N
N

N

HAL

open science

MASSIVE MARCHING: A PARALLEL
COMPUTATION OF DISTANCE FUNCTION
Eva Dejnozkova Dokladova, Petr Dokladal, Jean-Claude Klein

» To cite this version:

Eva Dejnozkova Dokladova, Petr Dokladal, Jean-Claude Klein. MASSIVE MARCHING: A PAR-
ALLEL COMPUTATION OF DISTANCE FUNCTION. the 9th International Workshop on Sys-
tems, Signals and Image Processing (IWSSIP’02), Nov 2002, Manchester, United Kingdom. pp.71-76,
10.1142/9789812776266_ 0009 . hal-01510914

HAL Id: hal-01510914
https://enpc.hal.science/hal-01510914
Submitted on 20 Apr 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://enpc.hal.science/hal-01510914
https://hal.archives-ouvertes.fr

MASSIVE MARCHING :
A PARALLEL COMPUTATION OF DISTANCE FUNCTION

EVA DEJNOZKOVA, PETR DOKLADAL AND JEAN-CLAUDE KLEIN

Centre de Morphologie Mathématique, ENSMP
35, Rue Saint Honoré
77 305 Fontainebleau, France
E-mail: dejnozke@emm.ensmp.fr

The methods based on the evolution of a curve controlled by partial differential
equations (PDE), represent an efficient and flexible tool of image segmentation,
recognition or object tracking. For these methods, an accurate and rapid compu-
tation of the distance function is of a key importance. We propose a new, entirely
parallel algorithm yielding the distance function and its hardware implementation.

1. Introduction

The PDE-based methods of image segmentation, object tracking or recog-
nition based on the curve evolution use an implicit description of the curve.
This description is realized by a signed distance function to the curve. The
curve evolution controlled by the PDE generates a deformation of the dis-
tance. Therefore, during the evolution of the curve, the distance function
needs to be periodically recalculated.

Below, we discuss the computational difficulties of existing algorithms
excluding any efficient hardware implementation. In the Section 3.2 we
propose an original parallel algorithm to calculate the distance function to
fit the PDE-based application needs, and, in Section 4, its implementation
on a specialized architecture.

1.1. Level Set

The evolution of the curve C is represented by the evolution of its implicit
description (level set) [5]. According to [1] the signed distance function u
(to the curve) is equivalent to the parametric description of the curve and
is its unique description. The initial curve is then the zero-level set in wu:

Co = {(a:,y,t) € R2|u(m,y,t) = 0} (1)

1

It has been proved that every function u satisfying the Eq. (2) is a
signed distance function plus a constant [1].

|Vu| = 1 2)

In general, the calculation of the distance function comprises three
stages: initialization, approximation and propagation. The initialization
detects by interpolation the initial position Cy (Eq. (1)). It is located with
a sub-pixel precision. If the linear interpolation is used, its hardware im-
plementation does not rise major problems [7]. Therefore, in the following,
we focus only on the approximation and the propagation.

Throughout this paper we use the following notations. Let p = [z}, yp]
be a point of an isotrope, square unit grid. V(p) denotes the neighborhood
of p defined as V(p) = {[zp,yp £ 1], [zp £ 1,yp]}. The point ¢ is a neighbor
of pif ¢ € V(p). u(p) denotes the value of the distance function in p. The
minimum values u of the neighbors of p are:

ug(p) = min {u([z, + 1,y,]), u([zp — 1,yp])} (3)
uy(p) = min {u([zp, yp + 1)), u([zp, yp — 1])} (4)
Umin(p) = min {ug (p), uy(p)} (5)

2. Approximation: Numerical Scheme

The most often used scheme is, in the domain of the Level Set, the Godunov
scheme [5]. This scheme requires to determine the maximum solution of a
quadratic equation, repeated for all pairs of neighbors in the directions z
and y. Other schemes [3] or [6] e.g., yield u2. This is extremely unpleasant
for applications with subpixel precision, calculated in real numbers, where
u is needed (and not u?).

To decrease the computation complexity, we propose to approximate
the distance function in the following way. In general, the value u(p) is
obtained as a function of the neighborhood of p as:

u(p) = tmin(p) + faig(|ua(p) — uy(p)]) (6)

where fg;7 is the function to be approximated. It is an increasing and
generally nonlinear function defined on (0, 1) and limited there. As a con-
venient compromise between the computation complexity and accuracy we
have chosen a piecewise linearization in n intervals. The computation com-
plexity is then reduced to the search of the appropriated interval and one
addition and one multiplication. Other types of approximations can also
be used as look-up-table or addition of a constant (see examples given by
Figure 2).

3. Propagation
3.1. Existing methods

The propagation phase defines the order in which the points receive their
values. The Fast Marching [5] is the most often used propagation technique
in combination with the PDE-based methods. It computes the distance
function by propagating equidistant waves. For this, it uses an ordered
waiting list with a real-number priority. The need of the knowledge of
the maximum priority represents a global information which makes this
algorithm sequential. Moreover, the hardware implementation of waiting
lists using a real-number priority is difficult because of such operations like
insertion, reading and re-positioning.

Even if other existing methods [6] or [3] e.g., do not use any ordered
structure they suffer from other disadvantages as several obligatory scans
of the entire image in several directions, where the following scan cannot
start before the preceding one terminates.

3.2. Massive Marching

We propose an original and fully parallel algorithm Massive Marching to
calculate the distance function permitting to compute the distance in a
narrow band. It does not use any waiting lists. Consequently, the front of
the propagation is not equidistant to the initial curve.

The calculation is done in two steps called according to their Markov
characteristics [2]. The first one, the Jacobi step, calculates the value of
the distance function at ¢, given the values calculated at ¢,,. The second
one, the Gauss-Seidler step, recalculates the distance value at ,,11 by using
the values obtained at t¢,,11. (The values of points not processed in t,, are
automatically reported in the next iteration and noted as values at t,41.)

Let A be the set initialized by the interpolation. Let Q be the set of
points marked as active Q = {q; | ¢; € A and V(q;) N A # 0}.

Initialisation

e Initialize the neighborhood of the curve with a signed distance (A)

e Initialize the other points to oo, the neighbors of A mark as active (Q)
Propagation (unless Q # {}, for all p € Q do in parallel) :

e Jacobi step:

Upin (D) + faigr (|uf (p) —uy (p)]) if
u"(p) = |uz (p) — uy (p)| € (0,1) (7)
ul' . (p) +1 otherwise

o Gauss-Seidler step:

Ui (D) + Faigr((uf ™ (p) — uy ™ (p)]) if
u"*(p) = lugt (p) —uy™ ()] € (0,1) (8)
u"t(p) = vt (p) +1 otherwise

min
e Activation of new points to process:
* delete p from Q, insert p in A
x if u(p) < NByiatn then for all ¢;, ¢; € V(p) such that
u" 1 (q) —u" T (p) > e, € >0, € = const. (9)
insert ¢; in Q
where NByiash is the desired width of the narrow band.

The impact of the two-step based computation on the hardware imple-
mentation complexity is negligeable. In fact, the same operation is only
computed twice (with entry values from different steps).

The points that may need to be recalculated are detected by using the
constant € (Eq. (9)). Given a pixel p, every neighbor verifying Eq. (9)
is activated while p itself is desactivated (see [7] for demonstration of the
algorithm). To ensure the increasingness and monotonicity of the distance
function, the choice of € verifies the following;:

> Kpin >0 wh Koin = mi (] 10
[> where l&lég)fdﬁ() ()

Kpin is the prediction of the minimum value of the distance increment.
By setting € > K, we can authorize fewer reactivations (lower execution
time) paid by some error in the result (proportional to & — K,,;,). The
Eq. (9) ensures that the algorithm marches forward banning all useless
activations.

4. Implementation

The low complexity and straightforwardness of the Massive Marching im-
pose few constraints on the architecture and allow its full parallelisation.
It can also be executed in a quasi-parallel way, with more than one point
per processing unit.

The global architecture, we propose, is of the divide-and-conquer type
with one processing unit per memory block. The block size, realized as a
vertical line of the image, is a tradeoff between the processing time and the
balanced activity of all the processing units.

The input image is stored in the distributed Data Memory. The user
can define the initial curve position and control the direction of its evolution

[Control Unitle{Program Memory| PU ALU Fivod »

: Local Control T, = x Point g

[Communication Network | Activation L], <, > Registers| §

Binary Flags 3

Uy l=ay lPUs |05, . PO, |01, Addressing Search Q g
(a) Global Architecture (b) Architecture of Processing Unit

Figure 1. Implementation of Massive Marching Algorithm

by specifying respectively negative and positive values for the interior and
exterior of the curve. The algorithm is read from the Program Memory by
the Control Unit and the instructions are sent to the Processing Units. The
communication is ensured at two levels: 1) between the Control Unit and
the Processing Units (instruction and report of the end of the algorithm),
and 2) parallel communication between adjacent Processing Units in the
neighborhood.

In order to limit the number of connections between adjacent Processing
Units, the values of the east and west neighbors are read in two cycles. In
one instruction the unit reads the east neighbor and simultaneously sends
its own value to the west neighbor, and inversely in the next instruction.

The initialization is done by examination of the sign of the neighbors
and association of a constant representing the linear interpolation. During
the propagation, every active point gives birth to one process, executed by
one Processing Unit, calculating the distance value from the neighbors.

The block Activation controls the activation of the current point de-
pending on the neighbors and sends the activation command to the neigh-
bors. Also, the Activation block reads the activation flag Q to provide the
instruction if active then ... else to prevent useless execution of the given
instruction in inactive points.

The value of the current point is computed by a fixed-point ALU. Its
complexity depends on the chosen approximation. If the piecewise lineari-
sation is used, the ALU performs a binary search to find the correct values
to calculate the piece-wise linearization (see [4]) of the function fgr. The
intermediate results and the constants are stored in Fixed Point Registers.

5. Conclusions

We present an original and fully parallel algorithm for calculation of the
distance. Contrary to other methods, the Massive Marching completely
eliminates the implementation of any priority waiting list and the global

7 = N 7 = N |

N % N\ /% \
(a) Piece-wise lineari- (b) look-up-table, 10 (c) Addition of a con-
sation : 4 intervals intervales stant, ¢ = v0.5

Figure 2. Contours of distance obtained by various approximations; initial curves
(placed on the square grid) in heavy lines.

information.

The proposed global architecture of Massive Marching is the divide-
and-conquer type with one processing unit per memory block. Each block
represents a vertical line of the image in order to reduce the adressing
complexity and to balance the activity of all the processing units.

The primary contribution consists in a low-cost, embedded implemen-
tation of traditionally costly algorithms based on partial differential equa-
tions. The proposed architecture can evolve to integrate also the curve
deformation algorithm. Same Processing Units will actually be used to im-
plement the non-linear criteria as energy, curvature or optical flow. The
future work will include the implementation of Massive Marching with a
chosen application such as segmentation or object tracking.

References

[1] V. L. Arnold. Geometrical Methods in the Theory of Ordinary Differential
Equations. Springer - Verlag, New York, 1983.

[2] M. Boué and P. Dupuis. Markov chain approximations for deterministic con-
trol problems with affine dynamics and quadratic cost in the control. SIAM
Journal on Num. Analysis, 36:667—-695, 1999.

[3] P. Danielsson. Euclidian distance mapping. Computer graphics and image
processing, 14:227-248, 1980.

[4] T. Gijbels, P. Six, and col. A VLSI architecture for parallel non-linear diffusion
with applications in vision. IEEE, Workshop on VLSI Signal Processing, 1994.

[6] J. Sethian. Level Set Methods. Cambridge University Press, 1996.

[6] R. Tsai. Rapid and accurate computation of the distance function using grids.
Technical Report 00(36), UCLA CAM, 2000.

[7] E. Dejnozkova. Massive marching: A Parallel Computation of Distance Func-
tion for PDE-based Applications. Technical Report N-17/02/MM, ENSMP,
2002.

