on the consistency condition for the In-
ner yield surface. Since only the Inner yield surface has to be treated, ACC-2 can be
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efficiently implemented using a stress integration scheme similar to MCC. Compar-
isons with experimental results on natural Boom Clay suggest that ACC-2 is able to
capture the overall stress-strain behavior along different loading paths and therefore
constitutes a useful tool for describing the behavior of natural stiff clays.
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expériences et modélisation. PhD thesis, École Nationale des Ponts et Chaussées
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