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The methods based on the evolution of a 
urve 
ontrolled by partial di�erential

equations (PDE), represent an eÆ
ient and 
exible tool of image segmentation,

re
ognition or obje
t tra
king. For these methods, an a

urate and rapid 
ompu-

tation of the distan
e fun
tion is of a key importan
e. We propose a new, entirely

parallel algorithm yielding the distan
e fun
tion and its hardware implementation.

1. Introdu
tion

The PDE-based methods of image segmentation, obje
t tra
king or re
og-

nition based on the 
urve evolution use an impli
it des
ription of the 
urve.

This des
ription is realized by a signed distan
e fun
tion to the 
urve. The


urve evolution 
ontrolled by the PDE generates a deformation of the dis-

tan
e. Therefore, during the evolution of the 
urve, the distan
e fun
tion

needs to be periodi
ally re
al
ulated.

Below, we dis
uss the 
omputational diÆ
ulties of existing algorithms

ex
luding any eÆ
ient hardware implementation. In the Se
tion 3.2 we

propose an original parallel algorithm to 
al
ulate the distan
e fun
tion to

�t the PDE-based appli
ation needs, and, in Se
tion 4, its implementation

on a spe
ialized ar
hite
ture.

1.1. Level Set

The evolution of the 
urve C is represented by the evolution of its impli
it

des
ription (level set) [5℄. A

ording to [1℄ the signed distan
e fun
tion u

(to the 
urve) is equivalent to the parametri
 des
ription of the 
urve and

is its unique des
ription. The initial 
urve is then the zero-level set in u:

C

0

=

�

(x; y; t) 2 R

2

ju(x; y; t) = 0

	

(1)

1
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It has been proved that every fun
tion u satisfying the Eq. (2) is a

signed distan
e fun
tion plus a 
onstant [1℄.

jruj = 1 (2)

In general, the 
al
ulation of the distan
e fun
tion 
omprises three

stages: initialization, approximation and propagation. The initialization

dete
ts by interpolation the initial position C

0

(Eq. (1)). It is lo
ated with

a sub-pixel pre
ision. If the linear interpolation is used, its hardware im-

plementation does not rise major problems [7℄. Therefore, in the following,

we fo
us only on the approximation and the propagation.

Throughout this paper we use the following notations. Let p = [x

p

; y

p

℄

be a point of an isotrope, square unit grid. V (p) denotes the neighborhood

of p de�ned as V (p) = f[x

p

; y

p

� 1℄; [x

p

� 1; y

p

℄g. The point q is a neighbor

of p if q 2 V (p). u(p) denotes the value of the distan
e fun
tion in p. The

minimum values u of the neighbors of p are:

u

x

(p) = min fu([x

p

+ 1; y

p

℄); u([x

p

� 1; y

p

℄)g (3)

u

y

(p) = min fu([x

p

; y

p

+ 1℄); u([x

p

; y

p

� 1℄)g (4)

u

min

(p) = min fu

x

(p); u

y

(p)g (5)

2. Approximation: Numeri
al S
heme

The most often used s
heme is, in the domain of the Level Set, the Godunov

s
heme [5℄. This s
heme requires to determine the maximum solution of a

quadrati
 equation, repeated for all pairs of neighbors in the dire
tions x

and y. Other s
hemes [3℄ or [6℄ e.g., yield u

2

. This is extremely unpleasant

for appli
ations with subpixel pre
ision, 
al
ulated in real numbers, where

u is needed (and not u

2

).

To de
rease the 
omputation 
omplexity, we propose to approximate

the distan
e fun
tion in the following way. In general, the value u(p) is

obtained as a fun
tion of the neighborhood of p as:

u(p) = u

min

(p) + f

di�

(ju

x

(p)� u

y

(p)j) (6)

where f

di�

is the fun
tion to be approximated. It is an in
reasing and

generally nonlinear fun
tion de�ned on h0; 1i and limited there. As a 
on-

venient 
ompromise between the 
omputation 
omplexity and a

ura
y we

have 
hosen a pie
ewise linearization in n intervals. The 
omputation 
om-

plexity is then redu
ed to the sear
h of the appropriated interval and one

addition and one multipli
ation. Other types of approximations 
an also

be used as look-up-table or addition of a 
onstant (see examples given by

Figure 2).
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3. Propagation

3.1. Existing methods

The propagation phase de�nes the order in whi
h the points re
eive their

values. The Fast Mar
hing [5℄ is the most often used propagation te
hnique

in 
ombination with the PDE-based methods. It 
omputes the distan
e

fun
tion by propagating equidistant waves. For this, it uses an ordered

waiting list with a real-number priority. The need of the knowledge of

the maximum priority represents a global information whi
h makes this

algorithm sequential. Moreover, the hardware implementation of waiting

lists using a real-number priority is diÆ
ult be
ause of su
h operations like

insertion, reading and re-positioning.

Even if other existing methods [6℄ or [3℄ e.g., do not use any ordered

stru
ture they su�er from other disadvantages as several obligatory s
ans

of the entire image in several dire
tions, where the following s
an 
annot

start before the pre
eding one terminates.

3.2. Massive Mar
hing

We propose an original and fully parallel algorithm Massive Mar
hing to


al
ulate the distan
e fun
tion permitting to 
ompute the distan
e in a

narrow band. It does not use any waiting lists. Consequently, the front of

the propagation is not equidistant to the initial 
urve.

The 
al
ulation is done in two steps 
alled a

ording to their Markov


hara
teristi
s [2℄. The �rst one, the Ja
obi step, 
al
ulates the value of

the distan
e fun
tion at t

n+1

given the values 
al
ulated at t

n

. The se
ond

one, the Gauss-Seidler step, re
al
ulates the distan
e value at t

n+1

by using

the values obtained at t

n+1

. (The values of points not pro
essed in t

n

are

automati
ally reported in the next iteration and noted as values at t

n+1

.)

Let A be the set initialized by the interpolation. Let Q be the set of

points marked as a
tive Q = fq

i

j q

i

62 A and V (q

i

) \A 6= ;g.

Initialisation

� Initialize the neighborhood of the 
urve with a signed distan
e (A)

� Initialize the other points to 1, the neighbors of A mark as a
tive (Q)

Propagation (unless Q 6= fg, for all p 2 Q do in parallel) :

� Ja
obi step:

u

n+1

(p) =

8

>

>

<

>

>

:

u

n

min

(p) + f

di�

(ju

n

x

(p)� u

n

y

(p)j) if

ju

n

x

(p)� u

n

y

(p)j 2 h0; 1i

u

n

min

(p) + 1 otherwise

(7)
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� Gauss-Seidler step:

u

n+1

(p) =

8

>

>

<

>

>

:

u

n+1

min

(p) + f

di�

(ju

n+1

x

(p)� u

n+1

y

(p)j) if

ju

n+1

x

(p)� u

n+1

y

(p)j 2 h0; 1i

u

n+1

(p) = u

n+1

min

(p) + 1 otherwise

(8)

� A
tivation of new points to pro
ess:

? delete p from Q, insert p in A

? if u(p) < NB

width

then for all q

i

; q

i

2 V (p) su
h that

u

n+1

(q

i

)� u

n+1

(p) > "; " > 0; " = 
onst. (9)

insert q

i

in Q

where NB

width

is the desired width of the narrow band.

The impa
t of the two-step based 
omputation on the hardware imple-

mentation 
omplexity is negligeable. In fa
t, the same operation is only


omputed twi
e (with entry values from di�erent steps).

The points that may need to be re
al
ulated are dete
ted by using the


onstant " (Eq. (9)). Given a pixel p, every neighbor verifying Eq. (9)

is a
tivated while p itself is desa
tivated (see [7℄ for demonstration of the

algorithm). To ensure the in
reasingness and monotoni
ity of the distan
e

fun
tion, the 
hoi
e of " veri�es the following:

" � K

min

> 0 where K

min

= min

l2h0;1i

f

di�

(l) (10)

K

min

is the predi
tion of the minimum value of the distan
e in
rement.

By setting " > K

min

we 
an authorize fewer rea
tivations (lower exe
ution

time) paid by some error in the result (proportional to "�K

min

). The

Eq. (9) ensures that the algorithm mar
hes forward banning all useless

a
tivations.

4. Implementation

The low 
omplexity and straightforwardness of the Massive Mar
hing im-

pose few 
onstraints on the ar
hite
ture and allow its full parallelisation.

It 
an also be exe
uted in a quasi-parallel way, with more than one point

per pro
essing unit.

The global ar
hite
ture, we propose, is of the divide-and-
onquer type

with one pro
essing unit per memory blo
k. The blo
k size, realized as a

verti
al line of the image, is a tradeo� between the pro
essing time and the

balan
ed a
tivity of all the pro
essing units.

The input image is stored in the distributed Data Memory. The user


an de�ne the initial 
urve position and 
ontrol the dire
tion of its evolution
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Figure 1. Implementation of Massive Mar
hing Algorithm

by spe
ifying respe
tively negative and positive values for the interior and

exterior of the 
urve. The algorithm is read from the Program Memory by

the Control Unit and the instru
tions are sent to the Pro
essing Units. The


ommuni
ation is ensured at two levels: 1) between the Control Unit and

the Pro
essing Units (instru
tion and report of the end of the algorithm),

and 2) parallel 
ommuni
ation between adja
ent Pro
essing Units in the

neighborhood.

In order to limit the number of 
onne
tions between adja
ent Pro
essing

Units, the values of the east and west neighbors are read in two 
y
les. In

one instru
tion the unit reads the east neighbor and simultaneously sends

its own value to the west neighbor, and inversely in the next instru
tion.

The initialization is done by examination of the sign of the neighbors

and asso
iation of a 
onstant representing the linear interpolation. During

the propagation, every a
tive point gives birth to one pro
ess, exe
uted by

one Pro
essing Unit, 
al
ulating the distan
e value from the neighbors.

The blo
k A
tivation 
ontrols the a
tivation of the 
urrent point de-

pending on the neighbors and sends the a
tivation 
ommand to the neigh-

bors. Also, the A
tivation blo
k reads the a
tivation 
ag Q to provide the

instru
tion if a
tive then : : : else to prevent useless exe
ution of the given

instru
tion in ina
tive points.

The value of the 
urrent point is 
omputed by a �xed-point ALU. Its


omplexity depends on the 
hosen approximation. If the pie
ewise lineari-

sation is used, the ALU performs a binary sear
h to �nd the 
orre
t values

to 
al
ulate the pie
e-wise linearization (see [4℄) of the fun
tion f

di�

. The

intermediate results and the 
onstants are stored in Fixed Point Registers.

5. Con
lusions

We present an original and fully parallel algorithm for 
al
ulation of the

distan
e. Contrary to other methods, the Massive Mar
hing 
ompletely

eliminates the implementation of any priority waiting list and the global
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(a) Pie
e-wise lineari-

sation : 4 intervals

(b) look-up-table, 10

intervales

(
) Addition of a 
on-

stant, 
 =

p

0:5

Figure 2. Contours of distan
e obtained by various approximations; initial 
urves

(pla
ed on the square grid) in heavy lines.

information.

The proposed global ar
hite
ture of Massive Mar
hing is the divide-

and-
onquer type with one pro
essing unit per memory blo
k. Ea
h blo
k

represents a verti
al line of the image in order to redu
e the adressing


omplexity and to balan
e the a
tivity of all the pro
essing units.

The primary 
ontribution 
onsists in a low-
ost, embedded implemen-

tation of traditionally 
ostly algorithms based on partial di�erential equa-

tions. The proposed ar
hite
ture 
an evolve to integrate also the 
urve

deformation algorithm. Same Pro
essing Units will a
tually be used to im-

plement the non-linear 
riteria as energy, 
urvature or opti
al 
ow. The

future work will in
lude the implementation of Massive Mar
hing with a


hosen appli
ation su
h as segmentation or obje
t tra
king.
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