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The methods based on the evolution of a urve ontrolled by partial di�erential

equations (PDE), represent an eÆient and exible tool of image segmentation,

reognition or objet traking. For these methods, an aurate and rapid ompu-

tation of the distane funtion is of a key importane. We propose a new, entirely

parallel algorithm yielding the distane funtion and its hardware implementation.

1. Introdution

The PDE-based methods of image segmentation, objet traking or reog-

nition based on the urve evolution use an impliit desription of the urve.

This desription is realized by a signed distane funtion to the urve. The

urve evolution ontrolled by the PDE generates a deformation of the dis-

tane. Therefore, during the evolution of the urve, the distane funtion

needs to be periodially realulated.

Below, we disuss the omputational diÆulties of existing algorithms

exluding any eÆient hardware implementation. In the Setion 3.2 we

propose an original parallel algorithm to alulate the distane funtion to

�t the PDE-based appliation needs, and, in Setion 4, its implementation

on a speialized arhiteture.

1.1. Level Set

The evolution of the urve C is represented by the evolution of its impliit

desription (level set) [5℄. Aording to [1℄ the signed distane funtion u

(to the urve) is equivalent to the parametri desription of the urve and

is its unique desription. The initial urve is then the zero-level set in u:
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It has been proved that every funtion u satisfying the Eq. (2) is a

signed distane funtion plus a onstant [1℄.

jruj = 1 (2)

In general, the alulation of the distane funtion omprises three

stages: initialization, approximation and propagation. The initialization

detets by interpolation the initial position C

0

(Eq. (1)). It is loated with

a sub-pixel preision. If the linear interpolation is used, its hardware im-

plementation does not rise major problems [7℄. Therefore, in the following,

we fous only on the approximation and the propagation.

Throughout this paper we use the following notations. Let p = [x

p

; y

p

℄

be a point of an isotrope, square unit grid. V (p) denotes the neighborhood

of p de�ned as V (p) = f[x

p

; y

p

� 1℄; [x

p

� 1; y

p

℄g. The point q is a neighbor

of p if q 2 V (p). u(p) denotes the value of the distane funtion in p. The

minimum values u of the neighbors of p are:
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2. Approximation: Numerial Sheme

The most often used sheme is, in the domain of the Level Set, the Godunov

sheme [5℄. This sheme requires to determine the maximum solution of a

quadrati equation, repeated for all pairs of neighbors in the diretions x

and y. Other shemes [3℄ or [6℄ e.g., yield u

2

. This is extremely unpleasant

for appliations with subpixel preision, alulated in real numbers, where

u is needed (and not u

2

).

To derease the omputation omplexity, we propose to approximate

the distane funtion in the following way. In general, the value u(p) is

obtained as a funtion of the neighborhood of p as:

u(p) = u

min

(p) + f

di�

(ju

x

(p)� u

y

(p)j) (6)

where f

di�

is the funtion to be approximated. It is an inreasing and

generally nonlinear funtion de�ned on h0; 1i and limited there. As a on-

venient ompromise between the omputation omplexity and auray we

have hosen a pieewise linearization in n intervals. The omputation om-

plexity is then redued to the searh of the appropriated interval and one

addition and one multipliation. Other types of approximations an also

be used as look-up-table or addition of a onstant (see examples given by

Figure 2).
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3. Propagation

3.1. Existing methods

The propagation phase de�nes the order in whih the points reeive their

values. The Fast Marhing [5℄ is the most often used propagation tehnique

in ombination with the PDE-based methods. It omputes the distane

funtion by propagating equidistant waves. For this, it uses an ordered

waiting list with a real-number priority. The need of the knowledge of

the maximum priority represents a global information whih makes this

algorithm sequential. Moreover, the hardware implementation of waiting

lists using a real-number priority is diÆult beause of suh operations like

insertion, reading and re-positioning.

Even if other existing methods [6℄ or [3℄ e.g., do not use any ordered

struture they su�er from other disadvantages as several obligatory sans

of the entire image in several diretions, where the following san annot

start before the preeding one terminates.

3.2. Massive Marhing

We propose an original and fully parallel algorithm Massive Marhing to

alulate the distane funtion permitting to ompute the distane in a

narrow band. It does not use any waiting lists. Consequently, the front of

the propagation is not equidistant to the initial urve.

The alulation is done in two steps alled aording to their Markov

harateristis [2℄. The �rst one, the Jaobi step, alulates the value of

the distane funtion at t

n+1

given the values alulated at t

n

. The seond

one, the Gauss-Seidler step, realulates the distane value at t

n+1

by using

the values obtained at t

n+1

. (The values of points not proessed in t

n

are

automatially reported in the next iteration and noted as values at t

n+1

.)

Let A be the set initialized by the interpolation. Let Q be the set of

points marked as ative Q = fq

i

j q

i

62 A and V (q

i

) \A 6= ;g.

Initialisation

� Initialize the neighborhood of the urve with a signed distane (A)

� Initialize the other points to 1, the neighbors of A mark as ative (Q)

Propagation (unless Q 6= fg, for all p 2 Q do in parallel) :

� Jaobi step:

u
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� Gauss-Seidler step:
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� Ativation of new points to proess:

? delete p from Q, insert p in A

? if u(p) < NB

width

then for all q

i

; q

i

2 V (p) suh that

u

n+1

(q

i

)� u

n+1

(p) > "; " > 0; " = onst. (9)

insert q

i

in Q

where NB

width

is the desired width of the narrow band.

The impat of the two-step based omputation on the hardware imple-

mentation omplexity is negligeable. In fat, the same operation is only

omputed twie (with entry values from di�erent steps).

The points that may need to be realulated are deteted by using the

onstant " (Eq. (9)). Given a pixel p, every neighbor verifying Eq. (9)

is ativated while p itself is desativated (see [7℄ for demonstration of the

algorithm). To ensure the inreasingness and monotoniity of the distane

funtion, the hoie of " veri�es the following:

" � K

min

> 0 where K

min

= min

l2h0;1i

f

di�

(l) (10)

K

min

is the predition of the minimum value of the distane inrement.

By setting " > K

min

we an authorize fewer reativations (lower exeution

time) paid by some error in the result (proportional to "�K

min

). The

Eq. (9) ensures that the algorithm marhes forward banning all useless

ativations.

4. Implementation

The low omplexity and straightforwardness of the Massive Marhing im-

pose few onstraints on the arhiteture and allow its full parallelisation.

It an also be exeuted in a quasi-parallel way, with more than one point

per proessing unit.

The global arhiteture, we propose, is of the divide-and-onquer type

with one proessing unit per memory blok. The blok size, realized as a

vertial line of the image, is a tradeo� between the proessing time and the

balaned ativity of all the proessing units.

The input image is stored in the distributed Data Memory. The user

an de�ne the initial urve position and ontrol the diretion of its evolution
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Figure 1. Implementation of Massive Marhing Algorithm

by speifying respetively negative and positive values for the interior and

exterior of the urve. The algorithm is read from the Program Memory by

the Control Unit and the instrutions are sent to the Proessing Units. The

ommuniation is ensured at two levels: 1) between the Control Unit and

the Proessing Units (instrution and report of the end of the algorithm),

and 2) parallel ommuniation between adjaent Proessing Units in the

neighborhood.

In order to limit the number of onnetions between adjaent Proessing

Units, the values of the east and west neighbors are read in two yles. In

one instrution the unit reads the east neighbor and simultaneously sends

its own value to the west neighbor, and inversely in the next instrution.

The initialization is done by examination of the sign of the neighbors

and assoiation of a onstant representing the linear interpolation. During

the propagation, every ative point gives birth to one proess, exeuted by

one Proessing Unit, alulating the distane value from the neighbors.

The blok Ativation ontrols the ativation of the urrent point de-

pending on the neighbors and sends the ativation ommand to the neigh-

bors. Also, the Ativation blok reads the ativation ag Q to provide the

instrution if ative then : : : else to prevent useless exeution of the given

instrution in inative points.

The value of the urrent point is omputed by a �xed-point ALU. Its

omplexity depends on the hosen approximation. If the pieewise lineari-

sation is used, the ALU performs a binary searh to �nd the orret values

to alulate the piee-wise linearization (see [4℄) of the funtion f

di�

. The

intermediate results and the onstants are stored in Fixed Point Registers.

5. Conlusions

We present an original and fully parallel algorithm for alulation of the

distane. Contrary to other methods, the Massive Marhing ompletely

eliminates the implementation of any priority waiting list and the global
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(a) Piee-wise lineari-
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Figure 2. Contours of distane obtained by various approximations; initial urves

(plaed on the square grid) in heavy lines.

information.

The proposed global arhiteture of Massive Marhing is the divide-

and-onquer type with one proessing unit per memory blok. Eah blok

represents a vertial line of the image in order to redue the adressing

omplexity and to balane the ativity of all the proessing units.

The primary ontribution onsists in a low-ost, embedded implemen-

tation of traditionally ostly algorithms based on partial di�erential equa-

tions. The proposed arhiteture an evolve to integrate also the urve

deformation algorithm. Same Proessing Units will atually be used to im-

plement the non-linear riteria as energy, urvature or optial ow. The

future work will inlude the implementation of Massive Marhing with a

hosen appliation suh as segmentation or objet traking.
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